Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming

. 2019 May 15 ; 10 (1) : 2171. [epub] 20190515

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31092831
Odkazy

PubMed 31092831
PubMed Central PMC6520339
DOI 10.1038/s41467-019-10174-4
PII: 10.1038/s41467-019-10174-4
Knihovny.cz E-zdroje

It is generally accepted that animal heartbeat and lifespan are often inversely correlated, however, the relationship between productivity and longevity has not yet been described for trees growing under industrial and pre-industrial climates. Using 1768 annually resolved and absolutely dated ring width measurement series from living and dead conifers that grew in undisturbed, high-elevation sites in the Spanish Pyrenees and the Russian Altai over the past 2000 years, we test the hypothesis of grow fast-die young. We find maximum tree ages are significantly correlated with slow juvenile growth rates. We conclude, the interdependence between higher stem productivity, faster tree turnover, and shorter carbon residence time, reduces the capacity of forest ecosystems to store carbon under a climate warming-induced stimulation of tree growth at policy-relevant timescales.

Erratum v

PubMed

Zobrazit více v PubMed

Büntgen U. Re-thinking the boundaries of dendrochronology. Dendrochronologia. 2019;53:1–4. doi: 10.1016/j.dendro.2018.10.012. DOI

Körner C. A matter of tree longevity. Science. 2017;355:130–131. doi: 10.1126/science.aal2449. PubMed DOI

Friend A, et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc. Natl Acad. Sci. USA. 2014;111:3280–3285. doi: 10.1073/pnas.1222477110. PubMed DOI PMC

Canadell JG, Schulze ED. Global potential of biospheric carbon management for climate mitigation. Nat. Commun. 2014;5:5282. doi: 10.1038/ncomms6282. PubMed DOI

Johnson ME, et al. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models. Glob. Change Biol. 2016;22:3996–4013. doi: 10.1111/gcb.13315. PubMed DOI PMC

Johnson DJ, et al. Climate sensitive size-dependent survival in tropical trees. Nat. Ecol. Evol. 2018;2:1436–1442. doi: 10.1038/s41559-018-0626-z. PubMed DOI

Rödig E, et al. The importance of forest structure for carbon fluxes of the Amazon rainforest. Env. Res. Let. 2018;13:054013. doi: 10.1088/1748-9326/aabc61. DOI

Geden O, Scott V, Palmer J. Integrating carbon dioxide removal into EU climate policy: prospects for a paradigm shift. WIREs Clim. Change. 2018;2018:e521. doi: 10.1002/wcc.521. DOI

Smith P, et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change. 2016;6:42–50. doi: 10.1038/nclimate2870. DOI

IPPC, Cambridge University Press, Cambridge, UK and New York, NY, USA (2014).

http://www.bonnchallenge.org/ Accessed 04 Oct 2018.

Global Forest Coalition. The risks of large-scale biosequestration in the context of carbon dioxide removal. Asunción, Paraguay: Heinrich Boell Foundation; 2017.

Grubb PJ. A reassessment of the strategies of plants which cope with shortages of resources. Perspec. Plant Ecol. Evo. Syst. 1998;1:3–31. doi: 10.1078/1433-8319-00049. DOI

Gilbert B, Wright SJ, Muller-Landau HC, Kitajima K, Hernandéz A. Life history trade-offs in tropical trees and lianas. Ecology. 2006;87:1281–1288. doi: 10.1890/0012-9658(2006)87[1281:LHTITT]2.0.CO;2. PubMed DOI

Iida Y, et al. Linking size-dependent growth and mortality with architectural traits across 145 co-occurring tropical tree species. Ecology. 2014;95:353–363. doi: 10.1890/11-2173.1. PubMed DOI

Zuidema PA, Brienen RJW, During HJ, Güneralp B. Do persistently fast-growing juveniles contribute disproportionately to population growth? A new analysis tool for matrix models and its application to rainforest trees. Am. Nat. 2009;174:709–719. doi: 10.1086/605981. PubMed DOI

Wright SJ, et al. Functional traits and the growth-mortality tradeoff in tropical trees. Ecology. 2010;91:3664–3674. doi: 10.1890/09-2335.1. PubMed DOI

Stephenson NL, et al. Causes and implications of the correlation between forest productivity and tree mortality rates. Ecol. Monogr. 2011;81:527–555. doi: 10.1890/10-1077.1. DOI

Hurst JM, Allen RB, Coomes DA, Duncan RP. Size-specific tree mortality varies with neighbourhood crowding and disturbance in a montane Nothofagus forest. PLoS ONE. 2011;6:e26670. doi: 10.1371/journal.pone.0026670. PubMed DOI PMC

Erb KH, et al. Bias in the attribution of forest carbon sinks. Nat. Geosci. 2016;9:674–678. doi: 10.1038/ngeo2782. DOI

Vieira S, et al. Forest structure and carbon dynamics in Amazonian tropical rain forest. Oecologia. 2004;140:468–479. doi: 10.1007/s00442-004-1598-z. PubMed DOI

Bigler C, Veblen TT. Increased early growth rates decrease longevities of conifers in subalpine forests. Oikos. 2009;118:1130–1138. doi: 10.1111/j.1600-0706.2009.17592.x. DOI

Issartel J, Coiffard C. Extreme longevity in trees: live slow, die old? Oecologia. 2011;165:1–5. doi: 10.1007/s00442-010-1807-x. PubMed DOI

Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol. Rev. 2007;87:1175–1213. doi: 10.1152/physrev.00047.2006. PubMed DOI

Luyssaert S, et al. Old-growth forests as global carbon sinks. Nature. 2008;455:213–215. doi: 10.1038/nature07276. PubMed DOI

Brienen RJW, et al. Long-term decline of the Amazon carbon sink. Nature. 2015;519:344–348. doi: 10.1038/nature14283. PubMed DOI

Philipps OL, et al. Pattern and process in Amazon tree turnover 1976–2001. Philos. Trans. R. Soc. Lond. B. 2004;359:381–407. doi: 10.1098/rstb.2003.1438. PubMed DOI PMC

Stephenson NL, van Mantgem PJ. Forest turnover rates follow global and regional patterns of productivity. Ecol. Lett. 2005;8:524–531. doi: 10.1111/j.1461-0248.2005.00746.x. PubMed DOI

Jucker T, et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 2018;21:989–1000. doi: 10.1111/ele.12964. PubMed DOI PMC

Bugmann H, Bigler C. Will the CO2 fertilization effect in forests be offset by reduced tree longevity? Oecologia. 2011;165:533–544. doi: 10.1007/s00442-010-1837-4. PubMed DOI

Di Filippo A, et al. The longevity of broadleaf deciduous trees in Northern Hemisphere temperate forests: insights from tree-ring series. Front. Ecol. Evol. 2015;3:46. doi: 10.3389/fevo.2015.00046. DOI

Koch GW, Sillett SC, Jennings GM, Davis SD. The limits to tree height. Nature. 2004;428:851–854. doi: 10.1038/nature02417. PubMed DOI

Coomes DA, Holdaway RJ, Kobe RK, Lines ER, Allen RB. A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests. J. Ecol. 2012;100:42–64. doi: 10.1111/j.1365-2745.2011.01920.x. DOI

Körner C. Biosphere responses to CO2 enrichment. Ecol. Appl. 2000;10:1590–1619.

Bigler C. Trade-offs between growth rate, tree size and lifespan of Mountain Pine (Pinus montana) in the Swiss National Park. PLoS ONE. 2016;11:e0150402. doi: 10.1371/journal.pone.0150402. PubMed DOI PMC

Klein T, et al. Growth and carbon relations of mature Picea abies trees under 5years of free-air CO2 enrichment. J. Ecol. 2016;104:1720–1733. doi: 10.1111/1365-2745.12621. DOI

St. George S. An overview of tree-ring width records across the Northern Hemisphere. Quat. Sci. Rev. 2014;95:132–150. doi: 10.1016/j.quascirev.2014.04.029. DOI

Babst F, Poulter B, Bodesheim P, Mahecha MD, Frank DC. Improved tree ring archives will support earth-system science. Nat. Ecol. Evol. 2017;1:0008. doi: 10.1038/s41559-016-0008. PubMed DOI

Babst F, et al. When tree rings go global: challenges and opportunities for retro- and prospective insight. Quat. Sci. Rev. 2018;197:1–20. doi: 10.1016/j.quascirev.2018.07.009. DOI

Nehrbass-Ahles C, et al. The influence of sampling design on tree-ring based quantification of forest growth. Glob. Change Biol. 2014;20:2867–2885. doi: 10.1111/gcb.12599. PubMed DOI

Büntgen U, et al. New tree-ring evidence from the Pyrenees reveals western Mediterranean climate variability since medieval times. J. Clim. 2017;30:5295–5318. doi: 10.1175/JCLI-D-16-0526.1. DOI

Sangüesa-Barreda G, Camarero JJ, Esper J, Galván JD, Büntgen U. A millennium-long perspective on high-elevation pine recruitment in the Spanish central Pyrenees. Can. J. For. Res. 2018;48:1108–1113. doi: 10.1139/cjfr-2018-0025. DOI

Büntgen U, et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 2016;9:231–236. doi: 10.1038/ngeo2652. DOI

Meyer FD, Paulsen J, Körner C. Windthrow damage in Picea abies is associated with physical and chemical stem wood properties. Trees. 2008;22:463–473. doi: 10.1007/s00468-007-0206-3. DOI

Sala A, Hoch G. Height-related growth declines in ponderosa pine are not due to carbon limitation. Plant Cell Environ. 2009;32:22–30. doi: 10.1111/j.1365-3040.2008.01896.x. PubMed DOI

Klein T, Randin C, Körner C. Water availability predicts forest canopy height at the globalscale. Ecol. Lett. 2015;18:1311–1320. doi: 10.1111/ele.12525. PubMed DOI

Choat B, et al. Global convergence in the vulnerability of forests to drought. Nature. 2012;491:752–755. doi: 10.1038/nature11688. PubMed DOI

Anderegg WRL, et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science. 2015;349:528–532. doi: 10.1126/science.aab1833. PubMed DOI

Schwalm CR, et al. Global patterns of drought recovery. Nature. 2017;548:202–205. doi: 10.1038/nature23021. PubMed DOI

Williams AP, et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change. 2012;3:292–297. doi: 10.1038/nclimate1693. DOI

Pugh TAM, et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA. 2019;116:4382–4387. doi: 10.1073/pnas.1810512116. PubMed DOI PMC

Bugmann H, et al. Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale. Ecosphere. 2019;10:e02616. doi: 10.1002/ecs2.2616. PubMed DOI PMC

LaDeau SL, Clark JS. Rising CO2 levels and the fecundity of forest trees. Science. 2001;292:95–98. doi: 10.1126/science.1057547. PubMed DOI

Najít záznam

Citační ukazatele

Možnosti archivace