Climate warming promotes growth in Himalayan alpine cushion plants but threatens survival through increased extreme snowfall

. 2025 Jul ; 247 (1) : 115-127. [epub] 20250512

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40356206

Grantová podpora
The Czech Science Foundation (GACR 24-11954S) Grantová Agentura České Republiky

Climate warming stimulates growth and reproduction in cold-adapted plants but also leads to extreme weather events that may hinder their performance. We examined these predictions in the cold-arid Himalayan subnival zone at 5900 m, where unprecedented warming and extreme snowfalls occurred over the past three decades. We collected 205 individuals of Ladakiella klimesii, analyzing climate influences on their growth and recruitment through annual growth rings. Radial growth was highly sensitive to summer temperatures, with warmer conditions significantly enhancing growth. However, increased winter precipitation negatively impacted growth and recruitment by shortening the growing season. Warmer winters and springs, combined with autumn snow cover, favored recruitment, while extreme late winter and summer snowfall disrupted growth and recruitment through intensified soil disturbances. We also found a trade-off between growth rate and longevity: Plants established during warmer periods grow rapidly but have shorter lifespans, whereas those emerging in colder conditions grow more slowly yet persist longer, with implications for long-term population stability. These findings highlight the complex relationship between growth, longevity, and survival in a shifting climate. Although warming promotes growth, it may also decrease longevity and population persistence. The rising frequency of extreme snowfall presents new survival challenges for the world's highest-occurring plants.

Zobrazit více v PubMed

Anderson K, Fawcett D, Cugulliere A, Benford S, Jones D, Leng R. 2020. Vegetation expansion in the subnival Hindu Kush Himalaya. Global Change Biology 26: 1608–1625. PubMed PMC

Angel R, Conrad R, Dvorsky M, Kopecky M, Kotilínek M, Hiiesalu I, Schweingruber F, Doležal J. 2016. The root‐associated microbial community of the world's highest growing vascular plants. Microbial Ecology 72: 394–406. PubMed PMC

Aubert S, Boucher F, Lavergne S, Renaud J, Choler P. 2014. 1914–2014: a revised worldwide catalogue of cushion plants 100 years after Hauri and Schröter. Alpine Botany 124: 59–70.

Bigler C, Veblen TT. 2009. Increased early growth rates decrease longevities of conifers in subalpine forests. Oikos 118: 1130–1138.

Bonanomi G, Idbella M, Allegrezza M, Tesei G. 2023. Dieback of the cushion plant Silene acaulis at its southern limit of distribution in the Apennines. Alpine Botany 133: 57–62.

Bunn AG. 2008. A dendrochronology program library in R (dplR). Dendrochronologia 26: 115–124.

Büntgen U, Hellmann L, Tegel W, Normand S, Myers‐Smith I, Kirdyanov AV, Nievergelt D, Schweingruber FH. 2015. Temperature‐induced recruitment pulses of Arctic dwarf shrub communities. Journal of Ecology 103: 489–501.

Büntgen U, Krusic PJ, Piermattei A, Coomes DA, Esper J, Myglan VS, Kirdyanov AV, Camarero JJ, Crivellaro A, Körner C. 2019. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nature Communications 10: 2171. PubMed PMC

Buras A, Wilmking M. 2015. Correcting the calculation of Gleichläufigkeit. Dendrochronologia 34: 29–30.

Callaway RM. 2007. Positive interactions and interdependence in plant communities. Dordrecht, the Netherlands: Springer.

Campbell DR. 2019. Early snowmelt projected to cause population decline in a subalpine plant. Proceedings of the National Academy of Sciences, USA 116: 12901–12906. PubMed PMC

Centenaro G, Petraglia A, Carbognani M, Piotti A, Hudek C, Büntgen U, Crivellaro A. 2023. The oldest known clones of Salix herbacea growing in the Northern Apennines, Italy are at least 2000 years old. American Journal of Botany 110: e16243. PubMed

Chlumská Z, Liancourt P, Hartmann H, Bartoš M, Altman J, Dvorský M, Hubáček T, Borovec J, Čapková K, Kotilínek M et al. 2022. Species‐ and compound‐specific dynamics of nonstructural carbohydrates toward the world's upper distribution of vascular plants. Environmental and Experimental Botany 201: 104985.

Choler P. 2018. Winter soil temperature dependence of alpine plant distribution: implications for anticipating vegetation changes under a warming climate. Perspectives in Plant Ecology, Evolution and Systematics 30: 6–15.

Chondol T, Klimeš A, Altman J, Čapková K, Dvorský M, Hiiesalu I, Jandová V, Kopecký M, Macek M, Řeháková K et al. 2023. Habitat preferences and functional traits drive longevity in Himalayan high‐mountain plants. Oikos 2023: e010073.

Chondol T, Klimeš A, Hiiesalu I, Altman J, Čapková K, Jandová V, Kopecký M, Macek M, Řeháková K, Doležal J. 2025. Contrasting habitat associations and ecophysiological adaptations drive interspecific growth differences among Himalayan high‐mountain plants. Annals of Botany: mcaf014. doi: 10.1093/aob/mcaf014. PubMed DOI

Chondol T, Korznikov KA, Doležal J. 2024. Ecological significance of marcescence in Himalayan plants: why is standing dead phytomass more important in demanding, resource‐limited environments? Functional Ecology 38: 942–954.

Chuine I. 2010. Why does phenology drive species distribution? Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 365: 3149–3160. PubMed PMC

Dar J. 2023. Western disturbances alter the trend of winter precipitation and its extremes over Northwest Himalayas: Kashmir Himalaya. Environmental Science and Pollution Research 30: 83439–83451. PubMed

Dee JR, Stambaugh MC. 2019. A new approach towards climate monitoring in Rocky Mountain alpine plant communities: a case study using herb‐chronology and Penstemon whippleanus. Arctic, Antarctic, and Alpine Research 51: 84–95.

Dentant C. 2018. The highest vascular plants on Earth. Alpine Botany 128: 97–106.

Dolezal J. 2025. Ladakiella klimesii growth and recruitment data over the past 30 years in western Himalaya together with local temperature and precipitation data [Data set]. Zenodo. doi: 10.5281/zenodo.15330848. DOI

Dolezal J, Chondol T, Chlumská Z, Altman J, Čapková K, Dvorský M, Fibich P, Korznikov KA, Ruka AT, Kopecký M et al. 2024. Contrasting biomass allocations explain adaptations to cold and drought in the world's highest‐growing angiosperms. Annals of Botany 134: 401–414. PubMed PMC

Doležal J, Dvorský M, Börner A, Wild J, Schweingruber FH. 2018. Anatomy, age and ecology of high mountain plants in Ladakh, the Western Himalaya. Cham, Switzerland: Springer.

Dolezal J, Dvorsky M, Kopecky M, Liancourt P, Hiiesalu I, Macek M, Altman J, Chlumska Z, Rehakova K, Capkova K et al. 2016. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Scientific Reports 6: 24881. PubMed PMC

Dolezal J, Jandova V, Macek M, Mudrak O, Altman J, Schweingruber FH, Liancourt P. 2021. Climate warming drives Himalayan alpine plant growth and recruitment dynamics. Journal of Ecology 109: 179–190.

Dolezal J, Kopecky M, Dvorsky M, Macek M, Rehakova K, Capkova K, Borovec J, Schweingruber F, Liancourt P, Altman J. 2019. Sink limitation of plant growth determines tree line in the arid Himalayas. Functional Ecology 33: 553–565.

Dolezal J, Kurnotova M, Stastna P, Klimesova J. 2020. Alpine plant growth and reproduction dynamics in a warmer world. New Phytologist 228: 1295–1305. PubMed

Duchicela SA, Cuesta F, Tovar C, Muriel P, Jaramillo R, Salazar E, Pinto E. 2021. Microclimatic warming leads to a decrease in species and growth form diversity: insights from a tropical alpine grassland. Frontiers in Ecology and Evolution 9: 673655.

Dvorský M, Chlumská Z, Altman J, Čapková K, Řeháková K, Macek M, Kopecký M, Liancourt P, Doležal J. 2016. Gardening in the zone of death: an experimental assessment of the absolute elevation limit of vascular plants. Scientific Reports 6: 24440. PubMed PMC

Dvorský M, Doležal J, De Bello F, Klimešová J, Klimeš L. 2011. Vegetation types of East Ladakh: species and growth form composition along main environmental gradients: vegetation of East Ladakh. Applied Vegetation Science 14: 132–147.

Dvorský M, Doležal J, Kopecký M, Chlumská Z, Janatková K, Altman J, De Bello F, Řeháková K. 2013. Testing the stress‐gradient hypothesis at the roof of the world: effects of the cushion plant Thylacospermum caespitosum on species assemblages. PLoS ONE 8: e53514. PubMed PMC

Esper J, Gärtner H. 2001. Interpretation of tree‐ring chronologies (Interpretation von Jahrringchronologien). 277–288.

Ferrarini A, Alsafran MHSA, Dai J, Alatalo JM. 2019. Improving niche projections of plant species under climate change: silene acaulis on the British Isles as a case study. Climate Dynamics 52: 1413–1423.

Fischer EM, Sippel S, Knutti R. 2021. Increasing probability of record‐shattering climate extremes. Nature Climate Change 11: 689–695. PubMed PMC

Forrest J, Miller‐Rushing AJ. 2010. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 365: 3101–3112. PubMed PMC

Francon L, Corona C, Till‐Bottraud I, Carlson BZ, Stoffel M. 2020. Some (do not) like it hot: shrub growth is hampered by heat and drought at the alpine treeline in recent decades. American Journal of Botany 107: 607–617. PubMed

Frank D, Reichstein M, Bahn M, Thonicke K, Frank D, Mahecha MD, Smith P, Van Der Velde M, Vicca S, Babst F et al. 2015. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Global Change Biology 21: 2861–2880. PubMed PMC

Franklin RS. 2013. Growth response of the alpine shrub, Linanthus pungens, to snowpack and temperature at a rock glacier site in the eastern Sierra Nevada of California, USA. Quaternary International 310: 20–33.

Gärtner H, Schweingruber FH. 2013. Microscopic preparation techniques for plant stem analysis (Originalausg). Remagen, Germany: Verlag Dr. Kessel.

Gauslaa Y. 1984. Heat Resistance and Energy Budget in Different Scandinavian Plants. Holarctic Ecology 7: 5–78.

German DA, Al‐Shehbaz IA. 2010. Nomenclatural novelties in miscellaneous Asian Brassicaceae (Cruciferae). Nordic Journal of Botany 28: 646–651.

Harris, IC . 2020: Cru Jra v2.1: a forcings dataset of gridded land surface blend of Climatic Research Unit (CRU) and Japanese reanalysis (JRA) data; Jan.1901–Dec.2019. Centre for Environmental Data Analysis.

Jevšenak J. 2020. New features in the dendroTools R package: bootstrapped and partial correlation coefficients for monthly and daily climate data. Dendrochronologia 63: 125753.

Jevšenak J, Levanič T. 2018. dendroTools: R package for studying linear and nonlinear responses between tree‐rings and daily environmental data. Dendrochronologia 48: 32–39.

Klimešová J, Doležal J, Dvorský M, De Bello F, Klimeš L. 2011. Clonal growth forms in Eastern Ladakh, Western Himalayas: classification and habitat Preferences. Folia Geobotanica 46: 191–217.

Körner C. 2017. A matter of tree longevity. Science 355: 130–131. PubMed

Körner C. 2021. Alpine plant life: Functional plant ecology of high mountain ecosystems, 3rd edn. Cham, Switzerland: Springer.

Körner C. 2023. Concepts in alpine plant ecology. Plants 12: 2666. PubMed PMC

Körner C, Riedl S, Keplinger T, Richter A, Wiesenbauer J, Schweingruber F, Hiltbrunner E. 2019. Life at 0°C: the biology of the alpine snowbed plant Soldanella pusilla . Alpine Botany 129: 63–80.

Krab EJ, Roennefarth J, Becher M, Blume‐Werry G, Keuper F, Klaminder J, Kreyling J, Makoto K, Milbau A, Dorrepaal E. 2018. Winter warming effects on tundra shrub performance are species‐specific and dependent on spring conditions. Journal of Ecology 106: 599–612.

Lawlor JA, Comte L, Grenouillet G, Lenoir J, Baecher JA, Bandara RMWJ, Bertrand R, Chen I‐C, Diamond SE, Lancaster LT et al. 2024. Mechanisms, detection and impacts of species redistributions under climate change. Nature Reviews Earth and Environment 5: 351–368.

Leng R, Harrison S, Anderson K. 2023. Himalayan alpine ecohydrology: an urgent scientific concern in a changing climate. Ambio 52: 390–410. PubMed PMC

McCarthy DP. 1992. Dating with cushion plants: establishment of a silene acaulis growth curve in the Canadian Rockies. Arctic and Alpine Research 24: 50.

Miehe G, Miehe S, Kaiser K, Reudenbach C, Behrendes L, Wang Y. 2019. Vegetation patterns and processes in the Western Tibetan Plateau and their relationship with environmental conditions. Journal of Biogeography 46: 987–1003.

Milla R, Giménez‐Benavides L, Escudero A, Reich PB. 2009. Intra‐ and interspecific performance in growth and reproduction increase with altitude: a case study with two Saxifraga species from northern Spain. Functional Ecology 23: 111–118.

Molenda O, Reid A, Lortie CJ. 2012. The Alpine Cushion Plant Silene acaulis as foundation species: a bug's‐eye view to facilitation and microclimate. PLoS ONE 7: e37223. PubMed PMC

Myers‐Smith IH, Hik DS. 2018. Climate warming as a driver of tundra shrubline advance. Journal of Ecology 106: 547–560.

Pant GB, Kumar PP, Revadekar JV, Singh N. 2018. Climate change in the Himalayas, hardcover. Springer International Publishing AG. doi: 10.1007/978-3-319-61654-4. isbn:978‐3‐319‐61653‐7. DOI

Pepin NC, Arnone E, Gobiet A, Haslinger K, Kotlarski S, Notarnicola C, Palazzi E, Seibert P, Serafin S, Schöner W et al. 2022. Climate changes and their elevational patterns in the mountains of the world. Reviews of Geophysics 60: e2020RG000730.

R Core Team . 2023. R: a language and environment for statistical computing (R v.4.2. 3). Vienna, Austria: R Foundation for Statistical Computing.

Rai S, Breme N, Jandova V, Lanta V, Altman J, Ruka AT, Rixen C, Dolezal J. 2024. Growth dynamics and climate sensitivities in alpine cushion plants: insights from Silene acaulis in the Swiss Alps. Alpine Botany. doi: 10.1007/s00035-024-00318-8. DOI

Řeháková K, Čapková K, Dvorský M, Kopecký M, Altman J, Šmilauer P, Doležal J. 2017. Interactions between soil phototrophs and vascular plants in Himalayan cold deserts. Soil Biology and Biochemistry 115: 568–578.

Richards FJ. 1959. A flexible growth function for empirical use. Journal of Experimental Botany 10: 290–301.

Rixen C, Schwoerer C, Wipf S. 2010. Winter climate change at different temporal scales in Vaccinium myrtillus, an Arctic and alpine dwarf shrub. Polar Research 29: 85–94.

Rosbakh S, Poschlod P. 2018. Killing me slowly: harsh environment extends plant maximum life span. Basic and Applied Ecology 28: 17–26.

Ruka AT, Čapková K, Řeháková K, Angel R, Chroňáková A, Kopecký M, Macek M, Dvorský M, Doležal J. 2023. Bacterial and plant community successional pathways in glacier forefields of the Western Himalaya. European Journal of Soil Biology 119: 103565.

Schmidt S, Nüsser M. 2017. Changes of high altitude glaciers in the Trans‐Himalaya of Ladakh over the past five decades (1969–2016). Geosciences 7: 27.

Schmidt S, Nüsser M. 2023. Glaciers of Central Ladakh: distribution, changes and relevance in the Indian Trans‐Himalaya. In: Humbert‐Droz B, Dame J, Morup T, eds. Environmental change and development in Ladakh, Indian Trans‐Himalaya. Cham, Switzerland: Springer Nature Switzerland, 11–30. doi: 10.1007/978-3-031-42494-6_2. DOI

Schmidt SK, Lipson DA. 2004. Microbial growth under the snow: implications for nutrient and allelochemical availability in temperate soils. Plant and Soil 259: 1–7.

Schweingruber FH, Dvorský M, Börner A, Doležal J. 2020. Atlas of stem anatomy of Arctic and Alpine plants around the globe. Cham, Switzerland: Springer.

Seneviratne SI, Zhang X, Adnan M, Badi W, Dereczynski C, Di Luca A, Ghosh S, Iskander I, Kossin J, Lewis S et al. 2021. Weather and climate extreme events in a changing climate (chapter 11). In: Masson‐Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI et al., eds. IPCC 2021: climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, UK and New York, NY: Cambridge University Press, 1513–1766.

Silvertown JW. 2013. The long and the short of it: The science of life span and aging. Chicago, IL: The University of Chicago Press.

Steinbauer MJ, Grytnes J‐A, Jurasinski G, Kulonen A, Lenoir J, Pauli H, Rixen C, Winkler M, Bardy‐Durchhalter M, Barni E et al. 2018. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556: 231–234. PubMed

Stöcklin J, Bäumler E. 1996. Seed rain, seedling establishment and clonal growth strategies on a glacier foreland. Journal of Vegetation Science 7: 45–56.

Thakur D, Altman J, Jandová V, Fibich P, Münzbergová Z, Doležal J. 2024. Global warming alters Himalayan alpine shrub growth dynamics and climate sensitivity. Science of the Total Environment 916: 170252. PubMed

Thayyen RJ, Dimri AP, Kumar P, Agnihotri G. 2013. Study of cloudburst and flash floods around Leh, India, during August 4–6, 2010. Natural Hazards 65: 2175–2204.

Von Arx G, Crivellaro A, Prendin AL, Čufar K, Carrer M. 2016. Quantitative wood anatomy—practical guidelines. Frontiers in Plant Science 7: 781. doi: 10.3389/fpls.2016.00781. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...