Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass
Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31815196
PubMed Central
PMC6883063
DOI
10.1038/s42003-019-0684-z
PII: 684
Knihovny.cz E-zdroje
- Klíčová slova
- Carbon cycle,
- MeSH
- biotransformace * MeSH
- fytonutrienty chemie MeSH
- koloběh uhlíku MeSH
- mikrobiota * MeSH
- Oligochaeta fyziologie MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- rostliny * chemie MeSH
- uhlík chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fytonutrienty MeSH
- půda MeSH
- uhlík MeSH
Earthworms co-determine whether soil, as the largest terrestrial carbon reservoir, acts as source or sink for photosynthetically fixed CO2. However, conclusive evidence for their role in stabilising or destabilising soil carbon has not been fully established. Here, we demonstrate that earthworms function like biochemical reactors by converting labile plant compounds into microbial necromass in stabilised carbon pools without altering bulk measures, such as the total carbon content. We show that much of this microbial carbon is not associated with mineral surfaces and emphasise the functional importance of particulate organic matter for long-term carbon sequestration. Our findings suggest that while earthworms do not necessarily affect soil organic carbon stocks, they do increase the resilience of soil carbon to natural and anthropogenic disturbances. Our results have implications for climate change mitigation and challenge the assumption that mineral-associated organic matter is the only relevant pool for soil carbon sequestration.
Chair of Soil Science Technical University of Munich Freising Germany
Faculty of Science Institute for Environmental Studies Charles University Prague Czech Republic
Zobrazit více v PubMed
Jouquet P, Dauber J, Lagerlöf J, Lavelle P, Lepage M. Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Appl. Soil Ecol. 2006;32:153–164. doi: 10.1016/j.apsoil.2005.07.004. DOI
Lubbers IM, et al. Greenhouse-gas emissions from soils increased by earthworms. Nat. Clim. Chang. 2013;3:187–194. doi: 10.1038/nclimate1692. DOI
Hendrix PF, Bohlen PJ. Exotic earthworm invasions in North America: ecological and policy implications. Bioscience. 2002;52:801. doi: 10.1641/0006-3568(2002)052[0801:EEIINA]2.0.CO;2. DOI
Hoeffner K, Monard C, Santonja M, Cluzeau D. Feeding behaviour of epi-anecic earthworm species and their impacts on soil microbial communities. Soil Biol. Biochem. 2018;125:1–9. doi: 10.1016/j.soilbio.2018.06.017. DOI
Groffman PM, et al. Earthworms increase soil microbial biomass carrying capacity and nitrogen retention in northern hardwood forests. Soil Biol. Biochem. 2015;87:51–58. doi: 10.1016/j.soilbio.2015.03.025. DOI
Jouquet P, Maron PA, Nowak V, Tran Duc T. Utilization of microbial abundance and diversity as indicators of the origin of soil aggregates produced by earthworms. Soil Biol. Biochem. 2013;57:950–952. doi: 10.1016/j.soilbio.2012.08.026. DOI
McLean, M. A., Migge-Kleian, S. & Parkinson, D. Earthworm invasions of ecosystems devoid of earthworms: effects on soil microbes. Biol. Invasions8, 1257–1273 (2006). 10.1007/978-1-4020-5429-7_7
Hoang DTT, Bauke SL, Kuzyakov Y, Pausch J. Rolling in the deep: Priming effects in earthworm biopores in topsoil and subsoil. Soil Biol. Biochem. 2017;114:59–71. doi: 10.1016/j.soilbio.2017.06.021. DOI
Fahey TJ, et al. Earthworm effects on the incorporation of litter C and N into soil organic matter in a sugar maple forest. Ecol. Appl. 2013;23:1185–1201. doi: 10.1890/12-1760.1. PubMed DOI
Bossuyt H, Six J, Hendrix PF. Protection of soil carbon by microaggregates within earthworm casts. Soil Biol. Biochem. 2005;37:251–258. doi: 10.1016/j.soilbio.2004.07.035. DOI
Scullion J, Malik A. Earthworm activity affecting organic matter, aggregation and microbial activity in soils restored after opencast mining for coal. Soil Biol. Biochem. 2000;32:119–126. doi: 10.1016/S0038-0717(99)00142-X. DOI
Lubbers IM, Pulleman MM, Van Groenigen JW. Can earthworms simultaneously enhance decomposition and stabilization of plant residue carbon? Soil Biol. Biochem. 2017;105:12–24. doi: 10.1016/j.soilbio.2016.11.008. DOI
Zhang W, et al. Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization. Nat. Commun. 2013;4:2576. doi: 10.1038/ncomms3576. PubMed DOI
Bernard L, et al. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil. ISME J. 2012;6:213–222. doi: 10.1038/ismej.2011.87. PubMed DOI PMC
Wachendorf C, Potthoff M, Ludwig B, Joergensen RG. Effects of addition of maize litter and earthworms on C mineralization and aggregate formation in single and mixed soils differing in soil organic carbon and clay content. Pedobiologia. 2014;57:161–169. doi: 10.1016/j.pedobi.2014.03.001. DOI
Frouz J, Špaldoňová A, Fričová K, Bartuška M. The effect of earthworms (Lumbricus rubellus) and simulated tillage on soil organic carbon in a long-term microcosm experiment. Soil Biol. Biochem. 2014;78:58–64. doi: 10.1016/j.soilbio.2014.07.011. DOI
Ma Y, et al. The combined controls of land use legacy and earthworm activity on soil organic matter chemistry and particle association during afforestation. Org. Geochem. 2013;58:56–68. doi: 10.1016/j.orggeochem.2013.02.010. DOI
Guggenberger G, Thomas RJ, Zech W. Soil organic matter within earthworm casts of an anecic-endogeic tropical pasture community, Colombia. Appl. Soil Ecol. 1996;3:263–274. doi: 10.1016/0929-1393(95)00081-X. DOI
Angst Š, et al. Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter. Geoderma. 2017;289:29–35. doi: 10.1016/j.geoderma.2016.11.017. DOI
Filley Timothy R., McCormick Melissa K., Crow Susan E., Szlavecz Katalin, Whigham Dennis F., Johnston Cliff T., van den Heuvel Ronald N. Comparison of the chemical alteration trajectory ofLiriodendron tulipifera L.leaf litter among forests with different earthworm abundance. Journal of Geophysical Research: Biogeosciences. 2008;113(G1):n/a-n/a. doi: 10.1029/2007JG000542. DOI
Crow SE, et al. Earthworms, stand age, and species composition interact to influence particulate organic matter chemistry during forest succession. Biogeochemistry. 2009;92:61–82. doi: 10.1007/s10533-008-9260-1. DOI
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 2013;19:988–995. doi: 10.1111/gcb.12113. PubMed DOI
Kallenbach, C. M., Grandy, A. & Frey, S. D. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016). PubMed PMC
Miltner A, Bombach P, Schmidt-Brücken B, Kästner M. SOM genesis: microbial biomass as a significant source. Biogeochemistry. 2012;111:41–55. doi: 10.1007/s10533-011-9658-z. DOI
Prescott CE. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry. 2010;101:133–149. doi: 10.1007/s10533-010-9439-0. DOI
Eck T, Potthoff M, Dyckmans J, Wichern F, Joergensen RG. Priming effects of Aporrectodea caliginosa on young rhizodeposits and old soil organic matter following wheat straw addition. Eur. J. Soil Biol. 2015;70:38–45. doi: 10.1016/j.ejsobi.2015.07.002. DOI
Vidal A, Quenea K, Alexis M, Derenne S. Molecular fate of root and shoot litter on incorporation and decomposition in earthworm casts. Org. Geochem. 2016;101:1–10. doi: 10.1016/j.orggeochem.2016.08.003. DOI
Trigo D, et al. Mutualism between earthworms and soil microflora. Pedobiologia. 1999;43:866–873.
Nelson P, Baldock J. Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses. Biogeochemistry. 2005;72:1–34. doi: 10.1007/s10533-004-0076-3. DOI
Scheu S, Schlitt N, Tiunov AV, Newington JE, Jones TH. Effects of the presence and community composition of earthworms on microbial community functioning. Oecologia. 2002;133:254–260. doi: 10.1007/s00442-002-1023-4. PubMed DOI
Bohlen PJ, Edwards CA, Zhang Q, Parmelee RW, Allen M. Indirect effects of earthworms on microbial assimilation of labile carbon. Appl. Soil Ecol. 2002;20:255–261. doi: 10.1016/S0929-1393(02)00027-6. DOI
Ferlian O, et al. Invasive earthworms erode soil biodiversity: a meta-analysis. J. Anim. Ecol. 2018;87:162–172. doi: 10.1111/1365-2656.12746. PubMed DOI PMC
Vidal A, et al. Earthworm cast formation and development: a shift from plant litter to mineral associated organic matter. Front. Environ. Sci. 2019;7:1–15. doi: 10.3389/fenvs.2019.00055. DOI
Lehmann J, Kinyangi J, Solomon D. Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry. 2007;85:45–57. doi: 10.1007/s10533-007-9105-3. DOI
Totsche Kai Uwe, Amelung Wulf, Gerzabek Martin H., Guggenberger Georg, Klumpp Erwin, Knief Claudia, Lehndorff Eva, Mikutta Robert, Peth Stephan, Prechtel Alexander, Ray Nadja, Kögel-Knabner Ingrid. Microaggregates in soils. Journal of Plant Nutrition and Soil Science. 2017;181(1):104–136. doi: 10.1002/jpln.201600451. DOI
Shipitalo MJ, Protz R. Chemistry and micromorphology of aggregation in earthworm casts. Geoderma. 1989;45:357–374. doi: 10.1016/0016-7061(89)90016-5. DOI
Giannopoulos G, Pulleman MM, Van Groenigen JW. Interactions between residue placement and earthworm ecological strategy affect aggregate turnover and N2O dynamics in agricultural soil. Soil Biol. Biochem. 2010;42:618–625. doi: 10.1016/j.soilbio.2009.12.015. DOI
Bossuyt H, Six J, Hendrix PF. Rapid incorporation of carbon from fresh residues into newly formed stable microaggregates within earthworm casts. Eur. J. Soil Sci. 2004;55:393–399. doi: 10.1111/j.1351-0754.2004.00603.x. DOI
Eisenhauer N, Schlaghamerský J, Reich PB, Frelich LE. The wave towards a new steady state: effects of earthworm invasion on soil microbial functions. Biol. Invasions. 2011;13:2191–2196. doi: 10.1007/s10530-011-0053-4. DOI
Van Groenigen JW, et al. How fertile are earthworm casts? A meta-analysis. Geoderma. 2018;338:525–535. doi: 10.1016/j.geoderma.2018.11.001. DOI
Pulleman MM, Six J, Uyl A, Marinissen JCY, Jongmans AG. Earthworms and management affect organic matter incorporation and microaggregate formation in agricultural soils. Appl. Soil Ecol. 2005;29:1–15. doi: 10.1016/j.apsoil.2004.10.003. DOI
Butenschoen O, Marhan S, Langel R, Scheu S. Carbon and nitrogen mobilisation by earthworms of different functional groups as affected by soil sand content. Pedobiologia. 2009;52:263–272. doi: 10.1016/j.pedobi.2008.11.001. DOI
Hendrix PF, et al. Pandora’ s box contained bait: the global problem of introduced earthworms. Annu. Rev. Ecol. Evol. Syst. 2008;39:593–613. doi: 10.1146/annurev.ecolsys.39.110707.173426. DOI
Jobbágy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000;10:423–436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2. DOI
Burtelow AE, Bohlen PJ, Groffman PM. Influence of exotic earthworm invasion on soil organic matter, microbial biomass and denitrification potential in forest soils of the northeastern United States. Appl. Soil Ecol. 1998;9:197–202. doi: 10.1016/S0929-1393(98)00075-4. DOI
Eisenhauer N, Partsch S, Parkinson D, Scheu S. Invasion of a deciduous forest by earthworms: Changes in soil chemistry, microflora, microarthropods and vegetation. Soil Biol. Biochem. 2007;39:1099–1110. doi: 10.1016/j.soilbio.2006.12.019. DOI
Robertson, A. D. et al. Unifying soil organic matter formation and persistence frameworks: the MEMS model. Biogeosciences Discuss. 16, 1–36 (2018).
Filser J, et al. Soil fauna: key to new carbon models. Soil. 2016;2:565–582. doi: 10.5194/soil-2-565-2016. DOI
IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 10643, (FAO, 2014).
Curry JP, Schmidt O. The feeding ecology of earthworms - a review. Pedobiologia (Jena.). 2007;50:463–477. doi: 10.1016/j.pedobi.2006.09.001. DOI
De Wandeler H, et al. Drivers of earthworm incidence and abundance across European forests. Soil Biol. Biochem. 2016;99:167–178. doi: 10.1016/j.soilbio.2016.05.003. DOI
Kögel-Knabner I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 2002;34:139–162. doi: 10.1016/S0038-0717(01)00158-4. DOI
Hughes MK. Tree biocontent, net production and litter fall in a deciduous woodland. Oikos. 1971;22:62–73. doi: 10.2307/3543363. PubMed DOI
Angst G, Nierop KGJ, Angst Š, Frouz J. Abundance of lipids in differently sized aggregates depends on their chemical composition. Biogeochemistry. 2018;140:111–125. doi: 10.1007/s10533-018-0481-7. DOI
Oades JM. Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil. 1984;76:319–337. doi: 10.1007/BF02205590. DOI
Mueller CW, et al. Soil aggregate destruction by ultrasonication increases soil organic matter mineralization and mobility. Soil Sci. Soc. Am. J. 2012;76:1634–1643. doi: 10.2136/sssaj2011.0186. DOI
Liang, C., Read, H. W. & Balser, T. C. GC-based detection of aldononitrile acetate derivatized glucosamine and muramic acid for microbial residue determination in soil. J. Vis. Exp.19, e3767 (2012). PubMed PMC
Conceptualizing soil fauna effects on labile and stabilized soil organic matter
Earthworms as catalysts in the formation and stabilization of soil microbial necromass