Climate-dependent plant responses to earthworms in two land-use types
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
201906910041
China Scholarship Council
DFG- FZT 118
Deutsche Forschungsgemeinschaft
202548816
Deutsche Forschungsgemeinschaft
PubMed
38147134
PubMed Central
PMC10830777
DOI
10.1007/s00442-023-05493-9
PII: 10.1007/s00442-023-05493-9
Knihovny.cz E-zdroje
- Klíčová slova
- Biomass, Climate change, Plant–soil interactions, Stoichiometry, Summer droughts,
- MeSH
- biomasa MeSH
- ekosystém * MeSH
- lidé MeSH
- lipnicovité MeSH
- Oligochaeta * fyziologie MeSH
- půda MeSH
- rostliny MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda MeSH
Plant nutrient uptake and productivity are driven by a multitude of factors that have been modified by human activities, like climate change and the activity of decomposers. However, interactive effects of climate change and key decomposer groups like earthworms have rarely been studied. In a field microcosm experiment, we investigated the effects of a mean future climate scenario with warming (+ 0.50 °C to + 0.62 °C) and altered precipitation (+ 10% in spring and autumn, - 20% in summer) and earthworms (anecic-two Lumbricus terrestris, endogeic-four Allolobophora chlorotica and both together within 10 cm diameter tubes) on plant biomass and stoichiometry in two land-use types (intensively used meadow and conventional farming). We found little evidence for earthworm effects on aboveground biomass. However, future climate increased above- (+40.9%) and belowground biomass (+44.7%) of grass communities, which was mainly driven by production of the dominant Festulolium species during non-summer drought periods, but decreased the aboveground biomass (- 36.9%) of winter wheat. Projected climate change and earthworms interactively affected the N content and C:N ratio of grasses. Earthworms enhanced the N content (+1.2%) thereby decreasing the C:N ratio (- 4.1%) in grasses, but only under ambient climate conditions. The future climate treatment generally decreased the N content of grasses (aboveground: - 1.1%, belowground: - 0.15%) and winter wheat (- 0.14%), resulting in an increase in C:N ratio of grasses (aboveground: + 4.2%, belowground: +6.3%) and wheat (+5.9%). Our results suggest that climate change diminishes the positive effects of earthworms on plant nutrient uptakes due to soil water deficit, especially during summer drought.
Centre of Biodiversity and Sustainable Land Use University of Göttingen Göttingen Germany
Department of Community Ecology Helmholtz Centre for Environmental Research UFZ Halle Germany
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Zobrazit více v PubMed
Angst G, Frouz J, van Groenigen JW, Scheu S, Kogel-Knabner I, Eisenhauer N. Earthworms as catalysts in the formation and stabilization of soil microbial necromass. Glob Change Biol. 2022;28:4775–4782. doi: 10.1111/gcb.16208. PubMed DOI PMC
Ayres E, Steltzer H, Simmons BL, Simpson RT, Steinweg JM, Wallenstein MD, Mellor N, Parton WJ, Moore JC, Wall DH. Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol Biochem. 2009;41:606–610. doi: 10.1016/j.soilbio.2008.12.022. DOI
Bai H, Xiao D, Wang B, Liu L, Tang J. Simulation of wheat response to future climate change based on coupled model inter-comparison project phase 6 multi-model ensemble projections in the north china plain. Front Plant Sci. 2022;13:829580. doi: 10.3389/fpls.2022.829580. PubMed DOI PMC
Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–511. doi: 10.1038/nature13855. PubMed DOI
Bassirirad H. Kinetics of nutrient uptake by roots: responses to global change. New Phytol. 2000;147:155–169. doi: 10.1046/j.1469-8137.2000.00682.x. DOI
Bates D, Machler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, Dai J, Dendooven L, Peres G, Tondoh JE, Cluzeau D, Brun JJ. A review of earthworm impact on soil function and ecosystem services. Eur J Soil Sci. 2013;64:161–182. doi: 10.1111/ejss.12025. DOI
Bothe A, Westermeier P, Wosnitza A, Willner E, Schum A, Dehmer KJ, Hartmann S. Drought tolerance in perennial ryegrass (Lolium perenne L.) as assessed by two contrasting phenotyping systems. J Agronomy Crop Sci. 2018;204:375–389. doi: 10.1111/jac.12269. DOI
Brown GG, Edwards CA, Brussaard L. How earthworms affect plant growth: burrowing into the mechanisms. Earthworm Ecol. 2004;2:13–49.
Coleman DC, Callaham M, Jr, Crossley DA. Fundamentals of Soil Ecology. 3. London: Academic press; 2017.
Craven D, Thakur MP, Cameron EK, Frelich LE, Beausejour R, Blair RB, Blossey B, Burtis J, Choi A, Davalos A, Fahey TJ, Fisichelli NA, Gibson K, Handa IT, Hopfensperger K, Loss SR, Nuzzo V, Maerz JC, Sackett T, Scharenbroch BC, Smith SM, Vellend M, Umek LG, Eisenhauer N. The unseen invaders: introduced earthworms as drivers of change in plant communities in North American forests (a meta-analysis) Glob Chang Biol. 2017;23:1065–1074. doi: 10.1111/gcb.13446. PubMed DOI PMC
Edwards CA, Bohlen PJ. Biology and ecology of earthworms. 3. London: Springer Science & Business Media; 1996.
Eisenhauer N, Eisenhauer E. The “intestines of the soil”: the taxonomic and functional diversity of earthworms – a review for young ecologists. EcoEvoRxiv. 2020 doi: 10.32942/osf.io/tfm5y. DOI
Eisenhauer N, Scheu S. Earthworms as drivers of the competition between grasses and legumes. Soil Biol Biochem. 2008;40:2650–2659. doi: 10.1016/j.soilbio.2008.07.010. DOI
Eisenhauer N, Milcu A, Sabais ACW, Bessler H, Weigelt A, Engels C, Scheu S. Plant community impacts on the structure of earthworm communities depend on season and change with time. Soil Biol Biochem. 2009;41:2430–2443. doi: 10.1016/j.soilbio.2009.09.001. DOI
Eisenhauer N, Fisichelli NA, Frelich LE, Reich PB. Interactive effects of global warming and ‘global worming’ on the initial establishment of native and exotic herbaceous plant species. Oikos. 2012;121:1121–1133. doi: 10.1111/j.1600-0706.2011.19807.x. DOI
Fierer N, Schimel JP. Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem. 2002;34:777–787. doi: 10.1016/S0038-0717(02)00007-X. DOI
Franklin J, Serra-Diaz JM, Syphard AD, Regan HM. Global change and terrestrial plant community dynamics. Proc Natl Acad Sci USA. 2016;113:3725–3734. doi: 10.1073/pnas.1519911113. PubMed DOI PMC
Gherardi LA, Sala OE. Effect of interannual precipitation variability on dryland productivity: a global synthesis. Glob Change Biol. 2019;25:269–276. doi: 10.1111/gcb.14480. PubMed DOI
Görgen K, Beersma J, Brahmer G, Buiteveld H, Carambia M, De Keizer O, Krahe P, Nilson E, Lammersen R, Perrin C. Assessment of climate change impacts on discharge in the Rhine River Basin: results of the RheinBlick2050 project. CHR Lelystad; 2010.
Gu L, Hanson PJ, Mac Post W, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T. The 2007 eastern US spring freezes: Increased cold damage in a warming world? Bioscience. 2008;58:253–262. doi: 10.1641/B580311. DOI
Han WX, Fang JY, Reich PB, Woodward FI, Wang ZH. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecol Lett. 2011;14:788–796. doi: 10.1111/j.1461-0248.2011.01641.x. PubMed DOI
Helgadóttir Á, Frankow-Lindberg B, Seppänen M, Søegaard K, Østrem L. European grasslands overview: Nordic region. Grassl Sci Eur. 2014;19:15–28.
Hodson ME, Brailey-Jones P, Burn WL, Harper AL, Hartley SE, Helgason T, Walker HF. Enhanced plant growth in the presence of earthworms correlates with changes in soil microbiota but not nutrient availability. Geoderma. 2023 doi: 10.1016/j.geoderma.2023.116426. DOI
Humphreys MW, Yadav RS, Cairns AJ, Turner LB, Humphreys J, Skot L. A changing climate for grassland research. New Phytol. 2006;169:9–26. doi: 10.1111/j.1469-8137.2005.01549.x. PubMed DOI
Humphreys MW, O'Donovan SA, Farrell MS, Gay AP, Kingston-Smith AH. The potential of novel Festulolium (2n = 4x = 28) hybrids as productive, nutrient-use-efficient fodder for ruminants. Food Energy Secur. 2014;3:98–110. doi: 10.1002/fes3.50. DOI
Jacquiod S, Puga-Freitas R, Spor A, Mounier A, Monard C, Mougel C, Philippot L, Blouin M. A core microbiota of the plant-earthworm interaction conserved across soils. Soil Biol Biochem. 2020 doi: 10.1016/j.soilbio.2020.107754. DOI
Kano-Nakata M, Inukai Y, Wade LJ, Siopongco JDLC, Yamauchi A. Root development, water uptake, and shoot dry matter production under water deficit conditions in two CSSLs of rice: functional roles of root plasticity. Plant Prod Sci. 2011;14:307–317. doi: 10.1626/pps.14.307. DOI
Kuznetsova A, Brockhoff PB, Christensen RH. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82:1–26. doi: 10.18637/jss.v082.i13. DOI
Lambers H, Chapin FS, Pons TL. Plant physiological ecology. Springer; 2008.
Laossi K-R, Ginot A, Noguera DC, Blouin M, Barot S. Earthworm effects on plant growth do not necessarily decrease with soil fertility. Plant Soil. 2009;328:109–118. doi: 10.1007/s11104-009-0086-y. DOI
Laossi K-R, Noguera DC, Bartolomé-Lasa A, Mathieu J, Blouin M, Barot S. Effects of an endogeic and an anecic earthworm on the competition between four annual plants and their relative fecundity. Soil Biol Biochem. 2009;41:1668–1673. doi: 10.1016/j.soilbio.2009.05.009. DOI
Lavelle P, Barois I, Blanchart E, Brown G, Brussaard L, Decaëns T, Fragoso C, Jimenez JJ, Kajondo KK, Martinez MDLA, Moreno A, Pashanasi B, Senapati B, Villenave C. Earthworms as a resource in tropical agroecosystems. Nat Resour. 1998;34:26–40.
Li XN, Pu HC, Liu FL, Zhou Q, Cai J, Dai TB, Cao WX, Jiang D. Winter wheat photosynthesis and grain yield responses to spring freeze. Agron J. 2015;107:1002–1010. doi: 10.2134/agronj14.0460. DOI
Meng B, Shi BK, Zhong SZ, Chai H, Li SX, Wang YB, Henry HAL, Ma JY, Sun W. Drought sensitivity of aboveground productivity in Leymus chinensis meadow steppe depends on drought timing. Oecologia. 2019;191:685–696. doi: 10.1007/s00442-019-04506-w. PubMed DOI
Rosenzweig C, Tubiello FN, Goldberg R, Mills E, Bloomfield J. Increased crop damage in the US from excess precipitation under climate change. Global Environ Chang. 2002;12:197–202. doi: 10.1016/S0959-3780(02)00008-0. DOI
Sala OE, Chapin FS, 3rd, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH. Global biodiversity scenarios for the year 2100. Science. 2000;287:1770–1774. doi: 10.1126/science.287.5459.1770. PubMed DOI
Sampoux JP, Baudouin P, Bayle B, Beguier V, Bourdon P, Chosson JF, de Bruijn K, Deneufbourg F, Galbrun C, Ghesquiere M, Noel D, Tharel B, Viguie A. Breeding perennial ryegrass (Lolium perenne L.) for turf usage: an assessment of genetic improvements in cultivars released in Europe, 1974–2004. Grass Forage Sci. 2013;68:33–48. doi: 10.1111/j.1365-2494.2012.00896.x. DOI
Schädler M, Buscot F, Klotz S, Reitz T, Durka W, Bumberger J, Merbach I, Michalski SG, Kirsch K, Remmler P, Schulz E, Auge H. Investigating the consequences of climate change under different land-use regimes: a novel experimental infrastructure. Ecosphere. 2019;10:e02635. doi: 10.1002/ecs2.2635. DOI
Scheu S. Effects of earthworms on plant growth: patterns and perspectives. Pedobiologia. 2003;47:846–856. doi: 10.1078/0031-4056-00270. DOI
Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology. 2007;88:1386–1394. doi: 10.1890/06-0219. PubMed DOI
Schmidt O, Curry JP. Effects of earthworms on biomass production, nitrogen allocation and nitrogen transfer in wheat-clover intercropping model systems. Plant Soil. 1999;214:187–198. doi: 10.1023/A:1004723914623. DOI
Shi L, Lin Z, Wei X, Peng C, Yao Z, Han B, Xiao Q, Zhou H, Deng Y, Liu K, Shao X. Precipitation increase counteracts warming effects on plant and soil C:N: P stoichiometry in an alpine meadow. Front Plant Sci. 2022;13:1044173. doi: 10.3389/fpls.2022.1044173. PubMed DOI PMC
Shipitalo MJ, Nuutinen V, Butt KR. Interaction of earthworm burrows and cracks in a clayey, subsurface-drained, soil. Appl Soil Ecol. 2004;26:209–217. doi: 10.1016/j.apsoil.2004.01.004. DOI
Singh J, Schadler M, Demetrio W, Brown GG, Eisenhauer N. Climate change effects on earthworms - a review. Soil Org. 2019;91:114–138. doi: 10.25674/so91iss3pp114. PubMed DOI PMC
Song J, Wan S, Piao S, Knapp AK, Classen AT, Vicca S, Ciais P, Hovenden MJ, Leuzinger S, Beier C, Kardol P, Xia J, Liu Q, Ru J, Zhou Z, Luo Y, Guo D, Adam Langley J, Zscheischler J, Dukes JS, Tang J, Chen J, Hofmockel KS, Kueppers LM, Rustad L, Liu L, Smith MD, Templer PH, Quinn Thomas R, Norby RJ, Phillips RP, Niu S, Fatichi S, Wang Y, Shao P, Han H, Wang D, Lei L, Wang J, Li X, Zhang Q, Li X, Su F, Liu B, Yang F, Ma G, Li G, Liu Y, Liu Y, Yang Z, Zhang K, Miao Y, Hu M, Yan C, Zhang A, Zhong M, Hui Y, Li Y, Zheng M. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat Ecol Evol. 2019;3:1309–1320. doi: 10.1038/s41559-019-0958-3. PubMed DOI
Tang Z, Xu W, Zhou G, Bai Y, Li J, Tang X, Chen D, Liu Q, Ma W, Xiong G, He H, He N, Guo Y, Guo Q, Zhu J, Han W, Hu H, Fang J, Xie Z. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China's terrestrial ecosystems. Proc Natl Acad Sci USA. 2018;115:4033–4038. doi: 10.1073/pnas.1700295114. PubMed DOI PMC
Thakur MP, Risch AC, van der Putten WH. Biotic responses to climate extremes in terrestrial ecosystems. iScience. 2022;25:104559. doi: 10.1016/j.isci.2022.104559. PubMed DOI PMC
van Groenigen JW, Lubbers IM, Vos HM, Brown GG, De Deyn GB, van Groenigen KJ. Earthworms increase plant production: a meta-analysis. Sci Rep-Uk. 2014;4:6365. doi: 10.1038/srep06365. PubMed DOI PMC
Viciedo DO, Prado RD, Martinez CA, Habermann E, Piccolo MD. Short-term warming and water stress affect Panicum maximum Jacq. stoichiometric homeostasis and biomass production. Sci Total Environ. 2019;681:267–274. doi: 10.1016/j.scitotenv.2019.05.108. PubMed DOI
Wang Z-Y, Lu J-Z, Erktan A, Fu L-B, Chen H, Yin M, Cao W-D, Scheu S. Crop productivity, resource allocation and nitrogen concentration as affected by soil decomposers, mixed cropping and crop genotype. Soil Biol Biochem. 2022 doi: 10.1016/j.soilbio.2022.108855. DOI
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Putten WHvd, Wall DH, Ecological linkages between aboveground and belowground biota. Science. 2004;304:1629–1633. doi: 10.1126/science.1094875. PubMed DOI
Wilschut RA, De Long JR, Geisen S, Hannula SE, Quist CW, Snoek B, Steinauer K, Wubs ERJ, Yang Q, Thakur MP. Combined effects of warming and drought on plant biomass depend on plant woodiness and community type: a meta-analysis. Proc Biol Sci. 2022;289:20221178. doi: 10.1098/rspb.2022.1178. PubMed DOI PMC
Wu Z, Dijkstra P, Koch GW, Penuelas J, Hungate BA. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob Change Biol. 2011;17:927–942. doi: 10.1111/j.1365-2486.2010.02302.x. DOI
Wurst S, Langel R, Reineking A, Bonkowski M, Scheu S. Effects of earthworms and organic litter distribution on plant performance and aphid reproduction. Oecologia. 2003;137:90–96. doi: 10.1007/s00442-003-1329-x. PubMed DOI
Wurst S, Langel R, Scheu S. Do endogeic earthworms change plant competition? A microcosm study. Plant Soil. 2005;271:123–130. doi: 10.1007/s11104-004-2201-4. DOI
Yan C, Liu Z, Yuan Z, Shi X, Lock TR, Kallenbach RL. Aridity modifies the responses of plant stoichiometry to global warming and nitrogen deposition in semi-arid steppes. Sci Total Environ. 2022;831:154807. doi: 10.1016/j.scitotenv.2022.154807. PubMed DOI
Yue K, Fornara DA, Yang WQ, Peng Y, Li ZJ, Wu FZ, Peng CH. Effects of three global change drivers on terrestrial C:N: P stoichiometry: a global synthesis. Glob Change Biol. 2017;23:2450–2463. doi: 10.1111/gcb.13569. PubMed DOI