The contribution of insects to global forest deadwood decomposition

. 2021 Sep ; 597 (7874) : 77-81. [epub] 20210901

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34471275
Odkazy

PubMed 34471275
DOI 10.1038/s41586-021-03740-8
PII: 10.1038/s41586-021-03740-8
Knihovny.cz E-zdroje

The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.

Agricultural and Natural Resources Research Centre of Mazandaran Sari Iran

Animal Ecology University of Marburg Marburg Germany

Applied Landscape Ecology Chuo University Tokyo Japan

ARC Centre for Forest Value University of Tasmania Hobart Tasmania Australia

Ashoka Trust for Research in Ecology and the Environment Bangalore India

Bavarian Forest National Park Grafenau Germany

Berchtesgaden National Park Berchtesgaden Germany

Biological Sciences University of Toronto Scarborough Toronto Ontario Canada

CAS Key Laboratory for Plant Diversity and Biogeography of East Asia Kunming Institute of Botany Chinese Academy of Sciences Kunming China

Centre for the Environment Institute for Future Environments Brisbane Queensland Australia

CIRAD UMR Ecologie des Forêts de Guyane AgroParisTech CNRS INRA Universite des Antilles Universite de Guyane Kourou France

College of Forestry Beijing Forestry University Beijing China

Conservation Ecology University of Marburg Marburg Germany

Departamento de Ecologia Universidade Estadual Paulista Rio Claro Brazil

Department of Animal Ecology and Tropical Biology University of Würzburg Würzburg Germany

Department of Biodiversity Conservation Goethe University Frankfurt Frankfurt Germany

Department of Biogeography University of Bayreuth Bayreuth Germany

Department of Disturbance Ecology University of Bayreuth Bayreuth Germany

Department of Ecology University of Granada Granada Spain

Department of Plant Systematics University of Bayreuth Bayreuth Germany

Department of Thermodynamics Universidad Nacional del Nordeste Resistencia Argentina

Department of Wildlife Fish and Environmental Studies Swedish University of Agricultural Sciences Umeå Sweden

ECNU Alberta Joint Lab for Biodiversity Study Tiantong National Station for Forest Ecosystem Research East China Normal University Shanghai China

EcoBank Team National Institute of Ecology Seocheon gun Republic of Korea

École d'Ingénieurs de Purpan Université de Toulouse UMR 1201 Dynafor Toulouse France

Ecology Group University Erlangen Nuremberg Erlangen Germany

Ecosystem Dynamics and Forest Management Group School of Life Sciences Technical University of Munich Freising Germany

Ecosystem Science and Management Program University of Northern British Columbia Terrace British Columbia Canada

Edge Hill University Ormskirk UK

Environmental and Conservation Sciences Murdoch University Melville Western Australia Australia

Environmental Change Institute University of Oxford Oxford UK

Environmental Futures Research Institute Griffith University Nathan Queensland Australia

Epidemiology Biostatistics and Prevention Institute University of Zurich Zurich Switzerland

Eurofins Ahma Oy Oulu Finland

Evolutionary Zoology University of Salzburg Salzburg Austria

Faculté des Sciences Université d'Antananarivo Antananarivo Madagascar

Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Aas Norway

Fenner School of Environment and Society The Australian National University Canberra Australian Capital Territory Australia

Field Station Fabrikschleichach University of Würzburg Rauhenebrach Germany

Forest Ecosystem Monitoring Laboratory National University of Mongolia Ulaanbaatar Mongolia

Forest Entomology Swiss Federal Research Institute WSL Birmensdorf Switzerland

Forest Research Institute Malaysia Kuala Lumpur Malaysia

Grassland Vegetation Lab Federal University of Rio Grande do Sul Porto Alegre Brazil

H J Andrews Experimental Forest Blue River OR USA

Institute for Wildlife Management and Nature Conservation Hungarian University of Agriculture and Life Sciences Gödöllő Hungary

Institute of Biological Sciences University of the Philippines Los Banos Laguna The Philippines

Institute of Ecology and Botany Centre for Ecological Research Vácrátót Hungary

Institute of Evolution University of Haifa Haifa Israel

Institute of Forestry Tribhuvan University Pokhara Nepal

Institute of Zoology University of Hamburg Hamburg Germany

Instituto de Ecología Regional CONICET Universidad Nacional de Tucumán Yerba Buena Argentina

International Institute of Tropical Forestry USDA Forest Service San Juan PR USA

Laboratory of Applied Ecology University of Abomey Calavi Godomey Benin

Laboratory of Environmental Microbiology Institute of Microbiology The Czech Academy of Sciences Prague Czech Republic

Lancaster Environment Centre Lancaster University Lancaster UK

Natural Resources Canada Canadian Forest Service Quebec Quebec Canada

Réserves Naturelles de France Dijon France

Royal Alberta Museum Edmonton Alberta Canada

School of Agricultural Forest and Food Sciences Bern University of Applied Sciences Zollikofen Switzerland

School of Biological Earth and Environmental Sciences University College Cork Cork Ireland

School of Environment and Science Griffith University Nathan Queensland Australia

School of Forest Sciences University of Eastern Finland Joensuu Finland

School of Forestry University of Canterbury Christchurch New Zealand

Science and Engineering Faculty Queensland University of Technology Brisbane Queensland Australia

Scion Christchurch New Zealand

Southern Research Station USDA Forest Service Athens GA USA

Terrestrial Ecology Research Group School of Life Sciences Technical University of Munich Freising Germany

Tropical Biodiversity and Social Enterprise Fort Dauphin Madagascar

Tropical Forests and People Research Centre University of the Sunshine Coast Maroochydore Queensland Australia

Universidade Federal de Lavras Lavras Brazil

Zobrazit více v PubMed

Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011). PubMed DOI

Bradford, M. A. et al. Climate fails to predict wood decomposition at regional scales. Nat. Clim. Change 4, 625–630 (2014). DOI

Chambers, J. Q., Higuchi, N., Schimel, J. P. J., Ferreira, L. V. & Melack, J. M. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122, 380–388 (2000). PubMed DOI

González, G. et al. Decay of aspen (Populus tremuloides Michx.) wood in moist and dry boreal, temperate, and tropical forest fragments. Ambio 37, 588–597 (2008). PubMed DOI

Stokland, J., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge Univ. Press, 2012).

Lustenhouwer, N. et al. A trait-based understanding of wood decomposition by fungi. Proc. Natl Acad. Sci. USA 117, 11551–11558 (2020). PubMed DOI PMC

Ulyshen, M. D. Wood decomposition as influenced by invertebrates. Biol. Rev. Camb. Philos. Soc. 91, 70–85 (2016). PubMed DOI

Pretzsch, H., Biber, P., Schütze, G., Uhl, E. & Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5, 4967 (2014). PubMed DOI

Büntgen, U. et al. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. 10, 2171 (2019). PubMed DOI PMC

Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017). DOI

Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020). PubMed DOI

Portillo-Estrada, M. et al. Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments. Biogeosciences 13, 1621–1633 (2016). DOI

Christenson, L. et al. Winter climate change influences on soil faunal distribution and abundance: implications for decomposition in the northern forest. Northeast. Nat. 24, B209–B234 (2017). DOI

Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013). PubMed DOI

Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014). PubMed DOI

Martin, A., Dimke, G., Doraisami, M. & Thomas, S. Carbon fractions in the world’s dead wood. Nat. Commun. 12, 889 (2021).

Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019). DOI

Marshall, D. J., Pettersen, A. K., Bode, M. & White, C. R. Developmental cost theory predicts thermal environment and vulnerability to global warming. Nat. Ecol. Evol. 4, 406–411 (2020). PubMed DOI

Buczkowski, G. & Bertelsmeier, C. Invasive termites in a changing climate: a global perspective. Ecol. Evol. 7, 974–985 (2017). PubMed DOI PMC

Diaz, S., Settele, J. & Brondizio, E. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovermental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020). PubMed DOI

Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019). PubMed DOI

Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021). DOI

Jacobsen, R. M., Sverdrup-Thygeson, A., Kauserud, H., Mundra, S. & Birkemoe, T. Exclusion of invertebrates influences saprotrophic fungal community and wood decay rate in an experimental field study. Funct. Ecol. 32, 2571–2582 (2018). DOI

Skelton, J. et al. Fungal symbionts of bark and ambrosia beetles can suppress decomposition of pine sapwood by competing with wood-decay fungi. Fungal Ecol. 45, 100926 (2020). DOI

Wu, D., Seibold, S., Ruan, Z., Weng, C. & Yu, M. Island size affects wood decomposition by changing decomposer distribution. Ecography 44, 456–468 (2021). DOI

Harmon, M. E. et al. Release of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Balance Manag. 15, 1 (2020). PubMed DOI PMC

Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 14, 2661–2677 (2008). DOI

Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001). PubMed DOI

Baldrian, P. et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol. Biochem. 56, 60–68 (2013). DOI

A’Bear, A. D., Jones, T. H., Kandeler, E. & Boddy, L. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biol. Biochem. 70, 151–158 (2014). DOI

IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, 2014).

Smyth, C. E., Kurz, W. A., Trofymow, J. A. & CIDET Working Group. Including the effects of water stress on decomposition in the Carbon Budget Model of the Canadian Forest Sector CBM-CFS3. Ecol. Modell. 222, 1080–1091 (2011). DOI

Weedon, J. T. et al. Global meta-analysis of wood decomposition rates: a role for trait variation among tree species? Ecol. Lett. 12, 45–56 (2009). PubMed DOI

Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L. & Eggleton, P. Termites can decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29, R118–R119 (2019). PubMed DOI

Birkemoe, T., Jacobsen, R. M., Sverdrup-Thygeson, A. & Biedermann, P. H. W. in Saproxylic Insects (ed. Ulyshen, M. D.) 377–427 (Springer, 2018).

Harvell, M. C. E. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002). PubMed DOI

Berkov, A. in Saproxylic Insects (ed. Ulyshen, M. D.) 547–580 (Springer, 2018).

Wang, C., Bond-Lamberty, B. & Gower, S. T. Environmental controls on carbon dioxide flux from black spruce coarse woody debris. Oecologia 132, 374–381 (2002). PubMed DOI

Peršoh, D. & Borken, W. Impact of woody debris of different tree species on the microbial activity and community of an underlying organic horizon. Soil Biol. Biochem. 115, 516–525 (2017). DOI

Campbell, J., Donato, D., Azuma, D. & Law, B. Pyrogenic carbon emission from a large wildfire in Oregon, United States. J. Geophys. Res. 112, G04014 (2007).

van Leeuwen, T. T. et al. Biomass burning fuel consumption rates: a field measurement database. Biogeosciences 11, 7305–7329 (2014). DOI

McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020). PubMed DOI

Ulyshen, M. D. & Wagner, T. L. Quantifying arthropod contributions to wood decay. Methods Ecol. Evol. 4, 345–352 (2013). DOI

Bässler, C., Heilmann-Clausen, J., Karasch, P., Brandl, R. & Halbwachs, H. Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi. Fungal Ecol. 17, 205–212 (2015). DOI

Ryvarden, L. & Gilbertson, R. L. The Polyporaceae of Europe (Fungiflora, 1994).

Eriksson, J. & Ryvarden, L. The Corticiaceae of North Europe Parts 1–8 (Fungiflora, 1987).

Boddy, L., Hynes, J., Bebber, D. P. & Fricker, M. D. Saprotrophic cord systems: dispersal mechanisms in space and time. Mycoscience 50, 9–19 (2009). DOI

Moore, D. Fungal Morphogenesis (Cambridge Univ. Press, 1998).

Clemencon, H. Anatomy of the Hymenomycetes (Univ. Lausanne, 1997).

R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).

Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017). DOI

Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015). DOI

Wood, S. N. Generalized Additive Models: an Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).

Robinson, D. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc. R. Soc. B 274, 2753–2759 (2007). PubMed DOI PMC

Food and Agriculture Organization. Global Ecological Zones for FAO Forest Reporting: 2010 Update, Forest Resource Assessment Working Paper (Food and Agriculture Organization, 2012).

Food and Agriculture Organization. Global Forest Resources Assessment 2015 (Food and Agriculture Organization, 2016).

Christensen, M. et al. Dead wood in European beech (Fagus sylvatica) forest reserves. For. Eco. Man. 210, 267–282 (2005). DOI

Kobayashi, T. et al. Production of global land cover data – GLCNMO2013. J. Geogr. Geol. 9, 1–15 (2017). DOI

Harmon, M. E., Woodall, C. W., Fasth, B., Sexton, J. & Yatkov, M. Differences between Standing and Downed Dead Tree Wood Density Reduction Factors: A Comparison across Decay Classes and Tree Species Research Paper NRS-15 (US Department of Agriculture, Forest Service, Northern Research Station, 2011).

Hararuk, O., Kurz, W. A. & Didion, M. Dynamics of dead wood decay in Swiss forests. For. Ecosyst. 7, 36 (2020). DOI

Gora, E. M., Kneale, R. C., Larjavaara, M. & Muller-Landau, H. C. Dead wood necromass in a moist tropical forest: stocks, fluxes, and spatiotemporal variability. Ecosystems 22, 1189–1205 (2019). DOI

Hérault, B. et al. Modeling decay rates of dead wood in a neotropical forest. Oecologia 164, 243–251 (2010). PubMed DOI

Thünen-Institut für Waldökosysteme. Der Wald in Deutschland - Ausgewählte Ergebnisse der dritten Bundeswaldinventur (Bundesministerium für Ernährung und Landwirtschaft, 2014).

Puletti, N. et al. A dataset of forest volume deadwood estimates for Europe. Ann. For. Sci. 76, 68 (2019). DOI

Richardson, S. J. et al. Deadwood in New Zealand’s indigenous forests. For. Ecol. Manage. 258, 2456–2466 (2009). DOI

Shorohova, E. & Kapitsa, E. Stand and landscape scale variability in the amount and diversity of coarse woody debris in primeval European boreal forests. For. Ecol. Manage. 356, 273–284 (2015). DOI

Szymañski, C., Fontana, G. & Sanguinetti, J. Natural and anthropogenic influences on coarse woody debris stocks in Nothofagus–Araucaria forests of northern Patagonia, Argentina. Austral Ecol. 42, 48–60 (2017). DOI

Link, K. G. et al. A local and global sensitivity analysis of a mathematical model of coagulation and platelet deposition under flow. PLoS One 13, e0200917 (2018).

Saugier, B., Roy, J. & Mooney, H. A. in Terrestrial Global Productivity (eds J. Roy, B. Saugier & H. A. Mooney) 543–557 (Academic Press, 2001).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Long-read sequencing sheds light on key bacteria contributing to deadwood decomposition processes

. 2024 Dec 03 ; 19 (1) : 99. [epub] 20241203

Conceptualizing soil fauna effects on labile and stabilized soil organic matter

. 2024 Jun 17 ; 15 (1) : 5005. [epub] 20240617

Alternative measures of trait-niche relationships: A test on dispersal traits in saproxylic beetles

. 2023 Oct ; 13 (10) : e10588. [epub] 20231019

Forest microbiome and global change

. 2023 Aug ; 21 (8) : 487-501. [epub] 20230320

Factors influencing carrion communities are only partially consistent with those of deadwood necromass

. 2023 Feb ; 201 (2) : 537-547. [epub] 20230125

Quantifying wood decomposition by insects and fungi using computed tomography scanning and machine learning

. 2022 Sep 27 ; 12 (1) : 16150. [epub] 20220927

Factors Controlling Dead Wood Decomposition in an Old-Growth Temperate Forest in Central Europe

. 2022 Jun 27 ; 8 (7) : . [epub] 20220627

Fungal Community Development in Decomposing Fine Deadwood Is Largely Affected by Microclimate

. 2022 ; 13 () : 835274. [epub] 20220413

Beetle diversity is higher in sunny forests due to higher microclimatic heterogeneity in deadwood

. 2022 Mar ; 198 (3) : 825-834. [epub] 20220304

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...