Biotribology of Synovial Cartilage: A New Method for Visualization of Lubricating Film and Simultaneous Measurement of the Friction Coefficient
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-00483S
Grantová Agentura České Republiky
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32366009
PubMed Central
PMC7254223
DOI
10.3390/ma13092075
PII: ma13092075
Knihovny.cz E-zdroje
- Klíčová slova
- biotribology, cartilage, fluorescence microscopy, friction, lubrication, reciprocating tribometer,
- Publikační typ
- časopisecké články MeSH
A healthy natural synovial joint is very important for painless active movement of the natural musculoskeletal system. The right functioning of natural synovial joints ensures well lubricated contact surfaces with a very low friction coefficient and wear of cartilage tissue. The present paper deals with a new method for visualization of lubricating film with simultaneous measurements of the friction coefficient. This can contribute to better understanding of lubricating film formation in a natural synovial joint. A newly developed device, a reciprocating tribometer, is used to allow for simultaneous measurement of friction forces with contact visualization by fluorescence microscopy. The software allowing for snaps processing and subsequent evaluation of fluorescence records is developed. The evaluation software and the follow-up evaluation procedure are also described. The experiments with cartilage samples and model synovial fluid are carried out, and the new software is applied to provide their evaluation. The primary results explaining a connection between lubrication and friction are presented. The results show a more significant impact of albumin proteins on the lubrication process, whereas its clusters create a more stable lubrication layer. A decreasing trend of protein cluster count, which corresponds to a decrease in the thickness of the lubrication film, is found in all experiments. The results highlight a deeper connection between the cartilage friction and the lubrication film formation, which allows for better understanding of the cartilage lubrication mechanism.
Zobrazit více v PubMed
Walker-Bone K., Javaid K., Arden N., Cooper C. Regular review: Medical management of osteoarthritis. BMJ. 2000;321:936–940. doi: 10.1136/bmj.321.7266.936. PubMed DOI PMC
Pendleton A., Arden N., Dougados M., Doherty M., Bannwarth B., Bijlsma J.W.J., Cluzeau F., Cooper C., Dieppe P.A., Günther K.-P., et al. EULAR recommendations for the management of knee osteoarthritis: Report of a task force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT) Ann. Rheum. Diseases. 2000;59:936–944. doi: 10.1136/ard.59.12.936. PubMed DOI PMC
Lewis G. Polyethylene wear in total hip and knee arthroplasties. J. Biomed. Mater. Res. 1997;38:55–75. doi: 10.1002/(SICI)1097-4636(199721)38:1<55::AID-JBM8>3.0.CO;2-G. PubMed DOI
Kurtz S.M., Muratoglu O.K., Evans M., Edidin A.A. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials. 1999;20:1659–1688. doi: 10.1016/S0142-9612(99)00053-8. PubMed DOI
Schmalzried T.P., Kwong L.M., Jasty M., Sedlacek R.C., Haire T.C., O’Connor D.O., Bragdon C.R., Kabo J.M., Malcolm A.J., Harris W.H. The mechanism of loosening of cemented acetabular components in total hip arthroplasty. Analysis of specimens retrieved at autopsy. Clin. Orthop. Relat. Res. 1992;274:60–78. PubMed
Piconi C., Maccauro G., Muratori F., Del Prever E.B. Alumina and Zirconia Ceramics in Joint Replacements. J. Appl. Biomater. Biomech. 2003;1:19–32. PubMed
Balazs E.A., Denlinger J.L. Viscosupplementation: A new concept in the treatment of osteoarthritis. J. Rheumatol. 1993;39:3–9. PubMed
Laurent C. Biology and Medical Applications of Hyaluronan and Its Derivatives. Wenner Gren Symp. Ser. 1998;72:3.
Weiss C., Band P. Basic principles underlying the development of viscosupplementation for the treatment of osteoarthritis. JCR J. Clin. Rheumatol. 1999;5.6:S2–S11.
Rutjes A.W.S., Jüni P., da Costa B.R., Trelle S., Nüesch E., Reichenbach S. Viscosupplementation for Osteoarthritis of the Knee. Ann. Int. Med. 2012;157:180–191. doi: 10.7326/0003-4819-157-3-201208070-00473. PubMed DOI
Jevsevar D., Donnelly P., Brown G.A., Cummins D.S. Viscosupplementation for Osteoarthritis of the Knee. J. Bone Joint Surg. Am. Vol. 2015;97:2047–2060. doi: 10.2106/JBJS.N.00743. PubMed DOI
Bannuru R.R., Vaysbrot E.E., Sullivan M.C., McAlindon T.E. Relative efficacy of hyaluronic acid in comparison with NSAIDs for knee osteoarthritis: A systematic review and meta-analysis. Semin. Arthr. Rheum. 2014;43:593–599. doi: 10.1016/j.semarthrit.2013.10.002. PubMed DOI
Arrich J., Piribauer F., Mad P., Schmid D., Klaushofer K., Müllner M. Intra-articular hyaluronic acid for the treatment of osteoarthritis of the knee: Systematic review and meta-analysis. Can. Med. Assoc. J. 2005;172:1039–1043. doi: 10.1503/cmaj.1041203. PubMed DOI PMC
Jahn S., Seror J., Klein J. Lubrication of Articular Cartilage. Ann. Rev. Biomed. Eng. 2016;18:235–258. doi: 10.1146/annurev-bioeng-081514-123305. PubMed DOI
Wright V., Dowson D. Lubrication and cartilage. J. Anat. 1976;121:107–118. PubMed PMC
Eleswarapu S.V., Leipzig N.D., Athanasiou K.A. Gene expression of single articular chondrocytes. Cell Tissue Res. 2006;327:43–54. doi: 10.1007/s00441-006-0258-5. PubMed DOI
Almarza A.J., Athanasiou K.A. Design Characteristics for the Tissue Engineering of Cartilaginous Tissues. Ann. Biomed.Eng. 2004;32:2–17. doi: 10.1023/B:ABME.0000007786.37957.65. PubMed DOI
Knobloch T.J., Madhavan S., Nam J., Agarwal S., Jr., Agarwal S. Regulation of Chondrocytic Gene Expression by Biomechanical Signals. Crit. Rev. Eukaryot. Gene Expr. 2008;18:139–150. doi: 10.1615/CritRevEukarGeneExpr.v18.i2.30. PubMed DOI PMC
Mow V.C., Ratcliffe A., Robin Poole A. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials. 1992;13:67–97. doi: 10.1016/0142-9612(92)90001-5. PubMed DOI
Fitzgerald J.B., Jin M., Grodzinsky A.J. Shear and Compression Differentially Regulate Clusters of Functionally Related Temporal Transcription Patterns in Cartilage Tissue. J. Biological Chem. 2006;281:24095–24103. doi: 10.1074/jbc.M510858200. PubMed DOI
Dunn W., DuRaine G., Reddi A.H. Profiling microRNA expression in bovine articular cartilage and implications for mechanotransduction. Arthr. Rheum. 2009;60:2333–2339. doi: 10.1002/art.24678. PubMed DOI
Becerra J., Andrades J.A., Guerado E., Zamora-Navas P., López-Puertas J.M., Reddi A.H. Articular Cartilage: Structure and Regeneration. Tissue Eng. Part B Rev. 2010;16:617–627. doi: 10.1089/ten.teb.2010.0191. PubMed DOI
Quinn T.M., Hunziker E.B., Häuselmann H.-J. Variation of cell and matrix morphologies in articular cartilage among locations in the adult human knee. Osteoarthr. Cartil. 2005;13:672–678. doi: 10.1016/j.joca.2005.04.011. PubMed DOI
Darling E.M., Athanasiou K.A. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res. 2005;23:425–432. doi: 10.1016/j.orthres.2004.08.008. PubMed DOI
Blewis M.E., Nugent-Derfus G.E., Schmidt T.A., Schumacher B.L., Sah R.L. A model of synovial fluid lubricant composition in normal and injured joints. Eur. Cells Mater. 2007;13:26–39. doi: 10.22203/eCM.v013a03. PubMed DOI
Swann D.A., Silver F.H., Slayter H.S., Stafford W., Shore E. The molecular structure and lubricating activity of lubricin isolated from bovine and human synovial fluids. Biochem. J. 1985;225:195–201. doi: 10.1042/bj2250195. PubMed DOI PMC
Schmid T.M., Su J.-L., Lindley K.M., Soloveychik V., Madsen L., Block J.A., Kuettner K.E., Schumacher B.L. The Many Faces of Osteoarthritis. Birkhäuser Basel; Basel, Switzerland: 2002. Superficial zone protein (SZP) is an abundant glycoprotein in human synovial fluid with lubricating properties; pp. 159–161.
Ogston A.G., Stanier J.E. The physiological function of hyaluronic acid in synovial fluid; viscous, elastic and lubricant properties. J. Physiol. 1953;119:244–252. doi: 10.1113/jphysiol.1953.sp004842. PubMed DOI PMC
Schwarz I.M., Hills B.A. Surface-active phospholipid as the lubricating component of lubricin. Rheumatology. 1998;37:21–26. doi: 10.1093/rheumatology/37.1.21. PubMed DOI
Athanasiou K.A., Rosenwasser M.P., Buckwalter J.A., Malinin T.I., Mow V.C. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J. Orthop. Res. 1991;9:330–340. doi: 10.1002/jor.1100090304. PubMed DOI
Nečas D., Vrbka M., Urban F., Křupka I., Hartl M. The effect of lubricant constituents on lubrication mechanisms in hip joint replacements. J. Mech. Behav. Biomed. Mater. 2016;55:295–307. doi: 10.1016/j.jmbbm.2015.11.006. PubMed DOI
Nečas D., Vrbka M., Galandáková A., Křupka I., Hartl M. On the observation of lubrication mechanisms within hip joint replacements. Part I: Hard-on-soft bearing pairs. J. Mech. Behav. Biomed. Mater. 2019;89:237–248. doi: 10.1016/j.jmbbm.2018.09.022. PubMed DOI
Qin L., Feng X., Hafezi M., Zhang Y., Guo J., Dong G., Qin Y. Investigating the tribological and biological performance of covalently grafted chitosan coatings on Co–Cr–Mo alloy. Tribol. Int. 2018;127:302–312. doi: 10.1016/j.triboint.2018.06.018. DOI
Rennie A.C., Dickrell P.L., Sawyer W.G. Friction coefficient of soft contact lenses: Measurements and modeling. Tribol. Lett. 2005;18:499–504. doi: 10.1007/s11249-005-3610-0. DOI
Yarimitsu S., Nakashima K., Sawae Y., Murakami T. Influences of lubricant composition on forming boundary film composed of synovia constituents. Tribol. Int. 2009;42:1615–1623. doi: 10.1016/j.triboint.2008.11.005. DOI
Khan I.M., Francis L., Theobald P.S., Perni S., Young R.D., Prokopovich P., Conlan R.S., Archer C.W. In vitro growth factor-induced bio engineering of mature articular cartilage. Biomaterials. 2013;34:1478–1487. doi: 10.1016/j.biomaterials.2012.09.076. PubMed DOI PMC
Anat J. The Function of Intra-Articular Fibrocartilages, with Special Reference to the Knee and Inferior Radio-Ulnar Joints. J. Anat. 1932;66:210–227. PubMed PMC
Teeple E., Elsaid K.A., Fleming B.C., Jay G.D., Aslani K., Crisco J.J., Mechrefe A.P. Coefficients of friction, lubricin, and cartilage damage in the anterior cruciate ligament-deficient guinea pig knee. J. Orthop. Res. 2008;26:231–237. doi: 10.1002/jor.20492. PubMed DOI PMC
Hills B.A. Oligolamellar lubrication of joints by surface active phospholipid. J. Rheumatol. 1989;16:82–91. PubMed
Radin E.L., Swann D.A., Weisser P.A. Separation of a Hyaluronate-free Lubricating Fraction from Synovial Fluid. Nature. 1970;228:377–378. doi: 10.1038/228377a0. PubMed DOI
Swann D.A., Bloch K.J., Swindell D., Shore E. The lubricating activity of human synovial fluids. Arthr. Rheum. 1984;27:552–556. doi: 10.1002/art.1780270511. PubMed DOI
McCutchen C.W. The frictional properties of animal joints. Wear. 1962;5:1–17. doi: 10.1016/0043-1648(62)90176-X. DOI
McCutchen C.W. Mechanism of Animal Joints: Sponge-hydrostatic and Weeping Bearings. Nature. 1959;184:1284–1285. doi: 10.1038/1841284a0. PubMed DOI
Ikeuchi K. Origin and future of hydration lubrication. Proc. Inst. Mech. Eng. J. Eng. Tribol. 2007;221:301–305. doi: 10.1243/13506501JET214. DOI
Klein J. Hydration lubrication. Friction. 2013;1:1–23. doi: 10.1007/s40544-013-0001-7. DOI
Murakami T., Higaki H., Sawae Y., Ohtsuki N., Moriyama S., Nakanishi Y. Adaptive multimode lubrication in natural synovial joints and artificial joints. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2006;212:23–35. doi: 10.1243/0954411981533791. PubMed DOI
Murakami T. Importance of adaptive multimode lubrication mechanism in natural and artificial joints. Proc. Inst. Mech. Eng. J. Eng. Tribol. 2012;226:827–837. doi: 10.1177/1350650112451377. PubMed DOI
Murakami T., Yarimitsu S., Sakai N., Nakashima K., Yamaguchi T., Sawae Y. Importance of adaptive multimode lubrication mechanism in natural synovial joints. Tribol. Int. 2017;113:306–315. doi: 10.1016/j.triboint.2016.12.052. DOI
Forsey R.W., Fisher J., Thompson J., Stone M.H., Bell C., Ingham E. The effect of hyaluronic acid and phospholipid based lubricants on friction within a human cartilage damage model. Biomaterials. 2006;27:4581–4590. doi: 10.1016/j.biomaterials.2006.04.018. PubMed DOI
Wu T., Gan X.-Q., Cai Z.-B., Zhu M.-H., Qiao M.-T., Yu H.-Y. The lubrication effect of hyaluronic acid and chondroitin sulfate on the natural temporomandibular cartilage under torsional fretting wear. Lubr. Sci. 2015;27:29–44. doi: 10.1002/ls.1253. DOI
Merkher Y., Sivan S., Etsion I., Maroudas A., Halperin G., Yosef A. A rational human joint friction test using a human cartilage-on-cartilage arrangement. Tribol. Lett. 2006;22:29–36. doi: 10.1007/s11249-006-9069-9. DOI
Caligaris M., Ateshian G.A. Effects of sustained interstitial fluid pressurization under migrating contact area, and boundary lubrication by synovial fluid, on cartilage friction. Osteoarthr. Cartil. 2008;16:1220–1227. doi: 10.1016/j.joca.2008.02.020. PubMed DOI PMC
Cilingir A.C. Effect of rotational and sliding motions on friction and degeneration of articular cartilage under dry and wet friction. J. Bionic Eng. 2015;12:464–472. doi: 10.1016/S1672-6529(14)60137-2. DOI
Li F., Wang A., Wang C. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage. J. Mater. Sci. Mater. Med. 2016;27:87. doi: 10.1007/s10856-016-5700-y. PubMed DOI
Furmann D., Nečas D., Rebenda D., Čípek P., Vrbka M., Křupka I., Hartl M. The Effect of Synovial Fluid Composition, Speed and Load on Frictional Behaviour of Articular Cartilage. Materials. 2020;13:1334. doi: 10.3390/ma13061334. PubMed DOI PMC
Stachowiak G.W., Batchelor A.W., Griffiths L.J. Friction and wear changes in synovial joints. Wear. 1994;171:135–142. doi: 10.1016/0043-1648(94)90356-5. DOI
McCann L., Udofia I., Graindorge S., Ingham E., Jin Z., Fisher J. Tribological testing of articular cartilage of the medial compartment of the knee using a friction simulator. Tribol. Int. 2008;41:1126–1133. doi: 10.1016/j.triboint.2008.03.012. DOI
Katta J., Jin Z., Ingham E., Fisher J. Effect of nominal stress on the long term friction, deformation and wear of native and glycosaminoglycan deficient articular cartilage. Osteoarthr. Cartil. 2009;17:662–668. doi: 10.1016/j.joca.2008.10.008. PubMed DOI
Chan S.M.T., Neu C.P., Komvopoulos K., Reddi A.H. The role of lubricant entrapment at biological interfaces: Reduction of friction and adhesion in articular cartilage. J. Biomech. 2011;44:2015–2020. doi: 10.1016/j.jbiomech.2011.04.015. PubMed DOI
Moore A.C., Burris D.L. New Insights Into Joint Lubrication. Tribol. Lubr. Technol. 2016;72:26–30.
Čípek P., Rebenda D., Nečas D., Vrbka M., Křupka I., Hartl M. Visualization of Lubrication Film in Model of Synovial Joint. Tribol. Ind. 2019;41:387–393. doi: 10.24874/ti.2019.41.03.08. DOI
Čípek P., Rebenda D., Nečas D., Vrbka M., Křupka I. Development of reciprocating tribometer for testing synovial joint; Proceedings of the Engineering Mechanics; Svratka, Czech Republic. 14–17 May 2018; pp. 169–172.
Lakowicz J.R. Principles of Fluorescence Spectroscopy. 3rd ed. Springer; New York, NY, USA: 2006.
Northwood E., Fisher J. A multi-directional in vitro investigation into friction, damage and wear of innovative chondroplasty materials against articular cartilage. Clin. Biomech. 2007;22:834–842. doi: 10.1016/j.clinbiomech.2007.03.008. PubMed DOI
Pickard J.E., Fisher J., Ingham E., Egan J. Investigation into the effects of proteins and lipids on the frictional properties of articular cartilage. Biomaterials. 1998;19:1807–1812. doi: 10.1016/S0142-9612(98)00147-1. PubMed DOI
Hodge W.A., Fijan R.S., Carlson K.L., Burgess R.G., Harris W.H., Mann R.W. Contact pressures in the human hip joint measured in vivo. Proc. Natl. Acad. Sci. USA. 1986;83:2879–2883. doi: 10.1073/pnas.83.9.2879. PubMed DOI PMC
Mow V.C., Kuei S.C., Lai W.M., Armstrong C.G. Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments. J. Biomech. Eng. 1980;102:73–84. doi: 10.1115/1.3138202. PubMed DOI
Vala H.J., Baxi A. A review on Otsu image segmentation algorithm. Int. J. Adv. Res. Comput. Eng. Technol. 2013;2:387–389.
Acharya T., Ray A.K. Image Processing: Principles and Applications. John Wiley; Hoboken, NJ, USA: 2005.
Vincent L. Shape in Picture. Springer; Berlin/Heidelberg, Germany: 1994. Morphological Area Openings and Closings for Grey-scale Images; pp. 197–208.
Greene G.W., Zappone B., Zhao B., Söderman O., Topgaard D., Rata G., Israelachvili J.N. Changes in pore morphology and fluid transport in compressed articular cartilage and the implications for joint lubrication. Biomaterials. 2008;29:4455–4462. doi: 10.1016/j.biomaterials.2008.07.046. PubMed DOI
McNary S.M., Athanasiou K.A., Reddi A.H. Engineering Lubrication in Articular Cartilage. Tissue Eng. Part B Rev. 2012;18:88–100. doi: 10.1089/ten.teb.2011.0394. PubMed DOI PMC
Chan S.M.T., Neu C.P., DuRaine G., Komvopoulos K., Reddi A.H. Tribological altruism: A sacrificial layer mechanism of synovial joint lubrication in articular cartilage. J. Biomech. 2012;45:2426–2431. doi: 10.1016/j.jbiomech.2012.06.036. PubMed DOI
Chan S.M.T., Neu C.P., DuRaine G., Komvopoulos K., Reddi A.H. Atomic force microscope investigation of the boundary-lubricant layer in articular cartilage. Osteoarth. Cartil. 2010;18:956–963. doi: 10.1016/j.joca.2010.03.012. PubMed DOI
Karran E.H., Young T.J., Markwell R.E., Harper G.P. In vivo model of cartilage degradation—Effects of a matrix metalloproteinase inhibitor. Ann. Rheum. Diseases. 1995;54:662–669. doi: 10.1136/ard.54.8.662. PubMed DOI PMC
Ramsey D.K., Wretenberg P.F. Biomechanics of the knee: Methodological considerations in the in vivo kinematic analysis of the tibiofemoral and patellofemoral joint. Clin. Biomech. 1999;14:595–611. doi: 10.1016/S0268-0033(99)00015-7. PubMed DOI
Sahara W., Sugamoto K., Murai M., Tanaka H., Yoshikawa H. 3D kinematic analysis of the acromioclavicular joint during arm abduction using vertically open MRI. J. Orthop. Res. 2006;24:1823–1831. doi: 10.1002/jor.20208. PubMed DOI
Analysis of Chemisorbed Tribo-Film for Ceramic-on-Ceramic Hip Joint Prostheses by Raman Spectroscopy