Conceptualizing soil fauna effects on labile and stabilized soil organic matter
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
FZT 118
Deutsche Forschungsgemeinschaft (German Research Foundation)
202548816
Deutsche Forschungsgemeinschaft (German Research Foundation)
493345801
Deutsche Forschungsgemeinschaft (German Research Foundation)
FZT 118
Deutsche Forschungsgemeinschaft (German Research Foundation)
202548816
Deutsche Forschungsgemeinschaft (German Research Foundation)
FZT 118
Deutsche Forschungsgemeinschaft (German Research Foundation)
202548816
Deutsche Forschungsgemeinschaft (German Research Foundation)
FZT 118
Deutsche Forschungsgemeinschaft (German Research Foundation)
202548816
Deutsche Forschungsgemeinschaft (German Research Foundation)
Ei 862/29-1
Deutsche Forschungsgemeinschaft (German Research Foundation)
Ei 862/31-1
Deutsche Forschungsgemeinschaft (German Research Foundation)
FZT 118
Deutsche Forschungsgemeinschaft (German Research Foundation)
202548816
Deutsche Forschungsgemeinschaft (German Research Foundation)
24-10574S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
LQ200962401
Akademie Věd České Republiky (Academy of Sciences of the Czech Republic)
PubMed
38886372
PubMed Central
PMC11183196
DOI
10.1038/s41467-024-49240-x
PII: 10.1038/s41467-024-49240-x
Knihovny.cz E-zdroje
- MeSH
- ekosystém MeSH
- mikrobiota MeSH
- minerály chemie MeSH
- organické látky MeSH
- půda * chemie MeSH
- půdní mikrobiologie * MeSH
- uhlík chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- minerály MeSH
- organické látky MeSH
- půda * MeSH
- uhlík MeSH
Fauna is highly abundant and diverse in soils worldwide, but surprisingly little is known about how it affects soil organic matter stabilization. Here, we review how the ecological strategies of a multitude of soil faunal taxa can affect the formation and persistence of labile (particulate organic matter, POM) and stabilized soil organic matter (mineral-associated organic matter, MAOM). We propose three major mechanisms - transformation, translocation, and grazing on microorganisms - by which soil fauna alters factors deemed essential in the formation of POM and MAOM, including the quantity and decomposability of organic matter, soil mineralogy, and the abundance, location, and composition of the microbial community. Determining the relevance of these mechanisms to POM and MAOM formation in cross-disciplinary studies that cover individual taxa and more complex faunal communities, and employ physical fractionation, isotopic, and microbiological approaches is essential to advance concepts, models, and policies focused on soil organic matter and effectively manage soils as carbon sinks, nutrient stores, and providers of food.
Eco and Sols Univ Montpellier CIRAD INRAE Institut Agro IRD Montpellier France
Institute for Environmental Studies Charles University Benátská 2 Praha 2 Prague Czech Republic
Institute of Biology Leipzig University Leipzig Germany
Laboratoire ECODIV USC INRAE 1499 Université de Rouen Normandie FR CNRS 3730 SCALE Rouen France
Senckenberg Museum für Naturkunde Görlitz Postfach 300 154 02806 Görlitz Germany
Zobrazit více v PubMed
Johnson KA, Whitford WG. Foraging ecology and relative importance of subterranean termites in chihuahuan desert ecosystems. Environ. Entomol. 1975;4:66–70. doi: 10.1093/ee/4.1.66. DOI
Phillips HRP, et al. Global distribution of earthworm diversity. Science. 2019;366:480–485. doi: 10.1126/science.aax4851. PubMed DOI PMC
Potapov AM, et al. Globally invariant metabolism but density-diversity mismatch in springtails. Nat. Commun. 2023;14:674. doi: 10.1038/s41467-023-36216-6. PubMed DOI PMC
van den Hoogen J, et al. Soil nematode abundance and functional group composition at a global scale. Nature. 2019;572:194–198. doi: 10.1038/s41586-019-1418-6. PubMed DOI
Rosenberg Y, et al. The global biomass and number of terrestrial arthropods. Sci. Adv. 2023;9:1–13. doi: 10.1126/sciadv.abq4049. PubMed DOI PMC
Joly F-X, et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol. 2020;3:660. doi: 10.1038/s42003-020-01392-4. PubMed DOI PMC
Jouquet P, Mamou L, Lepage M, Velde B. Effect of termites on clay minerals in tropical soils: fungus-growing termites as weathering agents. Eur. J. Soil Sci. 2002;53:521–528. doi: 10.1046/j.1365-2389.2002.00492.x. DOI
Kane JL, Kotcon JB, Freedman ZB, Morrissey EM. Fungivorous nematodes drive microbial diversity and carbon cycling in soil. Ecology. 2023;104:e3844. doi: 10.1002/ecy.3844. PubMed DOI
Van Groenigen JW, et al. How fertile are earthworm casts? A meta-analysis. Geoderma. 2018;338:525–535. doi: 10.1016/j.geoderma.2018.11.001. DOI
Wilkinson MT, Richards PJ, Humphreys GS. Breaking ground: pedological, geological, and ecological implications of soil bioturbation. Earth-Sci. Rev. 2009;97:257–272. doi: 10.1016/j.earscirev.2009.09.005. DOI
Briones, M. J. I. Soil fauna and soil functions: a jigsaw puzzle. Front. Environ. Sci. 2, 7 (2014).
Grandy AS, Wieder WR, Wickings K, Kyker-Snowman E. Beyond microbes: Are fauna the next frontier in soil biogeochemical models? Soil Biol. Biochem. 2016;102:40–44. doi: 10.1016/j.soilbio.2016.08.008. DOI
Osler GHR, Sommerkorn M. Toward a complete soil C and N cycle: incorporating the soil fauna. Ecology. 2007;88:1611–1621. doi: 10.1890/06-1357.1. PubMed DOI
Filser J, et al. Soil fauna: Key to new carbon models. Soil. 2016;2:565–582. doi: 10.5194/soil-2-565-2016. DOI
Vidal, A. et al. Chapter One - The role of earthworms in agronomy: Consensus, novel insights and remaining challenges. in (ed. Sparks, D. L.) vol. 181 1–78 (Academic Press, 2023).
Frouz J. Plant-soil feedback across spatiotemporal scales from immediate effects to legacy. Soil Biol. Biochem. 2024;189:109289. doi: 10.1016/j.soilbio.2023.109289. DOI
Pulleman MM, Six J, Uyl A, Marinissen JCY, Jongmans AG. Earthworms and management affect organic matter incorporation and microaggregate formation in agricultural soils. Appl. Soil Ecol. 2005;29:1–15. doi: 10.1016/j.apsoil.2004.10.003. DOI
Bossuyt H, Six J, Hendrix PF. Protection of soil carbon by microaggregates within earthworm casts. Soil Biol. Biochem. 2005;37:251–258. doi: 10.1016/j.soilbio.2004.07.035. DOI
Angst G, et al. Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass. Commun. Biol. 2019;2:441. doi: 10.1038/s42003-019-0684-z. PubMed DOI PMC
Vidal A, et al. Earthworm cast formation and development: a shift from plant litter to mineral associated organic matter. Front. Environ. Sci. 2019;7:1–15. doi: 10.3389/fenvs.2019.00055. DOI
Le Mer G, et al. Inferring the impact of earthworms on the stability of organo-mineral associations, by Rock-Eval thermal analysis and 13C NMR spectroscopy. Org. Geochem. 2020;144:104016. doi: 10.1016/j.orggeochem.2020.104016. DOI
Kellerová A, Angst G, Jílková V. Earthworms facilitate stabilization of both more-available maize biomass and more-recalcitrant maize biochar on mineral particles in an agricultural soil. Soil Biol. Biochem. 2024;189:109278. doi: 10.1016/j.soilbio.2023.109278. DOI
Castellano MJ, Mueller KE, Olk DC, Sawyer JE, Six J. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob. Chang. Biol. 2015;21:3200–3209. doi: 10.1111/gcb.12982. PubMed DOI
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 2013;19:988–995. doi: 10.1111/gcb.12113. PubMed DOI
Sokol NW, et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 2022;20:415–430. doi: 10.1038/s41579-022-00695-z. PubMed DOI
Kallenbach CM, Grandy AS, Frey SD, Diefendorf AF. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol. Biochem. 2015;91:279–290. doi: 10.1016/j.soilbio.2015.09.005. DOI
Lehmann J, et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 2020;13:529–534. doi: 10.1038/s41561-020-0612-3. DOI
Kleber M, et al. Dynamic interactions at the mineral – organic matter interface. Nat. Rev. Earth Environ. 2021;2:402–421. doi: 10.1038/s43017-021-00162-y. DOI
Cotrufo, M. F. & Lavallee, J. M. Chapter One - Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration. in (ed. Sparks, D. L.) vol. 172 1–66 (Academic Press, 2022).
Sokol NW, Sanderman J, Bradford MA. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Glob. Chang. Biol. 2019;25:12–24. doi: 10.1111/gcb.14482. PubMed DOI
Cole L, Bardgett RD, Ineson P, Hobbs PJ. Enchytraeid worm (Oligochaeta) influences on microbial community structure, nutrient dynamics and plant growth in blanket peat subjected to warming. Soil Biol. Biochem. 2002;34:83–92. doi: 10.1016/S0038-0717(01)00159-6. DOI
Heděnec P, et al. Global distribution of soil fauna functional groups and their estimated litter consumption across biomes. Sci. Rep. 2022;12:17362. doi: 10.1038/s41598-022-21563-z. PubMed DOI PMC
Jiang X, Denef K, Stewart CE, Cotrufo MF. Controls and dynamics of biochar decomposition and soil microbial abundance, composition, and carbon use efficiency during long-term biochar-amended soil incubations. Biol. Fertil. Soils. 2016;52:1–14. doi: 10.1007/s00374-015-1047-7. DOI
Bol R, Poirier N, Balesdent J, Gleixner G. Molecular turnover time of soil organic matter in particle-size fractions of an arable soil. Rapid Commun. Mass Spectrom. 2009;23:2551–2558. doi: 10.1002/rcm.4124. PubMed DOI
Mueller CW, Koegel-Knabner I. Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites. Biol. Fertil. Soils. 2009;45:347–359. doi: 10.1007/s00374-008-0336-9. DOI
von Lützow M, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review. Eur. J. Soil Sci. 2006;57:426–445. doi: 10.1111/j.1365-2389.2006.00809.x. DOI
Angst G, et al. Unlocking complex soil systems as carbon sinks: multi-pool management as the key. Nat. Commun. 2023;14:2967. doi: 10.1038/s41467-023-38700-5. PubMed DOI PMC
Lugato E, Lavallee JM, Haddix ML, Panagos P, Francesca Cotrufo M. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geo. 2021;14:295–300. doi: 10.1038/s41561-021-00744-x. DOI
Crowther TW, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550. doi: 10.1126/science.aav0550. PubMed DOI
Potapov AM, et al. Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates. Biol. Rev. 2022;97:1057–1117. doi: 10.1111/brv.12832. PubMed DOI
Bonkowski M. Protozoa and plant growth: the microbial loop in soil revisited. N. Phytol. 2004;162:617–631. doi: 10.1111/j.1469-8137.2004.01066.x. PubMed DOI
Scheu S. Effects of earthworms on plant growth: patterns and perspectives: The 7th international symposium on earthworm ecology · Cardiff · Wales · 2002. Pedobiologia (Jena.) 2003;47:846–856.
Brown, G. G., Edwards, C. A. & Brussaard, L. How Earthworms Affect Plant Growth: Burrowing into the Mechanisms. in Earthworm Ecology (ed. Edwards, C. A.) 13–49 (CRC Press, 2004). 10.1201/9781420039719.
Angst Š, et al. Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter. Geoderma. 2017;289:29–35. doi: 10.1016/j.geoderma.2016.11.017. DOI
Bossuyt H, Six J, Hendrix PF. Rapid incorporation of carbon from fresh residues into newly formed stable microaggregates within earthworm casts. Eur. J. Soil Sci. 2004;55:393–399. doi: 10.1111/j.1351-0754.2004.00603.x. DOI
Fahey TJ, et al. Earthworm effects on the incorporation of litter C and N into soil organic matter in a sugar maple forest. Ecol. Appl. 2013;23:1185–1201. doi: 10.1890/12-1760.1. PubMed DOI
Guggenberger G, Thomas RJ, Zech W. Soil organic matter within earthworm casts of an anecic-endogeic tropical pasture community. Colomb. Appl. Soil Ecol. 1996;3:263–274. doi: 10.1016/0929-1393(95)00081-X. DOI
Sánchez-de León Y, et al. Endogeic earthworm densities increase in response to higher fine-root production in a forest exposed to elevated CO2. Soil Biol. Biochem. 2018;122:31–38. doi: 10.1016/j.soilbio.2018.03.027. DOI
Wachendorf C, Potthoff M, Ludwig B, Joergensen RG. Effects of addition of maize litter and earthworms on C mineralization and aggregate formation in single and mixed soils differing in soil organic carbon and clay content. Pedobiologia (Jena.). 2014;57:161–169. doi: 10.1016/j.pedobi.2014.03.001. DOI
Angst G, Mueller KE, Kögel-Knabner I, Freeman KH, Mueller CW. Aggregation controls the stability of lignin and lipids in clay-sized particulate and mineral associated organic matter. Biogeochemistry. 2017;132:307–324. doi: 10.1007/s10533-017-0304-2. DOI
Hong HN, et al. How do earthworms influence organic matter quantity and quality in tropical soils? Soil Biol. Biochem. 2011;43:223–230. doi: 10.1016/j.soilbio.2010.09.033. DOI
Ma Y, et al. The combined controls of land use legacy and earthworm activity on soil organic matter chemistry and particle association during afforestation. Org. Geochem. 2013;58:56–68. doi: 10.1016/j.orggeochem.2013.02.010. DOI
Vidal A, Quenea K, Alexis M, Derenne S. Molecular fate of root and shoot litter on incorporation and decomposition in earthworm casts. Org. Geochem. 2016;101:1–10. doi: 10.1016/j.orggeochem.2016.08.003. DOI
Zhang X, Wang J, Xie H, Wang J, Zech W. Comparison of organic compounds in the particle-size fractions of earthworm casts and surrounding soil in humid Laos. Appl. Soil Ecol. 2003;23:147–153. doi: 10.1016/S0929-1393(03)00020-9. DOI
Angst G, Angst Š, Frouz J, Peterse F, Nierop KGJ. Preferential degradation of leaf- vs. root-derived organic carbon in earthworm-affected soil. Geoderma. 2020;372:114391. doi: 10.1016/j.geoderma.2020.114391. DOI
Hoeffner K, Monard C, Santonja M, Cluzeau D. Feeding behaviour of epi-anecic earthworm species and their impacts on soil microbial communities. Soil Biol. Biochem. 2018;125:1–9. doi: 10.1016/j.soilbio.2018.06.017. DOI
McLean, M. A., Migge-Kleian, S. & Parkinson, D. Earthworm invasions of ecosystems devoid of earthworms: Effects on soil microbes. Biol. Invasions Belowgr. Earthworms as Invasive Species 57–73 10.1007/978-1-4020-5429-7_7 (2006).
Singh J, Eisenhauer N, Schädler M, Cesarz S. Earthworm gut passage reinforces land-use effects on soil microbial communities across climate treatments. Appl. Soil Ecol. 2021;164:103919. doi: 10.1016/j.apsoil.2021.103919. DOI
Bernard L, et al. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. ISME J. 2012;6:213–222. doi: 10.1038/ismej.2011.87. PubMed DOI PMC
Chang CH, Szlavecz K, Buyer JS. Species-specific effects of earthworms on microbial communities and the fate of litter-derived carbon. Soil Biol. Biochem. 2016;100:129–139. doi: 10.1016/j.soilbio.2016.06.004. DOI
Jouquet P, Maron PA, Nowak V, Tran Duc T. Utilization of microbial abundance and diversity as indicators of the origin of soil aggregates produced by earthworms. Soil Biol. Biochem. 2013;57:950–952. doi: 10.1016/j.soilbio.2012.08.026. DOI
Scullion J, Malik A. Earthworm activity affecting organic matter, aggregation and microbial activity in soils restored after opencast mining for coal. Soil Biol. Biochem. 2000;32:119–126. doi: 10.1016/S0038-0717(99)00142-X. DOI
Angst G, et al. Earthworms as catalysts in the formation and stabilization of soil microbial necromass. Glob. Chang. Biol. 2022;28:4775–4782. doi: 10.1111/gcb.16208. PubMed DOI PMC
Barthod J, Dignac MF, Rumpel C. Effect of decomposition products produced in the presence or absence of epigeic earthworms and minerals on soil carbon stabilization. Soil Biol. Biochem. 2021;160:108308. doi: 10.1016/j.soilbio.2021.108308. DOI
Bohlen PJ, Edwards CA, Zhang Q, Parmelee RW, Allen M. Indirect effects of earthworms on microbial assimilation of labile carbon. Appl. Soil Ecol. 2002;20:255–261. doi: 10.1016/S0929-1393(02)00027-6. DOI
Barthod J, et al. How do earthworms affect organic matter decomposition in the presence of clay-sized minerals? Soil Biol. Biochem. 2020;143:107730. doi: 10.1016/j.soilbio.2020.107730. DOI
Lubbers IM, et al. Greenhouse-gas emissions from soils increased by earthworms. Nat. Clim. Chang. 2013;3:187–194. doi: 10.1038/nclimate1692. DOI
Marhan S, Auber J, Poll C. Additive effects of earthworms, nitrogen-rich litter and elevated soil temperature on N2O emission and nitrate leaching from an arable soil. Appl. Soil Ecol. 2015;86:55–61. doi: 10.1016/j.apsoil.2014.10.006. DOI
Marhan S, Langel R, Kandeler E, Scheu S. Use of stable isotopes (13C) for studying the mobilisation of old soil organic carbon by endogeic earthworms (Lumbricidae) Eur. J. Soil Biol. 2007;43:S201–S208. doi: 10.1016/j.ejsobi.2007.08.017. DOI
Lubbers IM, Pulleman MM, Van Groenigen JW. Can earthworms simultaneously enhance decomposition and stabilization of plant residue carbon? Soil Biol. Biochem. 2017;105:12–24. doi: 10.1016/j.soilbio.2016.11.008. DOI
Capowiez Y, Marchán D, Decaëns T, Hedde M, Bottinelli N. Let earthworms be functional - Definition of new functional groups based on their bioturbation behavior. Soil Biol. Biochem. 2024;188:109209. doi: 10.1016/j.soilbio.2023.109209. DOI
Bottinelli N, Hedde M, Jouquet P, Capowiez Y. An explicit definition of earthworm ecological categories – Marcel Bouché’s triangle revisited. Geoderma. 2020;372:114361. doi: 10.1016/j.geoderma.2020.114361. DOI
Ambarish CN, Sridhar KR. Chemical and microbial characterization of feed and faeces of two giant pill-millipedes from forests in the Western Ghats of India. Pedosphere. 2016;26:861–871. doi: 10.1016/S1002-0160(15)60091-1. DOI
Ambarish CN, Sridhar KR. Production and quality of pill-millipede manure: a microcosm study. Agric. Res. 2013;2:258–264. doi: 10.1007/s40003-013-0075-5. DOI
Coulis M, Hättenschwiler S, Coq S, David J-F. Leaf litter consumption by macroarthropods and burial of their faeces enhance decomposition in a mediterranean ecosystem. Ecosystems. 2016;19:1104–1115. doi: 10.1007/s10021-016-9990-1. DOI
da Silva VM, et al. Influence of the tropical millipede, Glyphiulus granulatus (Gervais, 1847), on aggregation, enzymatic activity, and phosphorus fractions in the soil. Geoderma. 2017;289:135–141. doi: 10.1016/j.geoderma.2016.11.031. DOI
Joly F-X, Coq S, Coulis M, Nahmani J, Hättenschwiler S. Litter conversion into detritivore faeces reshuffles the quality control over C and N dynamics during decomposition. Funct. Ecol. 2018;32:2605–2614. doi: 10.1111/1365-2435.13178. DOI
Ganault P, et al. Leaf litter morphological traits, invertebrate body mass and phylogenetic affiliation explain the feeding and feces properties of saprophagous macroarthropods. Eur. J. Soil Biol. 2022;109:103383. doi: 10.1016/j.ejsobi.2021.103383. DOI
Coulis M, Hättenschwiler S, Rapior S, Coq S. The fate of condensed tannins during litter consumption by soil animals. Soil Biol. Biochem. 2009;41:2573–2578. doi: 10.1016/j.soilbio.2009.09.022. DOI
Joly F-X, Coq S, Subke J-A. Soil fauna precipitate the convergence of organic matter quality during decomposition. Oikos. 2023;2023:e09497. doi: 10.1111/oik.09497. DOI
Špaldoňová A, Frouz J. Decomposition of forest litter and feces of armadillidium vulgare (isopoda: oniscidea) produced from the same litter affected by temperature and litter quality. Forests. 2019;10:939. doi: 10.3390/f10110939. DOI
Wickings K, Grandy AS. The oribatid mite Scheloribates moestus (Acari: Oribatida) alters litter chemistry and nutrient cycling during decomposition. Soil Biol. Biochem. 2011;43:351–358. doi: 10.1016/j.soilbio.2010.10.023. DOI
Frouz J, et al. Utilization of dietary protein in the litter-dwelling larva of bibio marci (Diptera: Bibionidae) Eurasia. Soil Sci. 2019;52:1583–1587. doi: 10.1134/S1064229319120032. DOI
Frouz J, Šimek M. Short term and long term effects of bibionid (Diptera: Bibionidae) larvae feeding on microbial respiration and alder litter decomposition. Eur. J. Soil Biol. 2009;45:192–197. doi: 10.1016/j.ejsobi.2008.09.012. DOI
Jia Y, et al. Insight into the indirect function of isopods in litter decomposition in mixed subtropical forests in China. Appl. Soil Ecol. 2015;86:174–181. doi: 10.1016/j.apsoil.2014.10.015. DOI
Kaneda S, Frouz J, Baldrian P, Cajthaml T, Krištůfek V. Does the addition of leaf litter affect soil respiration in the same way as addition of macrofauna excrements (of Bibio marci Diptera larvae) produced from the same litter? Appl. Soil Ecol. 2013;72:7–13. doi: 10.1016/j.apsoil.2013.05.011. DOI
Špaldoňová A, Frouz J. The role of Armadillidium vulgare (Isopoda: Oniscidea) in litter decomposition and soil organic matter stabilization. Appl. Soil Ecol. 2014;83:186–192. doi: 10.1016/j.apsoil.2014.04.012. DOI
Frouz J, Špaldoňová A, Lhotáková Z, Cajthaml T. Major mechanisms contributing to the macrofauna-mediated slow down of litter decomposition. Soil Biol. Biochem. 2015;91:23–31. doi: 10.1016/j.soilbio.2015.08.024. DOI
Buse T, Ruess L, Filser J. Collembola gut passage shapes microbial communities in faecal pellets but not viability of dietary algal cells. Chemoecology. 2014;24:79–84. doi: 10.1007/s00049-013-0145-y. DOI
Chan KY, Heenan DP. Occurrence of Enchytraeid worms and some properties of their casts in an Australian soil under cropping. Soil Res. 1995;33:651–657. doi: 10.1071/SR9950651. DOI
Maaß S, Caruso T, Rillig MC. Functional role of microarthropods in soil aggregation. Pedobiologia (Jena.) 2015;58:59–63. doi: 10.1016/j.pedobi.2015.03.001. DOI
Makoto K, Arai M, Kaneko N. Change the menu? Species-dependent feeding responses of millipedes to climate warming and the consequences for plant–soil nitrogen dynamics. Soil Biol. Biochem. 2014;72:19–25. doi: 10.1016/j.soilbio.2014.01.016. DOI
Fujimaki R, Sato Y, Okai N, Kaneko N. The train millipede (Parafontaria laminata) mediates soil aggregation and N dynamics in a Japanese larch forest. Geoderma. 2010;159:216–220. doi: 10.1016/j.geoderma.2010.07.014. DOI
Jungerius PD, van den Ancker JAM, Mücher HJ. The contribution of termites to the microgranular structure of soils on the Uasin Gishu Plateau, Kenya. CATENA. 1999;34:349–363. doi: 10.1016/S0341-8162(98)00106-4. DOI
Kaiser K, Guggenberger G. Mineral surfaces and soil organic matter. Eur. J. Soil Sci. 2003;54:219–236. doi: 10.1046/j.1365-2389.2003.00544.x. DOI
Jouquet P, Bottinelli N, Lata J-C, Mora P, Caquineau S. Role of the fungus-growing termite Pseudacanthotermes spiniger (Isoptera, Macrotermitinae) in the dynamic of clay and soil organic matter content. An experimental analysis. Geoderma. 2007;139:127–133. doi: 10.1016/j.geoderma.2007.01.011. DOI
Blume, H.-P. & Schad, P. Bodenkunde in Stichworten p. 238 (Springer Berlin Heidelberg, 2015).
Lejoly J, et al. Effects of termite sheetings on soil properties under two contrasting soil management practices. Pedobiologia (Jena.). 2019;76:150573. doi: 10.1016/j.pedobi.2019.150573. DOI
Mujinya BB, et al. Clay composition and properties in termite mounds of the Lubumbashi area, D.R. Congo. Geoderma. 2013;192:304–315. doi: 10.1016/j.geoderma.2012.08.010. DOI
Carpenter D, Hodson ME, Eggleton P, Kirk C. Earthworm induced mineral weathering: Preliminary results. Eur. J. Soil Biol. 2007;43:S176–S183. doi: 10.1016/j.ejsobi.2007.08.053. DOI
Hušák, M., Frouz, J. & Had, J. Can earthworm gut passage modify clay minerals structure: preliminary results. in Contributions to Soil Zoology in Central Europe 1 (eds. Tajovský, K., Schlaghamerský, J. & Pižl, V.) 37–39 (2005).
Eusterhues K, et al. Characterization of ferrihydrite-soil organic matter coprecipitates by x-ray diffraction and mössbauer spectroscopy. Environ. Sci. {} Technol. 2008;42:7891–7897. doi: 10.1021/es800881w. PubMed DOI
Brunauer S, Emmett PH, Teller E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938;60:309–319. doi: 10.1021/ja01269a023. DOI
Meysman FJR, Middelburg JJ, Heip CHR. Bioturbation: a fresh look at Darwin’s last idea. Trends Ecol. Evol. 2006;21:688–695. doi: 10.1016/j.tree.2006.08.002. PubMed DOI
Darwin, C. The Formation of Vegetable Mould, Through the Action of Worms: With Observations on Their Habits. p. 326 (Murray, J., 1892).
Paton, T. R., Humphreys, G. S. & Mitchell, P. B. Soils: A New Global View. p. 234 (Yale University Press, 1995).
Ma Y, Filley TR, Szlavecz K, McCormick MK. Controls on wood and leaf litter incorporation into soil fractions in forests at different successional stages. Soil Biol. Biochem. 2014;69:212–222. doi: 10.1016/j.soilbio.2013.10.043. DOI
Capowiez Y, Bottinelli N, Sammartino S, Michel E, Jouquet P. Morphological and functional characterisation of the burrow systems of six earthworm species (Lumbricidae) Biol. Fertil. Soils. 2015;51:869–877. doi: 10.1007/s00374-015-1036-x. DOI
Pham QV, et al. Using morpho-anatomical traits to predict the effect of earthworms on soil water infiltration. Geoderma. 2023;429:116245. doi: 10.1016/j.geoderma.2022.116245. DOI
Lee, K. E. Earthworms: Their Ecology and Relationships with Soils and Land Use. p. 411 (Academic Press, 1985).
Bastardie F, Capowiez Y, Cluzeau D. 3D characterisation of earthworm burrow systems in natural soil cores collected from a 12-year-old pasture. Appl. Soil Ecol. 2005;30:34–46. doi: 10.1016/j.apsoil.2005.01.001. DOI
Kuzyakov Y, Blagodatskaya E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem. 2015;83:184–199. doi: 10.1016/j.soilbio.2015.01.025. DOI
Eisenhauer N. The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia (Jena.). 2010;53:343–352. doi: 10.1016/j.pedobi.2010.04.003. DOI
Brown, G. G. How do earthworms affect microfloral and faunal community diversity? BT - The Significance and Regulation of Soil Biodiversity: Proceedings of the International Symposium on Soil Biodiversity, held at Michigan State University, East Lansing, May 3–6, 199. in (eds. Collins, H. P., Robertson, G. P. & Klug, M. J.) 247–269 (Springer Netherlands, 1995). 10.1007/978-94-011-0479-1_22.
Brown GG, Barois I, Lavelle P. Regulation of soil organic matter dynamics and microbial activityin the drilosphere and the role of interactionswith other edaphic functional domains. Eur. J. Soil Biol. 2000;36:177–198. doi: 10.1016/S1164-5563(00)01062-1. DOI
Görres JH, Savin MC, Amador JA. Soil micropore structure and carbon mineralization in burrows and casts of an anecic earthworm (Lumbricus terrestris) Soil Biol. Biochem. 2001;33:1881–1887. doi: 10.1016/S0038-0717(01)00068-2. DOI
Schlüter S, et al. Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime. Nat. Commun. 2022;13:2098. doi: 10.1038/s41467-022-29605-w. PubMed DOI PMC
Görres, J. H., Savin, M. C. & Amador, J. A. Dynamics of carbon and nitrogen mineralization, microbial biomass, and nematode abundance within and outside the burrow walls of anecic earthworms (Lumbricus terrestris). Soil Sci. 162, 666–671 (1997).
Hoang DTT, Razavi BS, Kuzyakov Y, Blagodatskaya E. Earthworm burrows: Kinetics and spatial distribution of enzymes of C-, N- and P- cycles. Soil Biol. Biochem. 2016;99:94–103. doi: 10.1016/j.soilbio.2016.04.021. DOI
Hoang DTT, Bauke SL, Kuzyakov Y, Pausch J. Rolling in the deep: Priming effects in earthworm biopores in topsoil and subsoil. Soil Biol. Biochem. 2017;114:59–71. doi: 10.1016/j.soilbio.2017.06.021. DOI
Lipiec J, Frąc M, Brzezińska M, Turski M, Oszust K. Linking microbial enzymatic activities and functional diversity of soil around earthworm burrows and casts. Front. Microbiol. 2016;7:1361. doi: 10.3389/fmicb.2016.01361. PubMed DOI PMC
Parkin TB, Berry EC. Microbial nitrogen transformations in earthworm burrows. Soil Biol. Biochem. 1999;31:1765–1771. doi: 10.1016/S0038-0717(99)00085-1. DOI
Andriuzzi WS, et al. Organic matter composition and the protist and nematode communities around anecic earthworm burrows. Biol. Fertil. Soils. 2016;52:91–100. doi: 10.1007/s00374-015-1056-6. DOI
Guhra T, Stolze K, Schweizer S, Totsche KU. Earthworm mucus contributes to the formation of organo-mineral associations in soil. Soil Biol. Biochem. 2020;145:107785. doi: 10.1016/j.soilbio.2020.107785. DOI
Don A, et al. Organic carbon sequestration in earthworm burrows. Soil Biol. Biochem. 2008;40:1803–1812. doi: 10.1016/j.soilbio.2008.03.003. DOI
Taylor AR, Lenoir L, Vegerfors B, Persson T. Ant and earthworm bioturbation in cold-temperate ecosystems. Ecosystems. 2019;22:981–994. doi: 10.1007/s10021-018-0317-2. DOI
Viles HA, Goudie AS, Goudie AM. Ants as geomorphological agents: A global assessment. Earth-Sci. Rev. 2021;213:103469. doi: 10.1016/j.earscirev.2020.103469. DOI
Noriega JA, et al. Dung removal increases under higher dung beetle functional diversity regardless of grazing intensification. Nat. Commun. 2023;14:8070. doi: 10.1038/s41467-023-43760-8. PubMed DOI PMC
Cammeraat ELH, Risch AC. The impact of ants on mineral soil properties and processes at different spatial scales. J. Appl. Entomol. 2008;132:285–294. doi: 10.1111/j.1439-0418.2008.01281.x. DOI
Ehrle A, et al. Yellow-meadow ant (Lasius flavus) mound development determines soil properties and growth responses of different plant functional types. Eur. J. Soil Biol. 2017;81:83–93. doi: 10.1016/j.ejsobi.2017.06.006. DOI
Fall S, Brauman A, Chotte J-L. Comparative distribution of organic matter in particle and aggregate size fractions in the mounds of termites with different feeding habits in Senegal: Cubitermes niokoloensis and Macrotermes bellicosus. Appl. Soil Ecol. 2001;17:131–140. doi: 10.1016/S0929-1393(01)00125-1. DOI
Frouz J, Jilková V. The effect of ants on soil properties and processes (Hymenoptera: Formicidae) Myrmecological N. 2008;11:191–199.
Rückamp D, et al. Soil genesis and heterogeneity of phosphorus forms and carbon below mounds inhabited by primary and secondary termites. Geoderma. 2012;170:239–250. doi: 10.1016/j.geoderma.2011.10.004. DOI
Whitford WG, Eldridge DJ. Effects of ants and termites on soil and geomorphological processes. Treatise Geomorphol. 2013;12:281–292. doi: 10.1016/B978-0-12-374739-6.00335-3. DOI
Jouquet P, et al. Where do South-Indian termite mound soils come from? Appl. Soil Ecol. 2017;117–118:190–195. doi: 10.1016/j.apsoil.2017.05.010. DOI
Nkem JN, Lobry De Bruyn LA, Grant CD, Hulugalle NR. The impact of ant bioturbation and foraging activities on surrounding soil properties. Pedobiologia (Jena.). 2000;44:609–621. doi: 10.1078/S0031-4056(04)70075-X. DOI
Chen S, et al. Fine resolution map of top- and subsoil carbon sequestration potential in France. Sci. Total Environ. 2018;630:389–400. doi: 10.1016/j.scitotenv.2018.02.209. PubMed DOI
Cheik S, Harit A, Bottinelli N, Jouquet P. Bioturbation by dung beetles and termites. Do they similarly impact soil and hydraulic properties? Pedobiologia (Jena.) 2022;95:150845. doi: 10.1016/j.pedobi.2022.150845. DOI
Kalisz PJ, Stone EL. Soil mixing by scarab beetles and pocket gophers in North-Central Florida. Soil Sci. Soc. Am. J. 1984;48:169–172. doi: 10.2136/sssaj1984.03615995004800010031x. DOI
Yamada D, Imura O, Shi K, Shibuya T. Effect of tunneler dung beetles on cattle dung decomposition, soil nutrients and herbage growth. Grassl. Sci. 2007;53:121–129. doi: 10.1111/j.1744-697X.2007.00082.x. DOI
Cao Q, et al. Differentiated impacts of the feeding-habits of three ant species on carbon mineralization in tropical forest soils. Eur. J. Soil Biol. 2022;110:103403. doi: 10.1016/j.ejsobi.2022.103403. DOI
Kristiansen SM, Amelung W. Abandoned anthills of Formica polyctena and soil heterogeneity in a temperate deciduous forest: morphology and organic matter composition. Eur. J. Soil Sci. 2001;52:355–363. doi: 10.1046/j.1365-2389.2001.00390.x. DOI
Zanne AE, et al. Termite sensitivity to temperature affects global wood decay rates. Science. 2022;377:1440–1444. doi: 10.1126/science.abo3856. PubMed DOI
Holter P, Scholtz CH, Wardhaugh KG. Dung feeding in adult scarabaeines (tunnellers and endocoprids): even large dung beetles eat small particles. Ecol. Entomol. 2002;27:169–176. doi: 10.1046/j.1365-2311.2002.00399.x. DOI
Meyer ST, et al. Leaf-cutting ants as ecosystem engineers: topsoil and litter perturbations around Atta cephalotes nests reduce nutrient availability. Ecol. Entomol. 2013;38:497–504. doi: 10.1111/een.12043. DOI
Cammeraat LH, Willott SJ, Compton SG, Incoll LD. The effects of ants’ nests on the physical, chemical and hydrological properties of a rangeland soil in semi-arid Spain. Geoderma. 2002;105:1–20. doi: 10.1016/S0016-7061(01)00085-4. DOI
Frouz J, Holec M, Kalčík J. The effect of Lasius niger (Hymenoptera, Formicidae) ant nest on selected soil chemical properties. Pedobiologia (Jena.). 2003;47:205–212. doi: 10.1078/0031-4056-00184. DOI
Jílková V, Matějíček L, Frouz J. Changes in the pH and other soil chemical parameters in soil surrounding wood ant (Formica polyctena) nests. Eur. J. Soil Biol. 2011;47:72–76. doi: 10.1016/j.ejsobi.2010.10.002. DOI
Jouquet P, Harit A, Bottinelli N, Eldridge DJ. Termite bioturbation: Fungal versus non-fungal building strategies lead to different soil sheeting stability. Soil Biol. Biochem. 2023;176:108868. doi: 10.1016/j.soilbio.2022.108868. DOI
Lenoir A, D’Ettorre P, Errard C, Hefetz A. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 2001;46:573–599. doi: 10.1146/annurev.ento.46.1.573. PubMed DOI
Véle A, Frouz J, Holuša J, Kalčík J. Chemical properties of forest soils as affected by nests of Myrmica ruginodis (Formicidae) Biol. (Bratisl.). 2010;65:122–127. doi: 10.2478/s11756-009-0222-4. DOI
Coûteaux M-M, Aloui A, Kurz-Besson C. Pinus halepensis litter decomposition in laboratory microcosms as influenced by temperature and a millipede, Glomeris marginata. Appl. Soil Ecol. 2002;20:85–96. doi: 10.1016/S0929-1393(02)00013-6. DOI
Des Marteaux LE, Kullik SA, Habash M, Schmidt JM. Terrestrial isopods porcellio scaber and oniscus asellus (crustacea: isopoda) increase bacterial abundance and modify microbial community structure in leaf litter microcosms: a short-term decomposition study. Microb. Ecol. 2020;80:690–702. doi: 10.1007/s00248-020-01527-4. PubMed DOI
Yang X, Shao M, Li T. Effects of terrestrial isopods on soil nutrients during litter decomposition. Geoderma. 2020;376:114546. doi: 10.1016/j.geoderma.2020.114546. DOI
Förster B, Muroya K, Garcia M. Plant growth and microbial activity in a tropical soil amended with faecal pellets from millipedes and woodlice. Pedobiologia (Jena.). 2006;50:281–290. doi: 10.1016/j.pedobi.2006.03.001. DOI
Hanisch J, Engell I, Linsler D, Scheu S, Potthoff M. The role of Collembola for litter decomposition under minimum and conventional tillage. J. Plant Nutr. Soil Sci. 2022;185:529–538. doi: 10.1002/jpln.202200077. DOI
HÄttenschwiler S, Bretscher D. Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Glob. Chang. Biol. 2001;7:565–579. doi: 10.1046/j.1365-2486.2001.00402.x. DOI
Hedde M, Bureau F, Akpa-Vinceslas M, Aubert M, Decaëns T. Beech leaf degradation in laboratory experiments: Effects of eight detritivorous invertebrate species. Appl. Soil Ecol. 2007;35:291–301. doi: 10.1016/j.apsoil.2006.08.002. DOI
Irmler U. Changes in the fauna and its contribution to mass loss and N release during leaf litter decomposition in two deciduous forests. Pedobiologia (Jena.). 2000;44:105–118. doi: 10.1078/S0031-4056(04)70032-3. DOI
Loranger-Merciris G, Laossi K-R, Bernhard-Reversat F. Soil aggregation in a laboratory experiment: Interactions between earthworms, woodlice and litter palatability. Pedobiologia (Jena.). 2008;51:439–443. doi: 10.1016/j.pedobi.2008.01.002. DOI
Patoine G, et al. Plant litter functional diversity effects on litter mass loss depend on the macro-detritivore community. Pedobiologia (Jena.). 2017;65:29–42. doi: 10.1016/j.pedobi.2017.07.003. PubMed DOI PMC
Veldhuis MP, Laso FJ, Olff H, Berg MP. Termites promote resistance of decomposition to spatiotemporal variability in rainfall. Ecology. 2017;98:467–477. doi: 10.1002/ecy.1658. PubMed DOI
Seibold S, et al. The contribution of insects to global forest deadwood decomposition. Nature. 2021;597:77–81. doi: 10.1038/s41586-021-03740-8. PubMed DOI
David JF. The role of litter-feeding macroarthropods in decomposition processes: A reappraisal of common views. Soil Biol. Biochem. 2014;76:109–118. doi: 10.1016/j.soilbio.2014.05.009. DOI
Booth S, Kurtz B, de Heer MI, Mooney SJ, Sturrock CJ. Tracking wireworm burrowing behaviour in soil over time using 3D X-ray computed tomography. Pest Manag. Sci. 2020;76:2653–2662. doi: 10.1002/ps.5808. PubMed DOI
Adachi H, Ozawa M, Yagi S, Seita M, Kondo S. Pivot burrowing of scarab beetle (Trypoxylus dichotomus) larva. Sci. Rep. 2021;11:14594. doi: 10.1038/s41598-021-93915-0. PubMed DOI PMC
Bryson HR. The identification of soil insects by their burrow characteristics. Trans. Kans. Acad. Sci. 1939;42:245–253.
Hembree DI. Neoichnology of burrowing millipedes: linking modern burrow morphology, organism behavior, and sediment properties to interpret continental ichnofossils. Palaios. 2009;24:425–439. doi: 10.2110/palo.2008.p08-098r. DOI
Bowen JJ, Hembree DI. Neoichnology of two spirobolid millipedes: Improving the understanding of the burrows of soil detritivores. Palaeontol. Electron. 2014;17:17.1.18A.
Mele G, Buscemi G, Gargiulo L, Terribile F. Soil burrow characterization by 3D image analysis: Prediction of macroinvertebrate groups from biopore size distribution parameters. Geoderma. 2021;404:115292. doi: 10.1016/j.geoderma.2021.115292. DOI
Briones MJI, Carreira J, Ineson P. Cognettia sphagnetorum (Enchytraeidae) and nutrient cycling in organic soils: a microcosm experiment. Appl. Soil Ecol. 1998;9:289–294. doi: 10.1016/S0929-1393(97)00055-3. DOI
Carrera N, Barreal ME, Rodeiro J, Briones MJI. Interactive effects of temperature, soil moisture and enchytraeid activities on C losses from a peatland soil. Pedobiologia (Jena.). 2011;54:291–299. doi: 10.1016/j.pedobi.2011.07.002. DOI
Lappalainen M, et al. Release of carbon in different molecule size fractions from decomposing boreal mor and peat as affected by enchytraeid worms. Water, Air, Soil Pollut. 2018;229:240. doi: 10.1007/s11270-018-3871-5. DOI
Laurén A, et al. Nitrogen and carbon dynamics and the role of enchytraeid worms in decomposition of l, f and h layers of boreal mor. Water, Air, Soil Pollut. 2012;223:3701–3719. doi: 10.1007/s11270-012-1142-4. DOI
Liiri M, Ilmarinen K, Setälä H. The significance of Cognettia sphagnetorum(Enchytraeidae) on nitrogen availability and plant growth in wood ash-treated humus soil. Plant Soil. 2002;246:31–39. doi: 10.1023/A:1021515313890. DOI
Cole L, Bardgett RD, Ineson P. Enchytraeid worms (Oligochaeta) enhance mineralization of carbon in organic upland soils. Eur. J. Soil Sci. 2000;51:185–192. doi: 10.1046/j.1365-2389.2000.00297.x. DOI
Cragg RG, Bardgett RD. How changes in soil faunal diversity and composition within a trophic group influence decomposition processes. Soil Biol. Biochem. 2001;33:2073–2081. doi: 10.1016/S0038-0717(01)00138-9. DOI
Filser J. The role of Collembola in carbon and nitrogen cycling in soil: Proceedings of the Xth international Colloquium on Apterygota, České Budějovice 2000: Apterygota at the Beginning of the Third Millennium. Pedobiologia (Jena.). 2002;46:234–245.
Menéndez R, Webb P, Orwin KH. Complementarity of dung beetle species with different functional behaviours influence dung–soil carbon cycling. Soil Biol. Biochem. 2016;92:142–148. doi: 10.1016/j.soilbio.2015.10.004. DOI
Kaiser K, Kalbitz K. Cycling downwards - dissolved organic matter in soils. Soil Biol. Biochem. 2012;52:29–32. doi: 10.1016/j.soilbio.2012.04.002. DOI
Evans KS, et al. Soil fauna accelerate dung pat decomposition and nutrient cycling into grassland soil. Rangel. Ecol. Manag. 2019;72:667–677. doi: 10.1016/j.rama.2019.01.008. DOI
Barragán F, et al. The rolling dung master: an ecosystem engineer beetle mobilizing soil nutrients to enhance plant growth across a grassland management intensity gradient in drylands. J. Arid Environ. 2022;197:104673. doi: 10.1016/j.jaridenv.2021.104673. DOI
Haimi J, Siira-Pietikäinen A. Activity and role of the enchytraeid worm Cognettia sphagnetorum (Vejd.) (Oligochaeta: Enchytraeidae) in organic and mineral forest soil. Pedobiologia (Jena.). 2003;47:303–310. doi: 10.1078/0031-4056-00194. DOI
Kaleri AR, et al. Effects of dung beetle-amended soil on growth, physiology, and metabolite contents of bok choy and improvement in soil conditions. J. Soil Sci. Plant Nutr. 2020;20:2671–2683. doi: 10.1007/s42729-020-00333-8. DOI
Engell I, et al. Crop residue displacement by soil inversion: Annelid responses and their impact on carbon and nitrogen dynamics in a lab-based mesocosm study. Appl. Soil Ecol. 2021;167:104151. doi: 10.1016/j.apsoil.2021.104151. DOI
Gan H, Liang C, Wickings K. Root herbivores accelerate carbon inputs to soil and drive changes in biogeochemical processes. Rhizosphere. 2018;6:112–115. doi: 10.1016/j.rhisph.2018.06.003. DOI
Kaleri AR, et al. Dung beetle improves soil bacterial diversity and enzyme activity and enhances growth and antioxidant content of chinese cabbage (Brassica rapa ssp. pekinensis) J. Soil Sci. Plant Nutr. 2021;21:3387–3401. doi: 10.1007/s42729-021-00614-w. DOI
Coulibaly SFM, et al. Functional assemblages of collembola determine soil microbial communities and associated functions. Front. Environ. Sci. 2019;7:52. doi: 10.3389/fenvs.2019.00052. DOI
Franklin SM, et al. The unexplored role of preferential flow in soil carbon dynamics. Soil Biol. Biochem. 2021;161:108398. doi: 10.1016/j.soilbio.2021.108398. DOI
Erktan A, Or D, Scheu S. The physical structure of soil: Determinant and consequence of trophic interactions. Soil Biol. Biochem. 2020;148:107876. doi: 10.1016/j.soilbio.2020.107876. DOI
Brownlee C, Jennings DH. Long distance translocation in Serpula lacrimans: Velocity estimates and the continuous monitoring of induced perturbations. Trans. Br. Mycol. Soc. 1982;79:143–148. doi: 10.1016/S0007-1536(82)80200-3. DOI
Connolly JH, Jellison J. Two-way translocation of cations by the brown rot fungus Gloeophyllum trabeum. Int. Biodeterior. Biodegrad. 1997;39:181–188. doi: 10.1016/S0964-8305(97)00019-X. DOI
Yang P, van Elsas JD. Mechanisms and ecological implications of the movement of bacteria in soil. Appl. Soil Ecol. 2018;129:112–120. doi: 10.1016/j.apsoil.2018.04.014. DOI
Bonkowski M, Villenave C, Griffiths B. Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil. 2009;321:213–233. doi: 10.1007/s11104-009-0013-2. DOI
Dighton J, Jones HE, Robinson CH, Beckett J. The role of abiotic factors, cultivation practices and soil fauna in the dispersal of genetically modified microorganisms in soils. Appl. Soil Ecol. 1997;5:109–131. doi: 10.1016/S0929-1393(96)00137-0. DOI
Standing D, Knox OGG, Mullins CE, Killham KK, Wilson MJ. Influence of Nematodes on Resource Utilization by Bacteria—an in vitro Study. Microb. Ecol. 2006;52:444–450. doi: 10.1007/s00248-006-9119-8. PubMed DOI
Angst G, et al. Stabilized microbial necromass in soil is more strongly coupled with microbial diversity than the bioavailability of plant inputs. Soil Biol. Biochem. 2024;190:109323. doi: 10.1016/j.soilbio.2024.109323. DOI
Vašutová M, et al. Taxi drivers: the role of animals in transporting mycorrhizal fungi. Mycorrhiza. 2019;29:413–434. doi: 10.1007/s00572-019-00906-1. PubMed DOI
Lunde LF, et al. Beetles provide directed dispersal of viable spores of a keystone wood decay fungus. Fungal Ecol. 2023;63:101232. doi: 10.1016/j.funeco.2023.101232. DOI
Aanen DK, Boomsma JJ. Social-insect fungus farming. Curr. Biol. 2006;16:R1014–R1016. doi: 10.1016/j.cub.2006.11.016. PubMed DOI
Kitabayashi K, Kitamura S, Tuno N. Fungal spore transport by omnivorous mycophagous slug in temperate forest. Ecol. Evol. 2022;12:e8565. doi: 10.1002/ece3.8565. PubMed DOI PMC
Swanson AC, et al. Welcome to the Atta world: A framework for understanding the effects of leaf-cutter ants on ecosystem functions. Funct. Ecol. 2019;33:1386–1399. doi: 10.1111/1365-2435.13319. DOI
Ahmad F, et al. Multipartite symbioses in fungus-growing termites (Blattodea: Termitidae, Macrotermitinae) for the degradation of lignocellulose. Insect Sci. 2021;28:1512–1529. doi: 10.1111/1744-7917.12890. PubMed DOI
Gange AC. Translocation of mycorrhizal fungi by earthworms during early succession. Soil Biol. Biochem. 1993;25:1021–1026. doi: 10.1016/0038-0717(93)90149-6. DOI
Geisen S. The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biol. Biochem. 2016;102:22–25. doi: 10.1016/j.soilbio.2016.06.013. DOI
Clarholm M. Protozoan grazing of bacteria in soil—impact and importance. Microb. Ecol. 1981;7:343–350. doi: 10.1007/BF02341429. PubMed DOI
Kuikman PJ, Jansen AG, van Veen JA, Zehnder AJB. Protozoan predation and the turnover of soil organic carbon and nitrogen in the presence of plants. Biol. Fertil. Soils. 1990;10:22–28. doi: 10.1007/BF00336120. DOI
Rosenberg K, et al. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J. 2009;3:675–684. doi: 10.1038/ismej.2009.11. PubMed DOI
Ingham RE, Trofymow JA, Ingham ER, Coleman DC. Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol. Monogr. 1985;55:119–140. doi: 10.2307/1942528. DOI
Jiang Y, et al. Nematodes and microbial community affect the sizes and turnover rates of organic carbon pools in soil aggregates. Soil Biol. Biochem. 2018;119:22–31. doi: 10.1016/j.soilbio.2018.01.001. DOI
Jiang Y, et al. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level. ISME J. 2017;11:2705–2717. doi: 10.1038/ismej.2017.120. PubMed DOI PMC
De Mesel I, et al. Top-down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study. Environ. Microbiol. 2004;6:733–744. doi: 10.1111/j.1462-2920.2004.00610.x. PubMed DOI
Kreuzer K, et al. Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.) Soil Biol. Biochem. 2006;38:1665–1672. doi: 10.1016/j.soilbio.2005.11.027. DOI
Xiao H-F, Li G, Li D-M, Hu F, Li H-X. Effect of different bacterial-feeding nematode species on soil bacterial numbers, activity, and community composition. Pedosphere. 2014;24:116–124. doi: 10.1016/S1002-0160(13)60086-7. DOI
Jin X, Wang Z, Wu F, Li X, Zhou X. Litter mixing alters microbial decomposer community to accelerate tomato root litter decomposition. Microbiol. Spectr. 2022;10:e0018622. doi: 10.1128/spectrum.00186-22. PubMed DOI PMC
Mielke L, et al. Nematode grazing increases the allocation of plant-derived carbon to soil bacteria and saprophytic fungi, and activates bacterial species of the rhizosphere. Pedobiologia (Jena.). 2022;90:150787. doi: 10.1016/j.pedobi.2021.150787. DOI
Rashidi G, Ostrowski EA. Phagocyte chase behaviours: discrimination between Gram-negative and Gram-positive bacteria by amoebae. Biol. Lett. 2019;15:20180607. doi: 10.1098/rsbl.2018.0607. PubMed DOI PMC
Rønn R, McCaig AE, Griffiths BS, Prosser JI. Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl. Environ. Microbiol. 2002;68:6094–6105. doi: 10.1128/AEM.68.12.6094-6105.2002. PubMed DOI PMC
Shu L, et al. A dormant amoeba species can selectively sense and predate on different soil bacteria. Funct. Ecol. 2021;35:1708–1721. doi: 10.1111/1365-2435.13824. DOI
Fanin N, et al. The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils. Soil Biol. Biochem. 2019;128:111–114. doi: 10.1016/j.soilbio.2018.10.010. DOI
Kramer C, Gleixner G. Variable use of plant- and soil-derived carbon by microorganisms in agricultural soils. Soil Biol. Biochem. 2006;38:3267–3278. doi: 10.1016/j.soilbio.2006.04.006. DOI
Balasooriya WK, Denef K, Huygens D, Boeckx P. Translocation and turnover of rhizodeposit carbon within soil microbial communities of an extensive grassland ecosystem. Plant Soil. 2014;376:61–73. doi: 10.1007/s11104-012-1343-z. DOI
Buckeridge KM, et al. Sticky dead microbes: rapid abiotic retention of microbial necromass in soil. Soil Biol. Biochem. 2020;149:107929. doi: 10.1016/j.soilbio.2020.107929. DOI
Bonkowski M, Cheng W, Griffiths BS, Alphei J, Scheu S. Microbial-faunal interactions in the rhizosphere and effects on plant growth§1Paper presented at the 16th World Congress of Soil Science, 20–26 August 1998, Montpellier, France. Eur. J. Soil Biol. 2000;36:135–147. doi: 10.1016/S1164-5563(00)01059-1. DOI
Bonkowski M, Brandt F. Do soil protozoa enhance plant growth by hormonal effects? Soil Biol. Biochem. 2002;34:1709–1715. doi: 10.1016/S0038-0717(02)00157-8. DOI
Frey SD, Gupta VVSR, Elliott ET, Paustian K. Protozoan grazing affects estimates of carbon utilization efficiency of the soil microbial community. Soil Biol. Biochem. 2001;33:1759–1768. doi: 10.1016/S0038-0717(01)00101-8. DOI
Miltner A, Bombach P, Schmidt-Brücken B, Kästner M. SOM genesis: Microbial biomass as a significant source. Biogeochemistry. 2012;111:41–55. doi: 10.1007/s10533-011-9658-z. DOI
Erktan A, Rillig MC, Carminati A, Jousset A, Scheu S. Protists and collembolans alter microbial community composition, C dynamics and soil aggregation in simplified consumer–prey systems. Biogeosciences. 2020;17:4961–4980. doi: 10.5194/bg-17-4961-2020. DOI
Koukol O, Mourek J, Janovský Z, Černá K. Do oribatid mites (Acari: Oribatida) show a higher preference for ubiquitous vs. specialized saprotrophic fungi from pine litter? Soil Biol. Biochem. 2009;41:1124–1131. doi: 10.1016/j.soilbio.2009.02.018. DOI
Pollierer MM, Scheu S. Stable isotopes of amino acids indicate that soil decomposer microarthropods predominantly feed on saprotrophic fungi. Ecosphere. 2021;12:e03425. doi: 10.1002/ecs2.3425. DOI
Schneider K, Renker C, Maraun M. Oribatid mite (Acari, Oribatida) feeding on ectomycorrhizal fungi. Mycorrhiza. 2005;16:67–72. doi: 10.1007/s00572-005-0015-8. PubMed DOI
Crowther TW, A’Bear AD. Impacts of grazing soil fauna on decomposer fungi are species-specific and density-dependent. Fungal Ecol. 2012;5:277–281. doi: 10.1016/j.funeco.2011.07.006. DOI
Crowther TW, Jones TH, Boddy L. Species-specific effects of grazing invertebrates on mycelial emergence and growth from woody resources into soil. Fungal Ecol. 2011;4:333–341. doi: 10.1016/j.funeco.2011.05.001. DOI
A’Bear AD, Boddy L, Raspotnig G, Jones TH. Non-trophic effects of oribatid mites on cord-forming basidiomycetes in soil microcosms. Ecol. Entomol. 2010;35:477–484. doi: 10.1111/j.1365-2311.2010.01204.x. DOI
Ek H, Sjögren M, Arnebrant K, Söderström B. Extramatrical mycelial growth, biomass allocation and nitrogen uptake in ectomycorrhizal systems in response to collembolan grazing. Appl. Soil Ecol. 1994;1:155–169. doi: 10.1016/0929-1393(94)90035-3. DOI
Hedlund K, Öhrn MS. Tritrophic interactions in a soil community enhance decomposition rates. Oikos. 2000;88:585–591. doi: 10.1034/j.1600-0706.2000.880315.x. DOI
Kaneko N, McLean MA, Parkinson D. Do mites and Collembola affect pine litter fungal biomass and microbial respiration? Appl. Soil Ecol. 1998;9:209–213. doi: 10.1016/S0929-1393(98)00077-8. DOI
Bonkowski M, Griffiths BS, Ritz K. Food preferences of earthworms for soil fungi. Pedobiologia (Jena.) 2000;44:666–676. doi: 10.1078/S0031-4056(04)70080-3. DOI
Crowther TW, et al. Top-down control of soil fungal community composition by a globally distributed keystone consumer. Ecology. 2013;94:2518–2528. doi: 10.1890/13-0197.1. PubMed DOI
Crowther TW, Boddy L, Jones TH. Outcomes of fungal interactions are determined by soil invertebrate grazers. Ecol. Lett. 2011;14:1134–1142. doi: 10.1111/j.1461-0248.2011.01682.x. PubMed DOI
Domeignoz-Horta LA, et al. Microbial diversity drives carbon use efficiency in a model soil. Nat. Commun. 2020;11:3684. doi: 10.1038/s41467-020-17502-z. PubMed DOI PMC
Tao F, et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature. 2023;618:981–985. doi: 10.1038/s41586-023-06042-3. PubMed DOI PMC
Potapov AM, Tiunov AV. Stable isotope composition of mycophagous collembolans versus mycotrophic plants: Do soil invertebrates feed on mycorrhizal fungi? Soil Biol. Biochem. 2016;93:115–118. doi: 10.1016/j.soilbio.2015.11.001. DOI
Tiunov AV, Scheu S. Arbuscular mycorrhiza and Collembola interact in affecting community composition of saprotrophic microfungi. Oecologia. 2005;142:636–642. doi: 10.1007/s00442-004-1758-1. PubMed DOI
Frey SD. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 2019;50:237–259. doi: 10.1146/annurev-ecolsys-110617-062331. DOI
Craig ME, et al. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Glob. Chang. Biol. 2018;24:3317–3330. doi: 10.1111/gcb.14132. PubMed DOI
Gadgil RL, Gadgil PD. Suppression of litter decomposition by mycorrhizal roots of Pinus radiata. N. Zeal. J. Sci. 1975;5:33–41.
Cotrufo MF, Ranalli MG, Haddix ML, Six J, Lugato E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 2019;12:989–994. doi: 10.1038/s41561-019-0484-6. DOI
Crowther TW, Boddy L, Hefin Jones T. Functional and ecological consequences of saprotrophic fungus–grazer interactions. ISME J. 2012;6:1992–2001. doi: 10.1038/ismej.2012.53. PubMed DOI PMC
Hannula SE, Jongen R, Morriën E. Grazing by collembola controls fungal induced soil aggregation. Fungal Ecol. 2023;65:101284. doi: 10.1016/j.funeco.2023.101284. DOI
Scheu S. The soil food web: structure and perspectives. Eur. J. Soil Biol. 2002;38:11–20. doi: 10.1016/S1164-5563(01)01117-7. DOI
Wardle DA, Williamson WM, Yeates GW, Bonner KI. Trickle-down effects of aboveground trophic cascades on the soil food web. Oikos. 2005;111:348–358. doi: 10.1111/j.0030-1299.2005.14092.x. DOI
Santos PF, Whitford WG. The effects of microarthropods on litter decomposition in a chihuahuan desert Ecosystem. Ecology. 1981;62:654–663. doi: 10.2307/1937733. DOI
Huhta V, et al. Response of soil fauna to fertilization and manipulation of pH in coniferous forests. Acta. Fenn. 1986;195:7641.
Taylor AR, Pflug A, Schröter D, Wolters V. Impact of microarthropod biomass on the composition of the soil fauna community and ecosystem processes. Eur. J. Soil Biol. 2010;46:80–86. doi: 10.1016/j.ejsobi.2009.11.003. DOI
Tao J, et al. Earthworms reduce the abundance of nematodes and enchytraeids in a soil mesocosm experiment despite abundant food resources. Soil Sci. Soc. Am. J. 2011;75:1774–1778. doi: 10.2136/sssaj2011.0035. DOI
Wickenbrock L, Heisler C. Influence of earthworm activity on the abundance of collembola in soil. Soil Biol. Biochem. 1997;29:517–521. doi: 10.1016/S0038-0717(96)00175-7. DOI
Boulton AM, Jaffee BA, Scow KM. Effects of a common harvester ant (Messor andrei) on richness and abundance of soil biota. Appl. Soil Ecol. 2003;23:257–265. doi: 10.1016/S0929-1393(03)00046-5. DOI
Bonkowski M, Scheu S, Schaefer M. Interactions of earthworms (Octolasion lacteum), millipedes (Glomeris marginata) and plants (Hordelymus europaeus) in a beechwood on a basalt hill: implications for litter decomposition and soil formation. Appl. Soil Ecol. 1998;9:161–166. doi: 10.1016/S0929-1393(98)00070-5. DOI
Korb J, Linsenmair KE. Evaluation of predation risk in the collectively foraging termite Macrotermes bellicosus. Insectes Soc. 2002;49:264–269. doi: 10.1007/s00040-002-8312-0. DOI
Lenoir L, Persson T, Bengtsson J, Wallander H, Wirén A. Bottom–up or top–down control in forest soil microcosms? Effects of soil fauna on fungal biomass and C/N mineralisation. Biol. Fertil. Soils. 2007;43:281–294. doi: 10.1007/s00374-006-0103-8. DOI
Vetter S, Fox O, Ekschmitt K, Wolters V. Limitations of faunal effects on soil carbon flow: density dependence, biotic regulation and mutual inhibition. Soil Biol. Biochem. 2004;36:387–397. doi: 10.1016/j.soilbio.2003.10.012. DOI
A’Bear AD, Jones TH, Boddy L. Potential impacts of climate change on interactions among saprotrophic cord-forming fungal mycelia and grazing soil invertebrates. Fungal Ecol. 2014;10:34–43. doi: 10.1016/j.funeco.2013.01.009. DOI
Pettit T, Faulkner KJ, Buchkowski RW, Kamath D, Lindo Z. Changes in peatland soil fauna biomass alter food web structure and function under warming and hydrological changes. Eur. J. Soil Biol. 2023;117:103509. doi: 10.1016/j.ejsobi.2023.103509. DOI
Kardol P, Reynolds WN, Norby RJ, Classen AT. Climate change effects on soil microarthropod abundance and community structure. Appl. Soil Ecol. 2011;47:37–44. doi: 10.1016/j.apsoil.2010.11.001. DOI
Peng Y, et al. Responses of soil fauna communities to the individual and combined effects of multiple global change factors. Ecol. Lett. 2022;25:1961–1973. doi: 10.1111/ele.14068. PubMed DOI
Blankinship JC, Niklaus PA, Hungate BA. A meta-analysis of responses of soil biota to global change. Oecologia. 2011;165:553–565. doi: 10.1007/s00442-011-1909-0. PubMed DOI
Lindberg N, Engtsson JB, Persson T. Effects of experimental irrigation and drought on the composition and diversity of soil fauna in a coniferous stand. J. Appl. Ecol. 2002;39:924–936. doi: 10.1046/j.1365-2664.2002.00769.x. DOI
Meehan ML, et al. Response of soil fauna to simulated global change factors depends on ambient climate conditions. Pedobiologia (Jena.). 2020;83:150672. doi: 10.1016/j.pedobi.2020.150672. DOI
Aupic-Samain A, et al. Water availability rather than temperature control soil fauna community structure and prey–predator interactions. Funct. Ecol. 2021;35:1550–1559. doi: 10.1111/1365-2435.13745. DOI
Vestergård M, Dyrnum K, Michelsen A, Damgaard C, Holmstrup M. Long-term multifactorial climate change impacts on mesofaunal biomass and nitrogen content. Appl. Soil Ecol. 2015;92:54–63. doi: 10.1016/j.apsoil.2015.03.002. DOI
Xu G-L, Kuster TM, Günthardt-Goerg MS, Dobbertin M, Li M-H. Seasonal exposure to drought and air warming affects soil collembola and mites. PLoS One. 2012;7:1–9. PubMed PMC
Hao F, et al. Microbial community succession and its environment driving factors during initial fermentation of maotai-flavor Baijiu. Front. Microbiol. 2021;12:669201. doi: 10.3389/fmicb.2021.669201. PubMed DOI PMC
Watzinger A, et al. Functional redundant soil fauna and microbial groups and processes were fairly resistant to drought in an agroecosystem. Biol. Fertil. Soils. 2023;59:629–641. doi: 10.1007/s00374-023-01728-2. DOI
Singh J, Schädler M, Demetrio W, Brown GG, Eisenhauer N. Climate change effects on earthworms - a review. Soil Org. 2019;91:114–138. PubMed PMC
Makkonen M, et al. Traits explain the responses of a sub-arctic Collembola community to climate manipulation. Soil Biol. Biochem. 2011;43:377–384. doi: 10.1016/j.soilbio.2010.11.004. DOI
Phillips, H. et al. Global change and their environmental stressors have a significant impact on soil biodiversity – a meta-analysis. Authorea Prepr. 10.22541/au.167655684.49855023/v1 (2023).
Briones MJI, Ostle NJ, McNamara NP, Poskitt J. Functional shifts of grassland soil communities in response to soil warming. Soil Biol. Biochem. 2009;41:315–322. doi: 10.1016/j.soilbio.2008.11.003. DOI
Zhang G, et al. The response of soil nematode fauna to climate drying and warming in Stipa breviflora desert steppe in Inner Mongolia, China. J. Soils Sediment. 2020;20:2166–2180. doi: 10.1007/s11368-019-02555-5. DOI
Singh J, Cameron E, Reitz T, Schädler M, Eisenhauer N. Grassland management effects on earthworm communities under ambient and future climatic conditions. Eur. J. Soil Sci. 2021;72:343–355. doi: 10.1111/ejss.12942. DOI
Tsiafouli MA, et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 2015;21:973–985. doi: 10.1111/gcb.12752. PubMed DOI
Vanolli BS, et al. Epigeic fauna (with emphasis on ant community) response to land-use change for sugarcane expansion in Brazil. Acta Oecologica. 2021;110:103702. doi: 10.1016/j.actao.2021.103702. DOI
Bufebo B, Elias E, Getu E. Abundance and diversity of soil invertebrate macro-fauna in different land uses at Shenkolla watershed, South Central Ethiopia. J. Basic Appl. Zool. 2021;82:11. doi: 10.1186/s41936-021-00206-1. DOI
Franco ALC, et al. Loss of soil (macro)fauna due to the expansion of Brazilian sugarcane acreage. Sci. Total Environ. 2016;563–564:160–168. doi: 10.1016/j.scitotenv.2016.04.116. PubMed DOI
Minor MA, Cianciolo JM. Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of land use types in New York. Appl. Soil Ecol. 2007;35:140–153. doi: 10.1016/j.apsoil.2006.05.004. DOI
Ponge JF, et al. Collembolan communities as bioindicators of land use intensification. Soil Biol. Biochem. 2003;35:813–826. doi: 10.1016/S0038-0717(03)00108-1. DOI
Kooch Y, Tavakoli M, Akbarinia M. Tree species could have substantial consequences on topsoil fauna: a feedback of land degradation/restoration. Eur. J. Res. 2018;137:793–805. doi: 10.1007/s10342-018-1140-1. DOI
Marsden C, Martin-Chave A, Cortet J, Hedde M, Capowiez Y. How agroforestry systems influence soil fauna and their functions - a review. Plant Soil. 2020;453:29–44. doi: 10.1007/s11104-019-04322-4. DOI
Fründ H-C, et al. Using earthworms as model organisms in the laboratory: recommendations for experimental implementations. Pedobiologia (Jena.). 2010;53:119–125. doi: 10.1016/j.pedobi.2009.07.002. DOI
Ganault P, et al. Earthworms and plants can decrease soil greenhouse gas emissions by modulating soil moisture fluctuations and soil macroporosity in a mesocosm experiment. PLoS One. 2024;19:1–23. doi: 10.1371/journal.pone.0289859. PubMed DOI PMC
Crecelius AC, Michalzik B, Potthast K, Meyer S, Schubert US. Tracing the fate and transport of secondary plant metabolites in a laboratory mesocosm experiment by employing mass spectrometric imaging. Anal. Bioanal. Chem. 2017;409:3807–3820. doi: 10.1007/s00216-017-0325-7. PubMed DOI PMC
Jílková V, et al. Macrofauna amplify plant litter decomposition and stabilization in arctic soils in a warming climate. Soil Biol. Biochem. 2024;188:109245. doi: 10.1016/j.soilbio.2023.109245. DOI
Just, C. et al. A Simple Approach to Isolate Slow and Fast Cycling Organic Carbon Fractions in Central European Soils—Importance of Dispersion Method. Front. Soil Sci. 1, 692583 (2021).
Lavallee JM, Soong JL, Cotrufo MF. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Chang. Biol. 2020;26:261–273. doi: 10.1111/gcb.14859. PubMed DOI
Yin R, et al. Climate change does not alter land-use effects on soil fauna communities. Appl. Soil Ecol. 2019;140:1–10. doi: 10.1016/j.apsoil.2019.03.026. DOI
Pollierer MM, et al. Compound-specific isotope analysis of amino acids as a new tool to uncover trophic chains in soil food webs. Ecol. Monogr. 2019;89:e01384. doi: 10.1002/ecm.1384. DOI
Glaser B. Compound-specific stable-isotope (δ13C) analysis in soil science. J. Plant Nutr. Soil Sci. 2005;168:633–648. doi: 10.1002/jpln.200521794. DOI
Nakatsuka H, Karasawa T, Ohkura T, Wagai R. Soil faunal effect on plant litter decomposition in mineral soil examined by two in-situ approaches: sequential density-size fractionation and micromorphology. Geoderma. 2020;357:113910. doi: 10.1016/j.geoderma.2019.113910. DOI
Chertov OG. Quantification of soil fauna metabolites and dead mass as humification sources in forest soils. Eurasia. Soil Sci. 2016;49:77–88. doi: 10.1134/S1064229316010038. DOI
Cheng W, et al. Carbon budgeting in plant–soil mesocosms under elevated CO2: locally missing carbon? Glob. Chang. Biol. 2000;6:99–109. doi: 10.1046/j.1365-2486.2000.00284.x. DOI
Anthony MA, Bender SF, van der Heijden MGA. Enumerating soil biodiversity. Proc. Natl Acad. Sci. USA. 2023;120:e2304663120. doi: 10.1073/pnas.2304663120. PubMed DOI PMC
FAO, ITPS, GSBI, CBD & EC. State of knowledge of soil biodiversity - Status, challenges and potentialities. 10.4060/cb1928en (2020).