Testing the stress-gradient hypothesis at the roof of the world: effects of the cushion plant Thylacospermum caespitosum on species assemblages
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23326446
PubMed Central
PMC3542354
DOI
10.1371/journal.pone.0053514
PII: PONE-D-12-20958
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- biologické modely * MeSH
- Caryophyllaceae růst a vývoj fyziologie MeSH
- chemické jevy MeSH
- druhová specificita MeSH
- fyziologický stres * MeSH
- mikroklima MeSH
- nadmořská výška * MeSH
- půda MeSH
- teplota MeSH
- vzduch MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Indie MeSH
- Tibet MeSH
- Názvy látek
- půda MeSH
Many cushion plants ameliorate the harsh environment they inhabit in alpine ecosystems and act as nurse plants, with significantly more species growing within their canopy than outside. These facilitative interactions seem to increase with the abiotic stress, thus supporting the stress-gradient hypothesis. We tested this prediction by exploring the association pattern of vascular plants with the dominant cushion plant Thylacospermum caespitosum (Caryophyllaceae) in the arid Trans-Himalaya, where vascular plants occur at one of the highest worldwide elevational limits. We compared plant composition between 1112 pair-plots placed both inside cushions and in surrounding open areas, in communities from cold steppes to subnival zones along two elevational gradients (East Karakoram: 4850-5250 m and Little Tibet: 5350-5850 m). We used PERMANOVA to assess differences in species composition, Friedman-based permutation tests to determine individual species habitat preferences, species-area curves to assess whether interactions are size-dependent and competitive intensity and importance indices to evaluate plant-plant interactions. No indications for net facilitation were found along the elevation gradients. The open areas were not only richer in species, but not a single species preferred to grow exclusively inside cushions, while 39-60% of 56 species detected had a significant preference for the habitat outside cushions. Across the entire elevation range of T. caespitosum, the number and abundance of species were greater outside cushions, suggesting that competitive rather than facilitative interactions prevail. This was supported by lower soil nutrient contents inside cushions, indicating a resource preemption, and little thermal amelioration at the extreme end of the elevational gradient. We attribute the negative associations to competition for limited resources, a strong environmental filter in arid high-mountain environment selecting the stress-tolerant species that do not rely on help from other plants during their life cycle and to the fact the cushions do not provide a better microhabitat to grow in.
Zobrazit více v PubMed
Brooker RW (2006) Plant–plant interactions and environmental change. New Phytol 171: 271–284. PubMed
Pauli H, Gottfried M, Reisser K, Klettner Ch, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Glob Change Biol 13: 147–156.
Erschbamer B, Unterluggauer P, Winkler E, Mallaun M (2011) Changes in plant species diversity revealed by long-term monitoring on mountain summits in the Dolomites (northern Italy). Preslia 83: 387–401.
Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barančok P, et al. (2012) Continent-wide response of mountain vegetation to climate change. Nature Clim Change 2: 111–115.
Cavieres LA, Quiroz LC, Molina-Montenegro MA, Muñoz AA, Pauchard A (2005) Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of central Chile. Perspect Plant Ecol 7: 217–226.
Körner C (2003) Alpine plant life. Berlin: Springer. 344 p.
Arroyo MTK, Cavieres LA, Peñaloza A, Arroyo-Kalin MA (2003) Positive associations between the cushion plant Azorella monantha (Apiaceae) and alpine plant species in the Chilean Patagonian Andes. Plant Ecol 169: 121–129.
Cavieres LA, Badano EI, Sierra-Almeida A, Gomez-Gonzalez S, Molina-Montenegro MA (2006) Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile. New Phytol 169: 59–69. PubMed
Núñez C, Aizen M, Ezcurra C (1999) Species associations and nurse effects in patches of high-Andean vegetation. J Veg Sci 10: 357–364.
Yang Y, Niu Y, Cavieres LA, Sun H (2010) Positive associations between the cushion plant Arenaria polytrichoides (Caryophyllaceae) and other alpine plant species increase with elevation in the Sino-Himalayas. J Veg Sci 21: 1048–1057.
Hager J, Faggi AM (1990) Observaciones sobre distribución y microclima de cojines enanos de la isla de Creta y del noroeste de la Patagonia. Parodiana 6: 109–127.
Badano EI, Molina-Montenegro MA, Quiroz C, Cavieres LA (2002) Effects of the cushion plant Oreopolus glacialis (Rubiaceae) on species richness and diversity in a high-Andean plant community of central Chile. Rev Chil Hist Nat 75: 757–765.
Cavieres L, Arroyo MTK, Peñaloza A, Molina-Montenegro M, Torres C (2002) Nurse effect of Bolax gummifera cushion plants in the alpine vegetation of the Chilean Patagonian Andes. J Veg Sci 13: 547–554.
Acuña-Rodríguez IS, Cavieres LA, Gianoli E (2006) Nurse effect in seedling establishment: facilitation and tolerance to damage in the Andes of central Chile. Rev Chil Hist Nat 79: 329–336.
Antonsson H, Björk RG, Molau U (2009) Nurse plant effect of the cushion plant Silene acaulis (L.) Jacq. in an alpine environment in the subarctic Scandes, Sweden. Plant Ecol 2: 17–25.
Cavieres LA, Badano EI (2009) Do facilitative interactions increase species richness at the entire community level? J Ecol 97: 1181–1191.
Haussmann NS, McGeoch MA, Boelhouwers JC (2010) Contrasting nurse plants and nurse rocks: The spatial distribution of seedlings of two sub-Antarctic species. Acta Oecol 36: 299–305.
Bertness MD, Callaway RM (1994) Positive interactions in communities. Trends Ecol Evol 9: 191–193. PubMed
Maestre FT, Valladares F, Reynolds JF (2005) Is the change of plant–plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. J Ecol 93: 748–757.
Maestre FT, Valladares F, Reynolds JF (2006) The stress-gradient hypothesis does not fit all relationships between plant-plant interactions and abiotic stress: further insights from arid environments. J Ecol 94: 17–22.
Lortie CJ, Callaway RM (2006) Meta-analysis and rejection of the stress-gradient hypothesis? Analytical recommendations. J Ecol 94: 7–16.
de Bello F, Doležal J, Dvorský M, Chlumská Z, Řeháková K, et al. (2011) Cushions of Thylacospermum caespitosum (Caryophyllaceae) do not facilitate other plants under extreme elevation and dry conditions in the north-west Himalayas. Ann Bot 108: 567–573. PubMed PMC
Fajardo A, Quiroz CL, Cavieres LA (2008) Spatial patterns in cushion-dominated plant communities of the high Andes of central Chile: How frequent are positive associations? J Veg Sci 19: 87–96.
Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97: 199–205.
Michalet R (2007) Highlighting the multiple drivers of change in interactions along stress gradients. New Phytol 173: 3–6. PubMed
Badano EI, Jones CG, Cavieres LA, Wright JP (2006) Assessing impacts of ecosystem engineers on community organization: a general approach illustrated by effects of a high-Andean cushion plant. Oikos 115: 369–385.
Sklenář P (2009) Presence of cushion plants increases community diversity in the high equatorial Andes. Flora 204: 270–277.
Holmgren M, Scheffer M (2010) Strong facilitation in mild environments: the stress gradient hypothesis revisited. J Ecol 98: 1269–1275.
Xu J, Grumbine ER, Shrestha A, Eriksson M, Yang X, et al. (2009) The melting Himalayas: cascading effects of climate change on wter, biodiversity, and livelihoods. Conserv Biol 23: 520–530. PubMed
Hartmann H (1983) Pflanzengesellschaften entlang der Kashmirroute in Ladakh. Jahrb Vereins Schutze Bergwelt 48: 131–173.
Wang J (1988) The steppes and deserts of Xizang Plateau (Tibet). Vegetatio 75: 135–142.
Miehe G, Winiger M, Böhner J, Zhang Y (2001) The climatic diagram map of High Asia. Purpose and concepts. Erdkunde 55: 94–97.
Dvorský M, Doležal J, de Bello F, Klimešová J, Klimeš J (2011) Vegetation types of East Ladakh: species and growth form composition along main environmental gradients. Appl Veg Sci 14: 132–147.
Klimeš L, Doležal J (2010) An experimental assessment of the upper elevational limit of flowering plants in the Western Himalayas. Ecography 33: 590–596.
Phillips RJ (2008) Geological map of the Karakoram fault zone, Eastern Karakoram, Ladakh, NW Himalaya. Journal of Maps 21: 37.
Zingg T (1954) Determination of the climatic snowline on a climatological basis (Die Bestimmung der klimatischen Schneegrenze auf klimatologischer Grundlage). Vienna: Springer. 7 p.
Klimešová J, Doležal J, Dvorský M, de Bello F, Klimeš L (2011) Clonal growth forms in eastern Ladakh, Western Himalayas: classification and habitat preferences. Folia Geobotanica 46: 191–217.
Kleier C, Rundel PW (2004) Microsite requirements, population structure and growth of the cushion plant Azorella compacta in the tropical Chilean Andes. Austral Ecol 29: 461–470.
Le Roux PC, McGeoch MA (2004) The use of size as an estimator of age in the subantarctic cushion plant, Azorella selago (Apiaceae). Arct Antarct Alp Res 36: 509–517.
Klimeš L, Dickoré WB (2006) Flora of Ladakh (Jammu & Kashmir, India). A preliminary checklist. Available: http://www.butbn.cas.cz/klimes. Accessed 2012 Feb 1.
Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4: 379–391.
Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13: 451–453.
Warton DI, Duursma RA, Falster DS, Taskinen S (2012) smatr 3 - an R package for estimation and inference about allometric lines. Meth Ecol Evol 3: 257–259.
R Development Core Team (2010) R: A language and environment for statistical computing. ISBN 3-900051-07-0. Available: http://www.R-project.org. Accessed 2012 Feb 1.
Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26: 32–46.
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al.. (2011) vegan: Community Ecology Package. R package version 2.0–2. http://CRAN.R-project.org/package=vegan.
Hollander M, Wolfe DA (1999) Nonparametric Statistical Methods. New York: John Wiley & Sons. 787 p.
Hothorn T, Hornik K, van de Wiel MA, Zeileis A (2008) Implementing a Class of Permutation Tests: The coin Package. J Stat Softw 28: 1–23. PubMed
Armas C, Ordiales R, Pugnaire FI (2004) Measuring plant interactions: a new comparative index. Ecology 85: 2682–2686.
Seifan M, Seifan T, Ariza C, Tielboerger K (2010) Facilitating an importance index. J Ecol 98: 356–361.
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate – a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57: 289–300.
Bates D, Maechler M (2010) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375–33. Available: http://CRAN.R-project.org/package=lme4. Accessed 2012 Feb 1.
Lepš J (2005) Diversity and ecosystem function. In: van der Maarel E editor: Vegetation ecology. Blackwell Sci., Oxford. 199–237.
Romdal TS, Grytnes JA (2007) An indirect area effect on elevational species richness patterns. Ecography 30: 440–448.
Cavieres LA, Badano EI, Sierra-Almeida A, Molina-Montenegro M (2007) Microclimatic modifications of cushion plants and their consequences for seedlings survival of native and non-native plants in the high-Andes of central Chile. Arct Antarct Alp Res 39: 229–236.
Řeháková K, Chlumská Z, Doležal J (2011) Soil cyanobacterial and microalgal diversity in dry mountains of Ladakh, NW Himalaya, as related to site, altitude, and vegetation. Microbial Ecol 62: 337–346. PubMed
Gold WG, Bliss LC (1995) Water limitation and plant community development in a polar desert. Ecology 76: 1558–1568.
Guo Y, Zhao H, Zuo X, Drake S, Zhao X (2008) Biological soil crust development and its topsoil properties in the process of dune stabilization, Inner Mongolia, China. Environ Geol 54: 653–662.
Quiroz CL, Badano EI, Cavieres LA (2009) Floristic changes in alpine plant communities induced by the Cushion plant Azorella madreporica (Apiaceae) in the Andes of central Chile. Rev Chil Hist Nat 82: 171–184.
Pyšek P, Liška J (1991) Colonization of Sibbaldia tetrandra cushions on alpine scree in the Pamiro-Alai Mountains, Central Asia. Arct Alp Res 23: 263–272.
Núñez C, Aizen M, Ezcurra C (1999) Species associations and nurse effects in patches of high-Andean vegetation. J Veg Sci 10: 357–364.
Badano EI, Molina-Montenegro MA, Quiroz C, Cavieres LA (2002) Effects of the cushion plant Oreopolus glacialis (Rubiaceae) on species richness and diversity in a high-Andean plant community of central Chile. Revista Chilena de Historia Natural 75: 757–765.
Badano EI, Cavieres LA (2006) Impacts of ecosystem engineers on community attributes: effects of cushion plants at different elevations of the Chilean Andes. Divers Distrib 12: 388–396.
Badano EI, Cavieres LA (2006) Ecosystem engineering across ecosystems: do engineer species sharing common features have generalized or idiosyncratic effects on species diversity? J Biogeogr 33: 304–314.
Zoller H, Lenzin H (2006) Composed cushions and coexistence with neighbouring species promoting the persistence of Eritrichium nanum in high alpine vegetation. Bot Helv 116: 31–40.
Badano EI, Marquet PA (2008) Ecosystem engineering affects ecosystem functioning in high-Andean landscapes. Oecologia 4: 821–829. PubMed
Arredondo-Núñez A. Badano EI, Bustamante EO (2009) How beneficial are nurse plants? A meta-analysis of the effects of cushion plants on high-Andean plant communities. Community Ecol 10: 1–6.
Anthelme F, Buendia B, Mazoyer C, Dangles O (2012) Unexpected mechanisms sustain the stress gradient hypothesis in a tropical alpine environment. J Veg Sci 23: 62–72.
Miehe G (1991) Der Himalaya, eine multizonale Gebirgsregion. In: Walter H, Breckle SW, editors. Ökologie der Erde. Stuttgart: Fischer. 181–230.
Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya