Earthworms as catalysts in the formation and stabilization of soil microbial necromass
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35543252
PubMed Central
PMC9544240
DOI
10.1111/gcb.16208
Knihovny.cz E-zdroje
- Klíčová slova
- aggregates, carbon sequestration, casts, concept, hotspot, organo-mineral associations, substrate quality,
- MeSH
- biomasa MeSH
- Oligochaeta * MeSH
- půda * chemie MeSH
- půdní mikrobiologie MeSH
- uhlík chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda * MeSH
- uhlík MeSH
Microbial necromass is a central component of soil organic matter (SOM), whose management may be essential in mitigating atmospheric CO2 concentrations and climate change. Current consensus regards the magnitude of microbial necromass production to be heavily dependent on the carbon use efficiency of microorganisms, which is strongly influenced by the quality of the organic matter inputs these organisms feed on. However, recent concepts neglect agents relevant in many soils: earthworms. We argue that the activity of earthworms accelerates the formation of microbial necromass stabilized in aggregates and organo-mineral associations and reduces the relevance of the quality of pre-existing organic matter in this process. Earthworms achieve this through the creation of transient hotspots (casts) characterized by elevated contents of bioavailable substrate and the efficient build-up and quick turnover of microbial biomass, thus converting SOM not mineralized in this process into a state more resistant against external disturbances, such as climate change. Promoting the abundance of earthworms may, therefore, be considered a central component of management strategies that aim to accelerate the formation of stabilized microbial necromass in wide locations of the soil commonly not considered hotspots of microbial SOM formation.
Center of Biodiversity and Sustainable Land Use University of Göttingen Göttingen Germany
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Institute for Advanced Study Technical University of Munich Garching Germany
Institute of Biology Leipzig University Leipzig Germany
Soil Biology Group Wageningen University Wageningen The Netherlands
Zobrazit více v PubMed
Al‐Maliki, S. , & Scullion, J. (2013). Interactions between earthworms and residues of differing quality affecting aggregate stability and microbial dynamics. Applied Soil Ecology, 64, 56–62. 10.1016/j.apsoil.2012.10.008 DOI
Amelung, W. , Bossio, D. , de Vries, W. , Kögel‐Knabner, I. , Lehmann, J. , Amundson, R. , Bol, R. , Collins, C. , Lal, R. , Leifeld, J. , Minasny, B. , Pan, G. , Paustian, K. , Rumpel, C. , Sanderman, J. , van Groenigen, J. W. , Mooney, S. , van Wesemael, B. , Wander, M. , & Chabbi, A. (2020). Towards a global‐scale soil climate mitigation strategy. Nature Communications, 11(1), 1–10. 10.1038/s41467-020-18887-7 PubMed DOI PMC
Angst, G. , Mueller, C. W. , Prater, I. , Angst, Š. , Peterse, F. , & Nierop, K. G. J. (2019). Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass. Communications Biology, 2(441), 1–7. 10.1038/s42003-019-0684-z PubMed DOI PMC
Angst, G. , Mueller, K. E. , Eissenstat, D. M. , Trumbore, S. , Freeman, K. H. , Hobbie, S. E. , Chorover, J. , Oleksyn, J. , Reich, P. B. , & Mueller, C. W. (2019). Soil organic carbon stability in forests: Distinct effects of tree species identity and traits. Global Change Biology, 14548, 1529–1546. 10.1111/gcb.14548 PubMed DOI
Angst, G. , Mueller, K. E. , Nierop, K. G. J. , & Simpson, M. J. (2021). Plant‐ or microbial‐derived? A review on the molecular composition of stabilized SOM. Soil Biology and Biochemistry, 156, 108189.
Bar‐On, Y. M. , Phillips, R. , & Milo, R. (2018). The biomass distribution on earth. Proceedings of the National Academy of Sciences, 115(25), 6506–6511. 10.1073/pnas.1711842115 PubMed DOI PMC
Barthod, J. , Dignac, M. F. , & Rumpel, C. (2021). Effect of decomposition products produced in the presence or absence of epigeic earthworms and minerals on soil carbon stabilization. Soil Biology and Biochemistry, 160, 108308. 10.1016/j.soilbio.2021.108308 DOI
Bohlen, P. J. , Edwards, C. A. , Zhang, Q. , Parmelee, R. W. , & Allen, M. (2002). Indirect effects of earthworms on microbial assimilation of labile carbon. Applied Soil Ecology, 20(3), 255–261. 10.1016/S0929-1393(02)00027-6 DOI
Bohlen, P. J. , Scheu, S. , Hale, C. M. , McLean, M. A. , Migge, S. , Groffman, P. M. , & Parkinson, D. (2004). Non‐native invasive earthworms as agents of change in northern temperate forests. Frontiers in Ecology and the Environment, 2(8), 427–435. 10.1890/1540-9295(2004)002[0427:NIEAAO]2.0.CO;2 DOI
Bossuyt, H. , Six, J. , & Hendrix, P. F. (2005). Protection of soil carbon by microaggregates within earthworm casts. Soil Biology and Biochemistry, 37(2), 251–258. 10.1016/j.soilbio.2004.07.035 DOI
Brown, G. G. , Barois, I. , & Lavelle, P. (2000). Regulation of soil organic matter dynamics and microbial activityin the drilosphere and the role of interactionswith other edaphic functional domains (Paper presented at the 16th world congress of soil science, 20–26 August 1998, Montpellier, France). European Journal of Soil Biology, 36(3), 177–198. 10.1016/S1164-5563(00)01062-1 DOI
Buckeridge, K. M. , La Rosa, A. F. , Mason, K. E. , Whitaker, J. , McNamara, N. P. , Grant, H. K. , & Ostle, N. J. (2020). Sticky dead microbes: Rapid abiotic retention of microbial necromass in soil. Soil Biology and Biochemistry, 149, 107929. 10.1016/j.soilbio.2020.107929 DOI
Buckeridge, K. M. , Mason, K. E. , McNamara, N. P. , Ostle, N. , Puissant, J. , Goodall, T. , Griffiths, R. I. , Stott, A. W. , & Whitaker, J. (2020). Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Communications Earth & Environment, 1(1), 36. 10.1038/s43247-020-00031-4 DOI
Bundt, M. , Widmer, F. , Pesaro, M. , Zeyer, J. , & Blaser, P. (2001). Preferential flow paths: Biological “hot spots” in soils. Soil Biology and Biochemistry, 33(6), 729–738. 10.1016/S0038-0717(00)00218-2 DOI
Capowiez, Y. , Bottinelli, N. , & Jouquet, P. (2014). Quantitative estimates of burrow construction and destruction, by anecic and endogeic earthworms in repacked soil cores. Applied Soil Ecology, 74, 46–50. 10.1016/j.apsoil.2013.09.009 DOI
Capowiez, Y. , Sammartino, S. , & Michel, E. (2014). Burrow systems of endogeic earthworms: Effects of earthworm abundance and consequences for soil water infiltration. Pedobiologia, 57(4), 303–309. 10.1016/j.pedobi.2014.04.001 DOI
Castellano, M. J. , Mueller, K. E. , Olk, D. C. , Sawyer, J. E. , & Six, J. (2015). Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology, 21(9), 3200–3209. 10.1111/gcb.12982 PubMed DOI
Clause, J. , Barot, S. , Richard, B. , Decaëns, T. , & Forey, E. (2014). The interactions between soil type and earthworm species determine the properties of earthworm casts. Applied Soil Ecology, 83, 149–158. 10.1016/j.apsoil.2013.12.006 DOI
Cotrufo, M. F. , Wallenstein, M. D. , Boot, C. M. , Denef, K. , & Paul, E. (2013). The microbial efficiency‐matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19(4), 988–995. 10.1111/gcb.12113 PubMed DOI
Curry, J. P. (2004). Factors affecting the abundance of earthworms in soils. In Edwards C. A. (Ed.), Earthworm ecology (2nd ed., pp. 91–108). CRC Press.
Darwin, C. (1892). The formation of vegetable mould, through the action of worms: With observations on their habits. John Murray.
De Wandeler, H. , Sousa‐Silva, R. , Ampoorter, E. , Bruelheide, H. , Carnol, M. , Dawud, S. M. , Dănilă, G. , Finer, L. , Hättenschwiler, S. , Hermy, M. , Jaroszewicz, B. , Joly, F. X. , Müller, S. , Pollastrini, M. , Ratcliffe, S. , Raulund‐Rasmussen, K. , Selvi, F. , Valladares, F. , Van Meerbeek, K. , … Muys, B. (2016). Drivers of earthworm incidence and abundance across European forests. Soil Biology and Biochemistry, 99, 167–178. 10.1016/j.soilbio.2016.05.003 DOI
Ding, X. , & Han, X. (2014). Effects of long‐term fertilization on contents and distribution of microbial residues within aggregate structures of a clay soil. Biology and Fertility of Soils, 50(3), 549–554. 10.1007/s00374-013-0867-6 DOI
Drake, H. L. , & Horn, M. A. (2007). As the worm turns: The earthworm gut as a transient habitat for soil microbial biomes. Annual Review of Microbiology, 61(1), 169–189. 10.1146/annurev.micro.61.080706.093139 PubMed DOI
Eisenhauer, N. , Milcu, A. , Sabais, A. C. W. , Bessler, H. , Weigelt, A. , Engels, C. , & Scheu, S. (2009). Plant community impacts on the structure of earthworm communities depend on season and change with time. Soil Biology and Biochemistry, 41(12), 2430–2443. 10.1016/j.soilbio.2009.09.001 DOI
Ferlian, O. , Thakur, M. P. , Castañeda González, A. , San Emeterio, L. M. , Marr, S. , da Silva Rocha, B. , & Eisenhauer, N. (2020). Soil chemistry turned upside down: A meta‐analysis of invasive earthworm effects on soil chemical properties. Ecology, 101(3), 1–12. 10.1002/ecy.2936 PubMed DOI PMC
Fierer, N. , Strickland, M. S. , Liptzin, D. , Bradford, M. A. , & Cleveland, C. C. (2009). Global patterns in belowground communities. Ecology Letters, 12(11), 1238–1249. 10.1111/j.1461-0248.2009.01360.x PubMed DOI
Frouz, J. , Pižl, V. , Cienciala, E. , & Kalčík, J. (2009). Carbon storage in post‐mining forest soil, the role of tree biomass and soil bioturbation. Biogeochemistry, 94(2), 111–121. 10.1007/s10533-009-9313-0 DOI
Frouz, J. , Prach, K. , Pižl, V. , Háněl, L. , Starý, J. , Tajovský, K. , Materna, J. , Balík, V. , Kalčík, J. , & Řehounková, K. (2008). Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. European Journal of Soil Biology, 44(1), 109–121. 10.1016/j.ejsobi.2007.09.002 DOI
Gates, G. E. (1961). Ecology of some earthworms with special reference to seasonal activity. The American Midland Naturalist, 66(1), 61–86.
Gillespie, A. W. , Diochon, A. , Ma, B. L. , Morrison, M. J. , Kellman, L. , Walley, F. L. , Regier, T. Z. , Chevrier, D. , Dynes, J. J. , & Gregorich, E. G. (2014). Nitrogen input quality changes the biochemical composition of soil organic matter stabilized in the fine fraction: A long‐term study. Biogeochemistry, 117(2–3), 337–350. 10.1007/s10533-013-9871-z DOI
Griepentrog, M. , Bodé, S. , Boeckx, P. , Hagedorn, F. , Heim, A. , & Schmidt, M. W. I. (2014). Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions. Global Change Biology, 20(1), 327–340. 10.1111/gcb.12374 PubMed DOI
Groffman, P. M. , Fahey, T. J. , Fisk, M. C. , Yavitt, J. B. , Sherman, R. E. , Bohlen, P. J. , & Maerz, J. C. (2015). Earthworms increase soil microbial biomass carrying capacity and nitrogen retention in northern hardwood forests. Soil Biology and Biochemistry, 87, 51–58. 10.1016/j.soilbio.2015.03.025 DOI
Guhra, T. , Stolze, K. , Schweizer, S. , & Totsche, K. U. (2020). Earthworm mucus contributes to the formation of organo‐mineral associations in soil. Soil Biology and Biochemistry, 145, 107785. 10.1016/j.soilbio.2020.107785 DOI
Hoeffner, K. , Monard, C. , Santonja, M. , & Cluzeau, D. (2018). Feeding behaviour of epi‐anecic earthworm species and their impacts on soil microbial communities. Soil Biology and Biochemistry, 125(June), 1–9. 10.1016/j.soilbio.2018.06.017 DOI
Humphreys, G. S. , & Field, R. (1998). Mixing, mounding and other aspects of bioturbation: Implications for pedogenesis . 16th World Congress of Soil Science, International Society of Soil Science, Montpellier.
IUSS Working Group WRB . (2014). World Reference Base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps . World Soil Resources Reports No. 106 (Vol. 43, Issue 02). FAO. 10.1017/S0014479706394902 DOI
Janzen, H. H. , van Groenigen, K. J. , Powlson, D. S. , Schwinghamer, T. , & van Groenigen, J. W. (2022). Photosynthetic limits on carbon sequestration in croplands. Geoderma, 416(March), 115810. 10.1016/j.geoderma.2022.115810 DOI
Jouquet, P. , Maron, P. A. , Nowak, V. , & Tran Duc, T. (2013). Utilization of microbial abundance and diversity as indicators of the origin of soil aggregates produced by earthworms. Soil Biology and Biochemistry, 57, 950–952. 10.1016/j.soilbio.2012.08.026 DOI
Kallenbach, C. M. , Grandy, A. S. , Frey, S. D. , & Diefendorf, A. F. (2015). Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biology and Biochemistry, 91, 279–290. 10.1016/j.soilbio.2015.09.005 DOI
Kögel‐Knabner, I. (2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 34(2), 139–162. 10.1016/S0038-0717(01)00158-4 DOI
Kögel‐Knabner, I. , & Amelung, W. (2021). Soil organic matter in major pedogenic soil groups. Geoderma, 384(October 2020), 114785. 10.1016/j.geoderma.2020.114785 DOI
Kuzyakov, Y. , & Blagodatskaya, E. (2015). Microbial hotspots and hot moments in soil: Concept & review. Soil Biology and Biochemistry, 83, 184–199. 10.1016/j.soilbio.2015.01.025 DOI
Lavelle, P. (1988). Earthworm activities and the soil system. Biology and Fertility of Soils, 6(3), 237–251. 10.1007/BF00260820 DOI
Lehmann, J. , Bossio, D. A. , Kögel‐Knabner, I. , & Rillig, M. C. (2020). The concept and future prospects of soil health. Nature Reviews Earth and Environment, 1(10), 544–553. 10.1038/s43017-020-0080-8 PubMed DOI PMC
Li, M. , Meador, T. , Sauheitl, L. , Guggenberger, G. , & Angst, G. (2022). Substrate quality effects on stabilized soil carbon reverse with depth. Geoderma, 406(October 2021), 115511. 10.1016/j.geoderma.2021.115511 DOI
Liang, C. , Amelung, W. , Lehmann, J. , & Kästner, M. (2019). Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 25(11), 3578–3590. 10.1111/gcb.14781 PubMed DOI
Liang, C. , Schimel, J. P. , & Jastrow, J. D. (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2(8), 1–6. 10.1038/nmicrobiol.2017.105 PubMed DOI
Lubbers, I. M. , Berg, M. P. , De Deyn, G. B. , van der Putten, W. H. , & van Groenigen, J. W. (2019). Soil fauna diversity increases CO2 but suppresses N2O emissions from soil. Global Change Biology, 26(3), 1886–1898. 10.1111/gcb.14860 PubMed DOI PMC
Lubbers, I. M. , Pulleman, M. M. , & Van Groenigen, J. W. (2017). Can earthworms simultaneously enhance decomposition and stabilization of plant residue carbon? Soil Biology and Biochemistry, 105, 12–24. 10.1016/j.soilbio.2016.11.008 DOI
Lubbers, I. M. , Van Groenigen, K. J. , Fonte, S. J. , Six, J. , Brussaard, L. , & Van Groenigen, J. W. (2013). Greenhouse‐gas emissions from soils increased by earthworms. Nature Climate Change, 3(3), 187–194. 10.1038/nclimate1692 DOI
Ludwig, M. , Achtenhagen, J. , Miltner, A. , Eckhardt, K. U. , Leinweber, P. , Emmerling, C. , & Thiele‐Bruhn, S. (2015). Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils. Soil Biology and Biochemistry, 81, 311–322. 10.1016/j.soilbio.2014.12.002 DOI
Ma, T. , Zhu, S. , Wang, Z. , Chen, D. , Dai, G. , Feng, B. , Su, X. , Hu, H. , Li, K. , Han, W. , Liang, C. , Bai, Y. , & Feng, X. (2018). Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications, 9, 3480. 10.1038/s41467-018-05891-1 PubMed DOI PMC
Marschner, B. , Brodowski, S. , Dreves, A. , Gleixner, G. , Gude, A. , Grootes, P. M. , Hamer, U. , Heim, A. , Jandl, G. , Ji, R. , Kaiser, K. , Kalbitz, K. , Kramer, C. , Leinweber, P. , Rethemeyer, J. , Schaeffer, A. , Schmidt, M. W. I. , Schwark, L. , & Wiesenberg, G. L. B. (2008). How relevant is recalcitrance for the stabilization of organic matter in soils? Journal of Plant Nutrition and Soil Science, 171(1), 91–110. 10.1002/jpln.200700049 DOI
Mayer, M. , Prescott, C. E. , Abaker, W. E. A. , Augusto, L. , Cécillon, L. , Ferreira, G. W. D. , James, J. , Jandl, R. , Katzensteiner, K. , Laclau, J. P. , Laganière, J. , Nouvellon, Y. , Paré, D. , Stanturf, J. A. , Vanguelova, E. I. , & Vesterdal, L. (2020). Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. Forest Ecology and Management, 466(January), 118127. 10.1016/j.foreco.2020.118127 DOI
Mora, P. , Seugé, C. , Chotte, J. L. , & Rouland, C. (2003). Physico‐chemical typology of the biogenic structures of termites and earthworms: A comparative analysis. Biology and Fertility of Soils, 37(4), 245–249. 10.1007/s00374-003-0592-7 DOI
Nguyen Tu, T. T. , Vidal, A. , Quenea, K. , Mendez‐Millan, M. , & Derenne, S. (2020). Influence of earthworms on apolar lipid features in soils after 1 year of incubation. Biogeochemistry, 147, 243–258. 10.1007/s10533-020-00639-w DOI
O'Mara, F. P. (2012). The role of grasslands in food security and climate change. Annals of Botany, 110(6), 1263–1270. 10.1093/aob/mcs209 PubMed DOI PMC
Paustian, K. , Lehmann, J. , Ogle, S. , Reay, D. , Robertson, G. P. , & Smith, P. (2016). Climate‐smart soils. Nature, 532(7597), 49–57. 10.1038/nature17174 PubMed DOI
Pelosi, C. , Pey, B. , Hedde, M. , Caro, G. , Capowiez, Y. , Guernion, M. , Peigné, J. , Piron, D. , Bertrand, M. , & Cluzeau, D. (2014). Reducing tillage in cultivated fields increases earthworm functional diversity. Applied Soil Ecology, 83, 79–87. 10.1016/j.apsoil.2013.10.005 DOI
Pérès, G. , Bellido, A. , Curmi, P. , Marmonier, P. , & Cluzeau, D. (2010). Relationships between earthworm communities and burrow numbers under different land use systems. Pedobiologia, 54(1), 37–44. 10.1016/j.pedobi.2010.08.006 DOI
Phillips, H. R. P. , Bach, E. M. , Bartz, M. L. C. , Bennett, J. M. , Beugnon, R. , Briones, M. J. I. , Brown, G. G. , Ferlian, O. , Gongalsky, K. B. , Guerra, C. A. , König‐Ries, B. , Krebs, J. J. , Orgiazzi, A. , Ramirez, K. S. , Russell, D. J. , Schwarz, B. , Wall, D. H. , Brose, U. , Decaëns, T. , … Eisenhauer, N. (2021). Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data, 8(1), 136. 10.1038/s41597-021-00912-z PubMed DOI PMC
Phillips, H. R. P. , Guerra, C. A. , Bartz, M. L. C. , Briones, M. J. I. , Brown, G. , Crowther, T. W. , Ferlian, O. , Gongalsky, K. B. , van den Hoogen, J. , Krebs, J. , Orgiazzi, A. , Routh, D. , Schwarz, B. , Bach, E. M. , Bennett, J. , Brose, U. , Decaëns, T. , König‐Ries, B. , Loreau, M. , … Eisenhauer, N. (2019). Global distribution of earthworm diversity. Science, 366(6464), 480–485. 10.1126/science.aax4851 PubMed DOI PMC
Pörtner, H.‐O. , Scholes, R. J. , Agard, J. , Archer, E. , Arneth, A. , Bai, X. , Barnes, D. , Burrows, M. , Chan, L. , Cheung, W. L. (William), Diamond, S. , Donatti, C. , Duarte, C. , Eisenhauer, N. , Foden, W. , Gasalla, M. A. , Handa, C. , Hickler, T. , Hoegh‐Guldberg, O ., … Ngo, H . (2021). Scientific outcome of the IPBES‐IPCC co‐sponsored workshop on biodiversity and climate change. IPBES Secretariat, Bonn, Germany. 10.5281/ZENODO.5101125 DOI
Potvin, L. R. , & Lilleskov, E. A. (2017). Introduced earthworm species exhibited unique patterns of seasonal activity and vertical distribution, and Lumbricus terrestris burrows remained usable for at least 7 years in hardwood and pine stands. Biology and Fertility of Soils, 53(2), 187–198. 10.1007/s00374-016-1173-x DOI
Reich, P. B. , Oleksyn, J. , Modrzynski, J. , Mrozinski, P. , Hobbie, S. E. , Eissenstat, D. M. , Chorover, J. , Chadwick, O. A. , Hale, C. M. , & Tjoelker, M. G. (2005). Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species. Ecology Letters, 8(8), 811–818. 10.1111/j.1461-0248.2005.00779.x DOI
Scheu, S. (1987). The role of substrate feeding earthworms (Lumbricidae) for bioturbation in a beechwood soil. Oecologia, 72(2), 192–196. 10.1007/BF00379266 PubMed DOI
Scheu, S. (1991). Mucus excretion and carbon turnover of endogeic earthworms. Biology and Fertility of Soils, 12(3), 217–220. 10.1007/BF00337206 DOI
Schmidt, M. W. I. , Torn, M. S. , Abiven, S. , Dittmar, T. , Guggenberger, G. , Janssens, I. A. , Kleber, M. , Kögel‐Knabner, I. , Lehmann, J. , Manning, D. A. C. , Nannipieri, P. , Rasse, D. P. , Weiner, S. , & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478(7367), 49–56. 10.1038/nature10386 PubMed DOI
Scullion, J. , & Malik, A. (2000). Earthworm activity affecting organic matter, aggregation and microbial activity in soils restored after opencast mining for coal. Soil Biology and Biochemistry, 32(1), 119–126. 10.1016/S0038-0717(99)00142-X DOI
Singh, J. , Cameron, E. , Reitz, T. , Schädler, M. , & Eisenhauer, N. (2020). Grassland management effects on earthworm communities under ambient and future climatic conditions. European Journal of Soil Science, 72(1), 343–355. 10.1111/ejss.12942 DOI
Singh, J. , Schädler, M. , Demetrio, W. , Brown, G. G. , & Eisenhauer, N. (2019). Climate change effects on earthworms ‐ a review. Soil Organisms, 91(3), 114–138. 10.25674/so91iss3pp114 PubMed DOI PMC
Sokol, N. W. , Sanderman, J. , & Bradford, M. A. (2019). Pathways of mineral‐associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Global Change Biology, 25(1), 12–24. 10.1111/gcb.14482 PubMed DOI
Sokol, N. W. , Slessarev, E. , Marschmann, G. L. , Nicolas, A. , Blazewicz, S. J. , Brodie, E. L. , Firestone, M. K. , Foley, M. M. , Hestrin, R. , Hungate, B. A. , Koch, B. J. , Stone, B. W. , Sullivan, M. B. , Zablocki, O. , Trubl, G. , McFarlane, K. , Stuart, R. , Nuccio, E. , Weber, P. , … Pett‐Ridge, J. (2022). Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nature Reviews Microbiology. 10.1038/s41579-022-00695-z PubMed DOI
Spurgeon, D. J. , Keith, A. M. , Schmidt, O. , Lammertsma, D. R. , & Faber, J. H. (2013). Land‐use and land‐management change: Relationships with earthworm and fungi communities and soil structural properties. BMC Ecology, 13(1), 46. 10.1186/1472-6785-13-46 PubMed DOI PMC
Taylor, A. R. , Lenoir, L. , Vegerfors, B. , & Persson, T. (2019). Ant and earthworm bioturbation in cold‐temperate ecosystems. Ecosystems, 22(5), 981–994. 10.1007/s10021-018-0317-2 DOI
Thu Hoang, D. T. , Maranguit, D. , Kuzyakov, Y. , & Razavi, B. S. (2020). Accelerated microbial activity, turnover and efficiency in the drilosphere is depth dependent. Soil Biology and Biochemistry, 147, 107852. 10.1016/j.soilbio.2020.107852 DOI
Tilman, D. , Hill, J. , & Lehman, C. (2006). Carbon‐negative biofuels from low‐input high‐diversity grassland biomass. Science, 314(5805), 1598–1600. 10.1126/science.1133306 PubMed DOI
van den Hoogen, J. , Geisen, S. , Routh, D. , Ferris, H. , Traunspurger, W. , Wardle, D. A. , de Goede, R. G. M. , Adams, B. J. , Ahmad, W. , Andriuzzi, W. S. , Bardgett, R. D. , Bonkowski, M. , Campos‐Herrera, R. , Cares, J. E. , Caruso, T. , de Brito Caixeta, L. , Chen, X. , Costa, S. R. , Creamer, R. , … Crowther, T. W. (2019). Soil nematode abundance and functional group composition at a global scale. Nature, 572(7768), 194–198. 10.1038/s41586-019-1418-6 PubMed DOI
Van Groenigen, J. W. , Van Groenigen, K. J. , Koopmans, G. F. , Stokkermans, L. , Vos, H. M. J. , & Lubbers, I. M. (2018). How fertile are earthworm casts? A meta‐analysis. Geoderma, 338(October 2018), 525–535. 10.1016/j.geoderma.2018.11.001 DOI
Vidal, A. , Watteau, F. , Remusat, L. , Mueller, C. W. , Nguyen Tu, T. T. , Buegger, F. , Derenne, S. , & Quenea, K. (2019). Earthworm cast formation and development: A shift from plant litter to mineral associated organic matter. Frontiers in Environmental Science, 7(April), 1–15. 10.3389/fenvs.2019.00055 DOI
Wilkinson, M. T. , Richards, P. J. , & Humphreys, G. S. (2009). Breaking ground: Pedological, geological, and ecological implications of soil bioturbation. Earth‐Science Reviews, 97(1–4), 257–272. 10.1016/j.earscirev.2009.09.005 DOI
Wittwer, R. A. , Bender, S. F. , Hartman, K. , Hydbom, S. , Lima, R. A. A. , Loaiza, V. , Nemecek, T. , Oehl, F. , Olsson, P. A. , Petchey, O. , Prechsl, U. E. , Schlaeppi, K. , Scholten, T. , Seitz, S. , Six, J. , & Van Der Heijden, M. G. A. (2021). Organic and conservation agriculture promote ecosystem multifunctionality. Science Advances, 7(34), 1–13. 10.1126/sciadv.abg6995 PubMed DOI PMC
Zhang, D. , Chen, Y. , Ma, Y. , Guo, L. , Sun, J. , & Tong, J. (2016). Earthworm epidermal mucus: Rheological behavior reveals drag‐reducing characteristics in soil. Soil and Tillage Research, 158, 57–66. 10.1016/j.still.2015.12.001 DOI
Zou, X. , & Gonzalez, G. (1997). Changes in earthworm density and community structure during secondary succession in abandoned tropical pastures. Soil Biology and Biochemistry, 29(3–4), 627–629. 10.1016/S0038-0717(96)00188-5 DOI