Diversity and feeding strategies of soil microfauna along elevation gradients in Himalayan cold deserts
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29131839
PubMed Central
PMC5683576
DOI
10.1371/journal.pone.0187646
PII: PONE-D-17-29082
Knihovny.cz E-zdroje
- MeSH
- Bacteria klasifikace izolace a purifikace MeSH
- biodiverzita * MeSH
- ekosystém * MeSH
- houby klasifikace izolace a purifikace MeSH
- nadmořská výška * MeSH
- nízká teplota * MeSH
- půda MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Nepál MeSH
- Tibet MeSH
- Názvy látek
- půda MeSH
High-elevation cold deserts in Tibet and Himalaya are one of the most extreme environments. One consequence is that the diversity of macrofauna in this environment is often limited, and soil microorganisms have a more influential role in governing key surface and subsurface bioprocesses. High-elevation soil microfauna represent important components of cold ecosystems and dominant consumers of microbial communities. Still little is known about their diversity and distribution on the edge of their reproductive and metabolic abilities. In this study, we disentangle the impact of elevation and soil chemistry on diversity and distribution of rotifers, nematodes and tardigrades and their most frequent feeding strategies (microbial filter-feeders, bacterivores, fungivores, root-fungal feeders, omnivores) along two contrasting altitudinal gradients in Indian NW Himalaya (Zanskar transect from 3805 to 4714 m a.s.l.) and southwestern Tibet (Tso Moriri transect from 4477 to 6176 m a.s.l.), using a combination of multivariate analysis, variation partitioning and generalized additive models. Zanskar transect had higher precipitation, soil moisture, organic matter and available nutrients than dry Tso Moriri transect. In total, 40 species of nematodes, 19 rotifers and 1 tardigrade were discovered. Species richness and total abundance of rotifers and nematodes showed mid-elevation peaks in both investigated transects. The optimum for rotifers was found at higher elevation than for nematodes. Diversity and distribution of soil microfauna was best explained by soil nitrogen, phosphorus and organic matter. More fertile soils hosted more diverse and abundant faunal communities. In Tso Moriri, bacterivores represented 60% of all nematodes, fungivores 35%, root-fungal feeders 1% and omnivores 3%. For Zanskar the respective proportions were 21%, 13%, 56% and 9%. Elevational optima of different feeding strategies occurred in Zanskar in one elevation zone (4400-4500 m), while in Tso Moriri each feeding strategy had their unique optima with fungivores at 5300 m (steppes), bacterivores at 5500 m (alpine grassland), filter-feeders at 5600 m and predators and omnivores above 5700 m (subnival zone). Our results shed light on the diversity of microfauna in the high-elevation cold deserts and disentangle the role of different ecological filters in structuring microfaunal communities in the rapidly-warming Himalayas.
Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic
Section of Plant Ecology Institute of Botany of The Czech Academy of Sciences Třeboň Czech Republic
Zobrazit více v PubMed
Ruess L, Michelsen A, Jonasson S. Simulated climate change in subarctic soils: response in nematode species composition and dominance structure. Nematology 1999; 1: 513–526.
Hoschitz M, Kaufmann R. Nematode community composition in five alpine habitats. Nematology 2004; 6: 737–747.
Hoschitz M, Kaufmann R. Soil nematode communities of Alpine summits—site differentiation and microclimatic influences. Pedobiologia 2004; 48: 313–320.
Tong F, Xiao Y, Wang Q. Soil nematode community structure on the northern slope of Changbai Mountain, Northeast China. J. Forest. Res. 2010; 21: 93–98.
Yeates GW, Bongers T, de Goede RGM, Freckman DW, Georgieva SS. Feeding habits in soil nematode families and genera—an outline for soil ecologists. J. Nematol. 1993; 25: 315–331. PubMed PMC
Treonis AM, Wall DH, Virginia RA. Invertebrate biodiversity in Antarctic Dry Valley soils and sediments. Ecosystems 1999; 2: 482–492.
Wall DH. Global change tipping points: above- and below-ground biotic interactions in a low diversity ecosystem. Philos. T. Roy. Soc. B. 2007; 362: 2291–2306. PubMed PMC
Nielsen UN, Wall DH, Adams BJ, Virginia RA. Antarctic nematode communities: observed and predicted responses to climate change. Polar Biol. 2011; 34: 1701–1711.
Velasco-Castrillón A, Schultz MB, Colombo F, Gibson JAE, Davies KA, Austin AD, et al. Distribution and Diversity of Soil Microfauna from East Antarctica: Assessing the Link between Biotic and Abiotic Factors. Plos One 2014; 9: e87529 doi: 10.1371/journal.pone.0087529 PubMed DOI PMC
Stanton NL, Krementz D. Nematode densities on reclaimed sites on a cold desert shrub-steppe. Reclam. Reveg. Res. 1982; 1: 233–241.
Hooper DU, Bignell DE, Brown VK, Brussaard L, Dangerfield JM, Wall DH, et al. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks. Bioscience 2000; 50: 1049–1061.
Heemsbergen DA, Berg MP, Loreau M, van Haj JR, Faber JH, Verhoef HA. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 2004; 306: 1019–1020. doi: 10.1126/science.1101865 PubMed DOI
Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH. Ecological linkages between aboveground and belowground biota. Science 2004; 304: 1629–1633. doi: 10.1126/science.1094875 PubMed DOI
Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK. A temporal approach to linking aboveground and belowground ecology. Trends Ecol. Evol. 2005; 20: 634–641. doi: 10.1016/j.tree.2005.08.005 PubMed DOI
Cole L, Buckland SM, Bardgett RD. Influence of disturbance and nitrogen addition on plant and soil animal diversity in grassland. Soil Biol. Biochem. 2008; 40: 505–514.
Lavelle P, Spain AV. Soil Ecology. Second ed, Springer, Dordrecht, The Netherlands; 2001.
Nielsen UN, Wall DH, Adams BJ, Virginia RA, Ball BA, Gooseff MN, et al. The ecology of pulse events: insights from an extreme climatic event in a polar desert ecosystem. Ecosphere 2012; 3: 17.
Crawford CS. Biology of desert invertebrates. Springer-Verlag, Berlin, Germany; 1981.
Wharton DA. Life at the limits. Organisms in extreme environments. Cambridge University Press, Cambridge, UK; 2002. Cambridge Books Online <http://dx.doi.org/10.1017/CBO9780511541568> DOI
Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, et al. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 2004; 141: 254–268. doi: 10.1007/s00442-004-1682-4 PubMed DOI
Schwinning S, Sala OE. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 2004; 141: 211–220. doi: 10.1007/s00442-004-1520-8 PubMed DOI
Walker MD, Walker DA, Welker JM, Arft AM, Bardsley T, Brooks PD, et al. Long-term experimental manipulation of winter snow regime and summer temperature in arctic and alpine tundra. Hydrol. Process. 1999; 13: 2315–2330.
Schimel JP, Bilbrough C, Welker JA. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biol. Biochem. 2004; 36: 217–227.
Barnett TP, Adam JC, Lettenmaier DP. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005; 438: 303–309. doi: 10.1038/nature04141 PubMed DOI
Ayres E, Nkem JN, Wall DH, Adams BJ, Barrett JE, Simmons BL, et al. Experimentally increased snow accumulation alters soil moisture and animal community structure in a polar desert. Polar Biol. 2010; 33: 897–907.
Sohlenius B, Boström S. Species diversity and random distribution of microfauna in extremely isolated habitable patches on Antarctic nunataks. Polar Biol. 2008; 31: 817–825.
Killham K. Soil Ecology. Cambridge University Press, Cambridge, United Kingdom; 1994.
Darby BJ, Neher DA, Housman DC, Belnap J. Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso-fauna. Soil Biol. Biochem. 2011; 43: 1474–1481.
Neher DA, Weicht TR, Barbercheck ME. Linking invertebrate communities to decomposition rate and nitrogen availability in pine forest soils. Appl. Soil Ecol. 2012; 54: 14–23.
Wolters V. Biodiversity of soil animals and its function. Eur. J. Soil Biol. 2001; 37: 221–227.
Dvorský M, Doležal J, de Bello F, Klimešová J., Klimeš L. Vegetation types of East Ladakh: species and growth form composition along main environmental gradients. Appl. Veget. Sci. 2011; 14: 132–147.
Řeháková K, Chlumská Z, Doležal J. Soil Cyanobacterial and Microalgal Diversity in Dry Mountains of Ladakh, NW Himalaya, as Related to Site, Altitude, and Vegetation. Microbial Ecol. 2011; 62: 337–346. PubMed
Janatková K, Řeháková K, Doležal J, Šimek M, Chlumská Z, Dvorský M, et al. Community structure of soil phototrophs along environmental gradients in arid Himalaya. Environ. Microbiol. 2013; 15: 2505–2516. doi: 10.1111/1462-2920.12132 PubMed DOI
Petz W. Ecology of the active soil microfauna (Protozoa, Metazoa) of Wilkes Land, East Antarctica. Polar Biol. 1997; 18: 33–44.
Harris N. The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeogr. Palaeocl. 2006; 241: 4–15.
Bhutiyani MR, Kale VS, Pawar NJ. Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Climatic Change 2007; 85: 159–177.
Miehe G, Miehe S, Bach K, Kluge J, Wesche K, Yongping Y, et al. Ecological stability during the LGM and the mid-Holocene in the alpine steppes of Tibet? Quaternary Res. 2011; 76: 243–252.
Klimeš L, Doležal J. An experimental assessment of the upper elevational limit of flowering plants in the Western Himalayas. Ecography 2010; 33: 590–596.
Dvorský M, Doležal J, Kopecký M, Chlumská Z, Janatková K, Altman J, et al. Testing the Stress-Gradient Hypothesis at the Roof of the World: Effects of the Cushion Plant Thylacospermum caespitosum on Species Assemblages. Plos One 2013; 8: e53514 doi: 10.1371/journal.pone.0053514 PubMed DOI PMC
Devetter M. A method for efficient extraction of rotifers (Rotifera) from soils. Pedobiologia 2010; 53: 115–118.
Donner J. Ordnung Bdelloidea, Springer-Verlag, Berlin; 1965.
Andrássy I. Free-living Nematodes of Hungary (Nematoda Errantia) Volume I Hungarian Natural History Museum and Systematic Zoology Research Group of the Hungarian Academy of Sciences, Budapest; 2005.
Andrássy I. Free-living Nematodes of Hungary (Nematoda Errantia) Volume II Hungarian Natural History Museum and Systematic Zoology Research Group of the Hungarian Academy of Sciences, Budapest; 2007.
Andrássy I. Free-living Nematodes of Hungary (Nematoda Errantia) Volume III Hungarian Natural History Museum and Systematic Zoology Research Group of the Hungarian Academy of Sciences, Budapest; 2009.
Geraert E. The Tylenchidae of the World—Identification of the family Tylenchidae (Nematoda), Academia Press, Gent; 2008.
Háněl L. An outline of soil nematode succession on abandoned fields in South Bohemia. Appl. Soil Ecol. 2010; 46: 355–371.
VDLUFA (Association of German Agricultural Analytic and Research Institutes), 1991. Methods Book I “Soil Analysis” (1st–6th Supplement Delivery), 4th ed, VDLUFA-Verlag, Darmstadt, Germany.
ter Braak C. J. F., Smilauer P., Canoco reference manual and users’s guide: sofware for ordination (version 5.0). Ithaca, NY, USA: (Microcomputer Power, 2012).
McCullagh P, Nelder JA. Generalized linear models, 2nd ed Chapman and Hall, London, United Kingdom; 1989.
Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 2006; 15: 651–674.
Sohlenius B. A carbon budget for nematodes, rotifers and tardigrades in a Swedish coniferous forest soil. Holarctic Ecol. 1979; 2: 30–40.
Háněl L. Succession of soil nematodes in pine forests on coal-mining sands near Cottbus, Germany. Appl. Soil Ecol. 2001; 16: 23–34.
Devetter M, Frouz J. Primary Succession of Soil Rotifers in Clays of Brown Coal Post-Mining Dumps. Int. Rev. Hydrobiol. 2011; 96: 164–174.
Devetter M, Schöll K. Hydrobiont animals in floodplain soil: Are they positively or negatively affected by flooding? Soil Biol. Biochem. 2014; 69: 393–397.
Schlaghamerský J, Devetter M, Háněl L, Tajovský K, Starý J, Tuf IH, et al. Soil fauna across Central European sandstone ravines with temperature inversion: From cool and shady to dry and hot places. Appl. Soil Ecol. 2014; 83: 30–38.
Sohlenius B, Boström S, Hirschfelder A. Nematodes, rotifers and tardigrades from nunataks in Dronning Maud Land, East Antarctica. Polar Biol. 1995; 15: 51–56.
Sohlenius B, Boström S, Hirschfelder A. Distribution patterns of microfauna (nematodes, rotifers and tardigrades) on nunataks in Dronning Maud Land, East Antarctica. Polar Biol. 1996; 16: 191–200.
Yeates GW, Saggar S, Daly BK. Soil microbial C, N, and P, and microfaunal populations under Pinus radiata and grazed pasture land-use systems. Pedobiologia 1997; 41: 549–565.
Sohlenius B, Boström S. Effects of climate change on soil factors and metazoan microfauna (nematodes, tardigrades and rotifers) in a Swedish tundra soil—a soil transplantation experiment. Appl. Soil Ecol. 1999; 12: 113–128.
Háněl L. Recovery of soil nematode populations from cropping stress by natural secondary succession to meadow land. Appl. Soil Ecol. 2003; 22: 255–270.
Háněl L, Devetter M, Adl SM. Chapter 10. Recovery and Colonization at Post-mining Sites by the Soil Microfauna In: Frouz J. (Eds.), Soil Biota and Ecosystem Development in Post Mining Sites. CRC Press, Taylor & Francis Group, Boca Raton, London, New York; 2014.
Boag B, Yeates GW. Soil nematode biodiversity in terrestrial ecosystems. Biodivers. Conserv. 1998; 7: 617–630.
Velasco-Castrillón A, Gibson JAE, Stevens MI. A review of current Antarctic limno-terrestrial microfauna. Polar Biol. 2014; 37: 1517–1531.
Háněl L. Soil nematodes in cambisol agroecosystems of the Czech Republic. Biologia 2003; 58: 205–216.
Loof PAA. Freeliving and plant parasitic nematodes from Spitzbergen, collected by Mr. H. van Rossen Mededelingen Landbouwhogeschool Wageningen 1971; 71–7, 1–86.
Sadaka N, Ponge JF. Soil animal communities in holm oak forests: influence of horizon, altitude and year. Eur. J. Soil Biol. 2003; 39: 197–207.
Powers LE, Freckman DW. McMurdo LTER: Soil and nematode distribution along an elevational gradient in Taylor Valley. Antarct. J. U. S. 1994; 29: 228.
Ricci C. Ecology of bdelloids: how to be successful. Hydrobiologia 1987; 147: 117–127.
Coulson SJ, Hodkinson ID, Webb NR. Aerial dispersal of invertebrates over a high-Arctic glacier foreland: Midtre Lovenbreen, Svalbard. Polar Biol. 2003; 26: 530–537.
Nkem JN, Wall DH, Virginia RA, Barrett JE, Broos EJ, Porazinska DL, et al. Wind dispersal of soil invertebrates in the McMurdo Dry valleys, Antarctica. Polar Biol. 2006; 29: 346–352.
Maraun M, Martens H, Migge S, Theenhaus A, Scheu S. Adding to 'the enigma of soil animal diversity': fungal feeders and saprophagous soil invertebrates prefer similar food substrates. Eur. J. Soil Biol. 2003; 39: 85–95.
Bongers T. The Maturity Index, the evolution of nematode life history traits, adaptive radiation and cp-scaling. Plant and Soil 1999; 212: 13–22.
Verschoor BC, de Goede RGM, de Hoop J-W, de Vries FW. Seasonal dynamics and vertical distribution of plant-feeding nematode communities in grasslands. Pedobiologia 2001; 45: 213–233.
Ettema CH, Lowrance R, Coleman DC. Riparian soil response to surface nitrogen input: the indicator potential of free-living nematode populations. Soil Biol. Biochem. 1999; 31: 1625–1638.
Ferris H, Venette RC, Scow KM. Soil management to enhance bacterivore and fungivore nematode populations and their nitrogen mineralisation function. Appl. Soil Ecol. 2004; 25: 19–35.
Housman DC, Yeager CM, Darby BJ, Sanford RL Jr, Kuske CR, Neher DA, et al. Heterogeneity of soil nutrients and subsurface biota in a dryland ecosystem. Soil Biol. Biochem. 2007; 39: 2138–2149.
Pen-Mouratov S, Myblat T, Shamir I, Barness G, Steinberger Y. Soil Biota in the Arava Valley of Negev Desert, Israel. Pedosphere 2010; 20: 273–284.
Sánchez-Moreno S, Ferris H. Suppressive service of the soil food web: Effects of environmental management. Agr., Ecosyst. Environ. 2007; 119: 75–87.
Ou W, Liang W, Jiang Y, Li Q, Wen D. Vertical distribution of soil nematodes under different land use types in an aquic brown soil. Pedobiologia 2005; 49: 139–148.
Ingham RE, Trofymow JA, Ingham ER, Coleman DC. Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol. Monogr. 1985; 55: 119–140.
Zhang X, Guan P, Wang Y, Li Q, Zhang S, Zhang Z, et al. Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests. Soil Biol. Biochem. 2015; 80: 118–126.
Degens BP, Schipper LA, Sparling GP, Duncan LC. Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol. Biochem. 2001; 33: 1143–1153.
Wardle DA, Bardgett RD. Human-induced changes in large herbivorous mammal density: the consequences for decomposers. Front. Ecol. Environ. 2004; 2: 145–153.
Sylvain ZA, Wall DH, 2001. Linking soil biodiversity and vegetation: Implications for a changing planet. Am. J. Bot. 2001; 98: 517–527. PubMed
Simmons BL, Wall DH, Adams BJ, Ayres E, Barrett JE, Virginia RA. Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica. Soil Biol. Biochem. 2009; 41: 2052–2060.