The contribution of insects to global forest deadwood decomposition
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34471275
DOI
10.1038/s41586-021-03740-8
PII: 10.1038/s41586-021-03740-8
Knihovny.cz E-zdroje
- MeSH
- ekosystém MeSH
- geografická kartografie MeSH
- hmyz metabolismus MeSH
- koloběh uhlíku * MeSH
- lesy * MeSH
- mezinárodní spolupráce MeSH
- podnebí MeSH
- sekvestrace uhlíku MeSH
- stromy metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.
Agricultural and Natural Resources Research Centre of Mazandaran Sari Iran
Animal Ecology University of Marburg Marburg Germany
Applied Landscape Ecology Chuo University Tokyo Japan
ARC Centre for Forest Value University of Tasmania Hobart Tasmania Australia
Ashoka Trust for Research in Ecology and the Environment Bangalore India
Bavarian Forest National Park Grafenau Germany
Berchtesgaden National Park Berchtesgaden Germany
Biological Sciences University of Toronto Scarborough Toronto Ontario Canada
Centre for the Environment Institute for Future Environments Brisbane Queensland Australia
College of Forestry Beijing Forestry University Beijing China
Conservation Ecology University of Marburg Marburg Germany
Departamento de Ecologia Universidade Estadual Paulista Rio Claro Brazil
Department of Animal Ecology and Tropical Biology University of Würzburg Würzburg Germany
Department of Biodiversity Conservation Goethe University Frankfurt Frankfurt Germany
Department of Biogeography University of Bayreuth Bayreuth Germany
Department of Disturbance Ecology University of Bayreuth Bayreuth Germany
Department of Ecology University of Granada Granada Spain
Department of Plant Systematics University of Bayreuth Bayreuth Germany
Department of Thermodynamics Universidad Nacional del Nordeste Resistencia Argentina
EcoBank Team National Institute of Ecology Seocheon gun Republic of Korea
École d'Ingénieurs de Purpan Université de Toulouse UMR 1201 Dynafor Toulouse France
Ecology Group University Erlangen Nuremberg Erlangen Germany
Edge Hill University Ormskirk UK
Environmental and Conservation Sciences Murdoch University Melville Western Australia Australia
Environmental Change Institute University of Oxford Oxford UK
Environmental Futures Research Institute Griffith University Nathan Queensland Australia
Epidemiology Biostatistics and Prevention Institute University of Zurich Zurich Switzerland
Evolutionary Zoology University of Salzburg Salzburg Austria
Faculté des Sciences Université d'Antananarivo Antananarivo Madagascar
Field Station Fabrikschleichach University of Würzburg Rauhenebrach Germany
Forest Ecosystem Monitoring Laboratory National University of Mongolia Ulaanbaatar Mongolia
Forest Entomology Swiss Federal Research Institute WSL Birmensdorf Switzerland
Forest Research Institute Malaysia Kuala Lumpur Malaysia
Grassland Vegetation Lab Federal University of Rio Grande do Sul Porto Alegre Brazil
H J Andrews Experimental Forest Blue River OR USA
Institute of Biological Sciences University of the Philippines Los Banos Laguna The Philippines
Institute of Ecology and Botany Centre for Ecological Research Vácrátót Hungary
Institute of Evolution University of Haifa Haifa Israel
Institute of Forestry Tribhuvan University Pokhara Nepal
Institute of Zoology University of Hamburg Hamburg Germany
Instituto de Ecología Regional CONICET Universidad Nacional de Tucumán Yerba Buena Argentina
International Institute of Tropical Forestry USDA Forest Service San Juan PR USA
Laboratory of Applied Ecology University of Abomey Calavi Godomey Benin
Lancaster Environment Centre Lancaster University Lancaster UK
Natural Resources Canada Canadian Forest Service Quebec Quebec Canada
Réserves Naturelles de France Dijon France
Royal Alberta Museum Edmonton Alberta Canada
School of Biological Earth and Environmental Sciences University College Cork Cork Ireland
School of Environment and Science Griffith University Nathan Queensland Australia
School of Forest Sciences University of Eastern Finland Joensuu Finland
School of Forestry University of Canterbury Christchurch New Zealand
Science and Engineering Faculty Queensland University of Technology Brisbane Queensland Australia
Scion Christchurch New Zealand
Southern Research Station USDA Forest Service Athens GA USA
Tropical Biodiversity and Social Enterprise Fort Dauphin Madagascar
Zobrazit více v PubMed
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011). PubMed DOI
Bradford, M. A. et al. Climate fails to predict wood decomposition at regional scales. Nat. Clim. Change 4, 625–630 (2014). DOI
Chambers, J. Q., Higuchi, N., Schimel, J. P. J., Ferreira, L. V. & Melack, J. M. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122, 380–388 (2000). PubMed DOI
González, G. et al. Decay of aspen (Populus tremuloides Michx.) wood in moist and dry boreal, temperate, and tropical forest fragments. Ambio 37, 588–597 (2008). PubMed DOI
Stokland, J., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge Univ. Press, 2012).
Lustenhouwer, N. et al. A trait-based understanding of wood decomposition by fungi. Proc. Natl Acad. Sci. USA 117, 11551–11558 (2020). PubMed DOI PMC
Ulyshen, M. D. Wood decomposition as influenced by invertebrates. Biol. Rev. Camb. Philos. Soc. 91, 70–85 (2016). PubMed DOI
Pretzsch, H., Biber, P., Schütze, G., Uhl, E. & Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5, 4967 (2014). PubMed DOI
Büntgen, U. et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. 10, 2171 (2019). PubMed DOI PMC
Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017). DOI
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020). PubMed DOI
Portillo-Estrada, M. et al. Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments. Biogeosciences 13, 1621–1633 (2016). DOI
Christenson, L. et al. Winter climate change influences on soil faunal distribution and abundance: implications for decomposition in the northern forest. Northeast. Nat. 24, B209–B234 (2017). DOI
Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013). PubMed DOI
Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014). PubMed DOI
Martin, A., Dimke, G., Doraisami, M. & Thomas, S. Carbon fractions in the world’s dead wood. Nat. Commun. 12, 889 (2021).
Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019). DOI
Marshall, D. J., Pettersen, A. K., Bode, M. & White, C. R. Developmental cost theory predicts thermal environment and vulnerability to global warming. Nat. Ecol. Evol. 4, 406–411 (2020). PubMed DOI
Buczkowski, G. & Bertelsmeier, C. Invasive termites in a changing climate: a global perspective. Ecol. Evol. 7, 974–985 (2017). PubMed DOI PMC
Diaz, S., Settele, J. & Brondizio, E. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovermental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).
van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020). PubMed DOI
Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019). PubMed DOI
Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021). DOI
Jacobsen, R. M., Sverdrup-Thygeson, A., Kauserud, H., Mundra, S. & Birkemoe, T. Exclusion of invertebrates influences saprotrophic fungal community and wood decay rate in an experimental field study. Funct. Ecol. 32, 2571–2582 (2018). DOI
Skelton, J. et al. Fungal symbionts of bark and ambrosia beetles can suppress decomposition of pine sapwood by competing with wood-decay fungi. Fungal Ecol. 45, 100926 (2020). DOI
Wu, D., Seibold, S., Ruan, Z., Weng, C. & Yu, M. Island size affects wood decomposition by changing decomposer distribution. Ecography 44, 456–468 (2021). DOI
Harmon, M. E. et al. Release of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Balance Manag. 15, 1 (2020). PubMed DOI PMC
Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 14, 2661–2677 (2008). DOI
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001). PubMed DOI
Baldrian, P. et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol. Biochem. 56, 60–68 (2013). DOI
A’Bear, A. D., Jones, T. H., Kandeler, E. & Boddy, L. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol. Biochem. 70, 151–158 (2014). DOI
IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, 2014).
Smyth, C. E., Kurz, W. A., Trofymow, J. A. & CIDET Working Group. Including the effects of water stress on decomposition in the Carbon Budget Model of the Canadian Forest Sector CBM-CFS3. Ecol. Modell. 222, 1080–1091 (2011). DOI
Weedon, J. T. et al. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol. Lett. 12, 45–56 (2009). PubMed DOI
Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L. & Eggleton, P. Termites can decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29, R118–R119 (2019). PubMed DOI
Birkemoe, T., Jacobsen, R. M., Sverdrup-Thygeson, A. & Biedermann, P. H. W. in Saproxylic Insects (ed. Ulyshen, M. D.) 377–427 (Springer, 2018).
Harvell, M. C. E. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002). PubMed DOI
Berkov, A. in Saproxylic Insects (ed. Ulyshen, M. D.) 547–580 (Springer, 2018).
Wang, C., Bond-Lamberty, B. & Gower, S. T. Environmental controls on carbon dioxide flux from black spruce coarse woody debris. Oecologia 132, 374–381 (2002). PubMed DOI
Peršoh, D. & Borken, W. Impact of woody debris of different tree species on the microbial activity and community of an underlying organic horizon. Soil Biol. Biochem. 115, 516–525 (2017). DOI
Campbell, J., Donato, D., Azuma, D. & Law, B. Pyrogenic carbon emission from a large wildfire in Oregon, United States. J. Geophys. Res. 112, G04014 (2007).
van Leeuwen, T. T. et al. Biomass burning fuel consumption rates: a field measurement database. Biogeosciences 11, 7305–7329 (2014). DOI
McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020). PubMed DOI
Ulyshen, M. D. & Wagner, T. L. Quantifying arthropod contributions to wood decay. Methods Ecol. Evol. 4, 345–352 (2013). DOI
Bässler, C., Heilmann-Clausen, J., Karasch, P., Brandl, R. & Halbwachs, H. Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi. Fungal Ecol. 17, 205–212 (2015). DOI
Ryvarden, L. & Gilbertson, R. L. The Polyporaceae of Europe (Fungiflora, 1994).
Eriksson, J. & Ryvarden, L. The Corticiaceae of North Europe Parts 1–8 (Fungiflora, 1987).
Boddy, L., Hynes, J., Bebber, D. P. & Fricker, M. D. Saprotrophic cord systems: dispersal mechanisms in space and time. Mycoscience 50, 9–19 (2009). DOI
Moore, D. Fungal Morphogenesis (Cambridge Univ. Press, 1998).
Clemencon, H. Anatomy of the Hymenomycetes (Univ. Lausanne, 1997).
R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017). DOI
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015). DOI
Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).
Robinson, D. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc. R. Soc. B 274, 2753–2759 (2007). PubMed DOI PMC
Food and Agriculture Organization. Global Ecological Zones for FAO Forest Reporting: 2010 Update, Forest Resource Assessment Working Paper (Food and Agriculture Organization, 2012).
Food and Agriculture Organization. Global Forest Resources Assessment 2015 (Food and Agriculture Organization, 2016).
Christensen, M. et al. Dead wood in European beech (Fagus sylvatica) forest reserves. For. Eco. Man. 210, 267–282 (2005). DOI
Kobayashi, T. et al. Production of global land cover data – GLCNMO2013. J. Geogr. Geol. 9, 1–15 (2017). DOI
Harmon, M. E., Woodall, C. W., Fasth, B., Sexton, J. & Yatkov, M. Differences between Standing and Downed Dead Tree Wood Density Reduction Factors: A Comparison across Decay Classes and Tree Species Research Paper NRS-15 (US Department of Agriculture, Forest Service, Northern Research Station, 2011).
Hararuk, O., Kurz, W. A. & Didion, M. Dynamics of dead wood decay in Swiss forests. For. Ecosyst. 7, 36 (2020). DOI
Gora, E. M., Kneale, R. C., Larjavaara, M. & Muller-Landau, H. C. Dead wood necromass in a moist tropical forest: stocks, fluxes, and spatiotemporal variability. Ecosystems 22, 1189–1205 (2019). DOI
Hérault, B. et al. Modeling decay rates of dead wood in a neotropical forest. Oecologia 164, 243–251 (2010). PubMed DOI
Thünen-Institut für Waldökosysteme. Der Wald in Deutschland - Ausgewählte Ergebnisse der dritten Bundeswaldinventur (Bundesministerium für Ernährung und Landwirtschaft, 2014).
Puletti, N. et al. A dataset of forest volume deadwood estimates for Europe. Ann. For. Sci. 76, 68 (2019). DOI
Richardson, S. J. et al. Deadwood in New Zealand’s indigenous forests. For. Ecol. Manage. 258, 2456–2466 (2009). DOI
Shorohova, E. & Kapitsa, E. Stand and landscape scale variability in the amount and diversity of coarse woody debris in primeval European boreal forests. For. Ecol. Manage. 356, 273–284 (2015). DOI
Szymañski, C., Fontana, G. & Sanguinetti, J. Natural and anthropogenic influences on coarse woody debris stocks in Nothofagus–Araucaria forests of northern Patagonia, Argentina. Austral Ecol. 42, 48–60 (2017). DOI
Link, K. G. et al. A local and global sensitivity analysis of a mathematical model of coagulation and platelet deposition under flow. PLoS One 13, e0200917 (2018).
Saugier, B., Roy, J. & Mooney, H. A. in Terrestrial Global Productivity (eds J. Roy, B. Saugier & H. A. Mooney) 543–557 (Academic Press, 2001).
Long-read sequencing sheds light on key bacteria contributing to deadwood decomposition processes
Conceptualizing soil fauna effects on labile and stabilized soil organic matter
Alternative measures of trait-niche relationships: A test on dispersal traits in saproxylic beetles
Forest microbiome and global change
Factors Controlling Dead Wood Decomposition in an Old-Growth Temperate Forest in Central Europe
Fungal Community Development in Decomposing Fine Deadwood Is Largely Affected by Microclimate
Beetle diversity is higher in sunny forests due to higher microclimatic heterogeneity in deadwood