Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31092831
PubMed Central
PMC6520339
DOI
10.1038/s41467-019-10174-4
PII: 10.1038/s41467-019-10174-4
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
It is generally accepted that animal heartbeat and lifespan are often inversely correlated, however, the relationship between productivity and longevity has not yet been described for trees growing under industrial and pre-industrial climates. Using 1768 annually resolved and absolutely dated ring width measurement series from living and dead conifers that grew in undisturbed, high-elevation sites in the Spanish Pyrenees and the Russian Altai over the past 2000 years, we test the hypothesis of grow fast-die young. We find maximum tree ages are significantly correlated with slow juvenile growth rates. We conclude, the interdependence between higher stem productivity, faster tree turnover, and shorter carbon residence time, reduces the capacity of forest ecosystems to store carbon under a climate warming-induced stimulation of tree growth at policy-relevant timescales.
Departmemt of Geography Johannes Gutenberg University 55099 Mainz Germany
Department of Geography University of Cambridge Cambridge CB2 3EN UK
Department of Physical Geography Stockholm University 10691 Stockholm Sweden
Department of Plant Sciences University of Cambridge Cambridge CB2 3EA UK
Global Change Research Centre and Masaryk University 613 00 Brno Czech Republic
Institute of Botany University of Basel 4056 Basel Switzerland
Institute of Ecology and Geography Siberian Federal University 660041 Krasnoyarsk Russia
Institute of Humanities Siberian Federal University 660041 Krasnoyarsk Russia
Instituto Pirenaico de Ecología 50059 Zaragoza Spain
Sukachev Institute of Forest SB RAS 660036 Krasnoyarsk Russia
Swiss Federal Research Institute 8903 Birmensdorf Switzerland
Zobrazit více v PubMed
Büntgen U. Re-thinking the boundaries of dendrochronology. Dendrochronologia. 2019;53:1–4. doi: 10.1016/j.dendro.2018.10.012. DOI
Körner C. A matter of tree longevity. Science. 2017;355:130–131. doi: 10.1126/science.aal2449. PubMed DOI
Friend A, et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc. Natl Acad. Sci. USA. 2014;111:3280–3285. doi: 10.1073/pnas.1222477110. PubMed DOI PMC
Canadell JG, Schulze ED. Global potential of biospheric carbon management for climate mitigation. Nat. Commun. 2014;5:5282. doi: 10.1038/ncomms6282. PubMed DOI
Johnson ME, et al. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models. Glob. Change Biol. 2016;22:3996–4013. doi: 10.1111/gcb.13315. PubMed DOI PMC
Johnson DJ, et al. Climate sensitive size-dependent survival in tropical trees. Nat. Ecol. Evol. 2018;2:1436–1442. doi: 10.1038/s41559-018-0626-z. PubMed DOI
Rödig E, et al. The importance of forest structure for carbon fluxes of the Amazon rainforest. Env. Res. Let. 2018;13:054013. doi: 10.1088/1748-9326/aabc61. DOI
Geden O, Scott V, Palmer J. Integrating carbon dioxide removal into EU climate policy: prospects for a paradigm shift. WIREs Clim. Change. 2018;2018:e521. doi: 10.1002/wcc.521. DOI
Smith P, et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change. 2016;6:42–50. doi: 10.1038/nclimate2870. DOI
IPPC, Cambridge University Press, Cambridge, UK and New York, NY, USA (2014).
http://www.bonnchallenge.org/ Accessed 04 Oct 2018.
Global Forest Coalition. The risks of large-scale biosequestration in the context of carbon dioxide removal. Asunción, Paraguay: Heinrich Boell Foundation; 2017.
Grubb PJ. A reassessment of the strategies of plants which cope with shortages of resources. Perspec. Plant Ecol. Evo. Syst. 1998;1:3–31. doi: 10.1078/1433-8319-00049. DOI
Gilbert B, Wright SJ, Muller-Landau HC, Kitajima K, Hernandéz A. Life history trade-offs in tropical trees and lianas. Ecology. 2006;87:1281–1288. doi: 10.1890/0012-9658(2006)87[1281:LHTITT]2.0.CO;2. PubMed DOI
Iida Y, et al. Linking size-dependent growth and mortality with architectural traits across 145 co-occurring tropical tree species. Ecology. 2014;95:353–363. doi: 10.1890/11-2173.1. PubMed DOI
Zuidema PA, Brienen RJW, During HJ, Güneralp B. Do persistently fast-growing juveniles contribute disproportionately to population growth? A new analysis tool for matrix models and its application to rainforest trees. Am. Nat. 2009;174:709–719. doi: 10.1086/605981. PubMed DOI
Wright SJ, et al. Functional traits and the growth-mortality tradeoff in tropical trees. Ecology. 2010;91:3664–3674. doi: 10.1890/09-2335.1. PubMed DOI
Stephenson NL, et al. Causes and implications of the correlation between forest productivity and tree mortality rates. Ecol. Monogr. 2011;81:527–555. doi: 10.1890/10-1077.1. DOI
Hurst JM, Allen RB, Coomes DA, Duncan RP. Size-specific tree mortality varies with neighbourhood crowding and disturbance in a montane Nothofagus forest. PLoS ONE. 2011;6:e26670. doi: 10.1371/journal.pone.0026670. PubMed DOI PMC
Erb KH, et al. Bias in the attribution of forest carbon sinks. Nat. Geosci. 2016;9:674–678. doi: 10.1038/ngeo2782. DOI
Vieira S, et al. Forest structure and carbon dynamics in Amazonian tropical rain forest. Oecologia. 2004;140:468–479. doi: 10.1007/s00442-004-1598-z. PubMed DOI
Bigler C, Veblen TT. Increased early growth rates decrease longevities of conifers in subalpine forests. Oikos. 2009;118:1130–1138. doi: 10.1111/j.1600-0706.2009.17592.x. DOI
Issartel J, Coiffard C. Extreme longevity in trees: live slow, die old? Oecologia. 2011;165:1–5. doi: 10.1007/s00442-010-1807-x. PubMed DOI
Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol. Rev. 2007;87:1175–1213. doi: 10.1152/physrev.00047.2006. PubMed DOI
Luyssaert S, et al. Old-growth forests as global carbon sinks. Nature. 2008;455:213–215. doi: 10.1038/nature07276. PubMed DOI
Brienen RJW, et al. Long-term decline of the Amazon carbon sink. Nature. 2015;519:344–348. doi: 10.1038/nature14283. PubMed DOI
Philipps OL, et al. Pattern and process in Amazon tree turnover 1976–2001. Philos. Trans. R. Soc. Lond. B. 2004;359:381–407. doi: 10.1098/rstb.2003.1438. PubMed DOI PMC
Stephenson NL, van Mantgem PJ. Forest turnover rates follow global and regional patterns of productivity. Ecol. Lett. 2005;8:524–531. doi: 10.1111/j.1461-0248.2005.00746.x. PubMed DOI
Jucker T, et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 2018;21:989–1000. doi: 10.1111/ele.12964. PubMed DOI PMC
Bugmann H, Bigler C. Will the CO2 fertilization effect in forests be offset by reduced tree longevity? Oecologia. 2011;165:533–544. doi: 10.1007/s00442-010-1837-4. PubMed DOI
Di Filippo A, et al. The longevity of broadleaf deciduous trees in Northern Hemisphere temperate forests: insights from tree-ring series. Front. Ecol. Evol. 2015;3:46. doi: 10.3389/fevo.2015.00046. DOI
Koch GW, Sillett SC, Jennings GM, Davis SD. The limits to tree height. Nature. 2004;428:851–854. doi: 10.1038/nature02417. PubMed DOI
Coomes DA, Holdaway RJ, Kobe RK, Lines ER, Allen RB. A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests. J. Ecol. 2012;100:42–64. doi: 10.1111/j.1365-2745.2011.01920.x. DOI
Körner C. Biosphere responses to CO2 enrichment. Ecol. Appl. 2000;10:1590–1619.
Bigler C. Trade-offs between growth rate, tree size and lifespan of Mountain Pine (Pinus montana) in the Swiss National Park. PLoS ONE. 2016;11:e0150402. doi: 10.1371/journal.pone.0150402. PubMed DOI PMC
Klein T, et al. Growth and carbon relations of mature Picea abies trees under 5years of free-air CO2 enrichment. J. Ecol. 2016;104:1720–1733. doi: 10.1111/1365-2745.12621. DOI
St. George S. An overview of tree-ring width records across the Northern Hemisphere. Quat. Sci. Rev. 2014;95:132–150. doi: 10.1016/j.quascirev.2014.04.029. DOI
Babst F, Poulter B, Bodesheim P, Mahecha MD, Frank DC. Improved tree ring archives will support earth-system science. Nat. Ecol. Evol. 2017;1:0008. doi: 10.1038/s41559-016-0008. PubMed DOI
Babst F, et al. When tree rings go global: challenges and opportunities for retro- and prospective insight. Quat. Sci. Rev. 2018;197:1–20. doi: 10.1016/j.quascirev.2018.07.009. DOI
Nehrbass-Ahles C, et al. The influence of sampling design on tree-ring based quantification of forest growth. Glob. Change Biol. 2014;20:2867–2885. doi: 10.1111/gcb.12599. PubMed DOI
Büntgen U, et al. New tree-ring evidence from the Pyrenees reveals western Mediterranean climate variability since medieval times. J. Clim. 2017;30:5295–5318. doi: 10.1175/JCLI-D-16-0526.1. DOI
Sangüesa-Barreda G, Camarero JJ, Esper J, Galván JD, Büntgen U. A millennium-long perspective on high-elevation pine recruitment in the Spanish central Pyrenees. Can. J. For. Res. 2018;48:1108–1113. doi: 10.1139/cjfr-2018-0025. DOI
Büntgen U, et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 2016;9:231–236. doi: 10.1038/ngeo2652. DOI
Meyer FD, Paulsen J, Körner C. Windthrow damage in Picea abies is associated with physical and chemical stem wood properties. Trees. 2008;22:463–473. doi: 10.1007/s00468-007-0206-3. DOI
Sala A, Hoch G. Height-related growth declines in ponderosa pine are not due to carbon limitation. Plant Cell Environ. 2009;32:22–30. doi: 10.1111/j.1365-3040.2008.01896.x. PubMed DOI
Klein T, Randin C, Körner C. Water availability predicts forest canopy height at the globalscale. Ecol. Lett. 2015;18:1311–1320. doi: 10.1111/ele.12525. PubMed DOI
Choat B, et al. Global convergence in the vulnerability of forests to drought. Nature. 2012;491:752–755. doi: 10.1038/nature11688. PubMed DOI
Anderegg WRL, et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science. 2015;349:528–532. doi: 10.1126/science.aab1833. PubMed DOI
Schwalm CR, et al. Global patterns of drought recovery. Nature. 2017;548:202–205. doi: 10.1038/nature23021. PubMed DOI
Williams AP, et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change. 2012;3:292–297. doi: 10.1038/nclimate1693. DOI
Pugh TAM, et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA. 2019;116:4382–4387. doi: 10.1073/pnas.1810512116. PubMed DOI PMC
Bugmann H, et al. Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale. Ecosphere. 2019;10:e02616. doi: 10.1002/ecs2.2616. PubMed DOI PMC
LaDeau SL, Clark JS. Rising CO2 levels and the fecundity of forest trees. Science. 2001;292:95–98. doi: 10.1126/science.1057547. PubMed DOI
Plants in the UK flower a month earlier under recent warming
The contribution of insects to global forest deadwood decomposition