The Effect of Synovial Fluid Composition, Speed and Load on Frictional Behaviour of Articular Cartilage
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-00483S
Grantová Agentura České Republiky
PubMed
32183442
PubMed Central
PMC7143089
DOI
10.3390/ma13061334
PII: ma13061334
Knihovny.cz E-zdroje
- Klíčová slova
- articular cartilage, biotribology, coefficient of friction, synovial fluid, tribological properties,
- Publikační typ
- časopisecké články MeSH
Articular cartilage ensures smooth motion of natural synovial joints operating at very low friction. However, the number of patients suffering from joint diseases, usually associated with cartilage degradation, continuously increases. Therefore, an understanding of cartilage tribological behaviour is of great interest in order to minimize its degradation, preserving the reliable function of the joints. The aim of the present study is to provide a comprehensive comparison of frictional behaviour of articular cartilage, focusing on the effect of synovial fluid composition (i), speed (ii), and load (iii). The experiments were realized using a pin-on-plate tribometer with reciprocating motion. The articular cartilage pin was loaded against smooth glass plate while the tests consisted of loading and unloading phases in order to enable cartilage rehydration. Various model fluids containing albumin, γ-globulin, hyaluronic acid, and phospholipids were prepared in two different concentrations simulating physiologic and osteoarthritic synovial fluid. Two different speeds, 5 mm/s and 10 mm/s were applied, and the tests were carried out under 5 N and 10 N. It was found that protein-based solutions exhibit almost no difference in friction coefficient, independently of the concentration of the constituents. However, the behaviour is considerably changed when adding hyaluronic acid and phospholipids. Especially when interacting with γ-globulin, friction coefficient decreased substantially. In general, an important role of the interaction of fluid constituents was observed. On the other hand, a limited effect of speed was detected for most of the model fluids. Finally, it was shown that elevated load leads to lower friction, which corresponds well with previous observations. Further study should concentrate on specific explored phenomena focusing on the detailed statistical evaluation.
Zobrazit více v PubMed
Hootman J.M., Helmick C.G., Barbour K., Theis K.A., Boring M.A. Updated Projected Prevalence of Self-Reported Doctor-Diagnosed Arthritis and Arthritis-Attributable Activity Limitation Among US Adults, 2015–2040. Arthritis Rheumatol. 2016;68:1582–1587. doi: 10.1002/art.39692. PubMed DOI PMC
Kopec J., Sayre E.C., Schwartz T.A., Renner J.B., Helmick C.G., Badley E.M., Cibere J., Callahan L.F., Jordan J.M. Occurrence of radiographic osteoarthritis of the knee and hip among African Americans and whites: A population-based prospective cohort study. Arthritis Care Res. 2013;65:928–935. doi: 10.1002/acr.21924. PubMed DOI PMC
Yamamoto M., Chung K.C. Joint Fusion and Arthroplasty in the Hand. Clin. Plast. Surg. 2019;46:479–488. doi: 10.1016/j.cps.2019.03.008. PubMed DOI
Haara M., Manninen P., Kröger H., Arokoski J., Kärkkäinen A., Knekt P., Aromaa A., Heliövaara M. Osteoarthritis of finger joints in Finns aged 30 or over: Prevalence, determinants, and association with mortality. Ann. Rheum. Dis. 2003;62:151–158. doi: 10.1136/ard.62.2.151. PubMed DOI PMC
Australian Institute of Health and Welfare. [(accessed on 10 January 2020)]; Available online: https://www.aihw.gov.au/
Lees D., Partington P. Articular cartilage. Orthop. Trauma. 2016;30:265–272. doi: 10.1016/j.mporth.2016.04.007. DOI
Cherniakova Y.M., Pinchuk L.S. Tribological aspects of joint intraaricular therapy. Acta Bioeng. Biomech. 2011;13:57. PubMed
Colombo F. Help Wanted? OECD Health Policy Studies. OECD; Paris, France: 2011. pp. 1–8.
Katta J., Pawaskar S.S., Jin Z., Ingham E., Fisher J. Effect of load variation on the friction properties of articular cartilage. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2007;221:175–181. doi: 10.1243/13506501JET240. DOI
Sakai N., Hagihara Y., Furusawa T., Hosoda N., Sawae Y., Murakami T. Analysis of biphasic lubrication of articular cartilage loaded by cylindrical indenter. Tribol. Int. 2012;46:225–236. doi: 10.1016/j.triboint.2011.03.016. DOI
Mow V.C., Kuei S.C., Lai W.M., Armstrong C.G. Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments. J. Biomech. Eng. 1980;102:73–84. doi: 10.1115/1.3138202. PubMed DOI
Forster H., Fisher J. The Influence of Loading Time and Lubricant on the Friction of Articular Cartilage. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1996;210:109–119. doi: 10.1243/PIME_PROC_1996_210_399_02. PubMed DOI
Forster H., Fisher J. The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1999;213:329–345. doi: 10.1243/0954411991535167. PubMed DOI
Kienle S., Boettcher K., Wiegleb L., Urban J., Burgkart R.H., Lieleg O., Hugel T. Comparison of friction and wear of articular cartilage on different length scales. J. Biomech. 2015;48:3052–3058. doi: 10.1016/j.jbiomech.2015.07.027. PubMed DOI
Caligaris M., Ateshian G.A. Effects of sustained interstitial fluid pressurization under migrating contact area, and boundary lubrication by synovial fluid, on cartilage friction. Osteoarthr. Cartil. 2008;16:1220–1227. doi: 10.1016/j.joca.2008.02.020. PubMed DOI PMC
Bell C.J., Carrick L.M., Katta J., Jin Z., Ingham E., Aggeli A., Boden N., Waigh T.A., Fisher J. Self-assembling peptides as injectable lubricants for osteoarthritis. J. Biomed. Mater. Res. Part A. 2006;78:236–246. doi: 10.1002/jbm.a.30672. PubMed DOI
Murakami T., Yarimitsu S., Nakashima K., Yamaguchi T., Sawae Y., Sakai N., Suzuki A. Superior lubricity in articular cartilage and artificial hydrogel cartilage. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2014;228:1099–1111. doi: 10.1177/1350650114530273. PubMed DOI
Nakashima K., Sawae Y., Murakami T. Influence of protein conformation on frictional properties of poly (vinyl alcohol) hydrogel for artificial cartilage. Tribol. Lett. 2007;26:145–151. doi: 10.1007/s11249-006-9185-6. DOI
Yarimitsu S., Nakashima K., Sawae Y., Murakami T. Influences of lubricant composition on forming boundary film composed of synovia constituents. Tribol. Int. 2009;42:1615–1623. doi: 10.1016/j.triboint.2008.11.005. DOI
A Hills B., Butler B.D. Surfactants identified in synovial fluid and their ability to act as boundary lubricants. Ann. Rheum. Dis. 1984;43:641–648. doi: 10.1136/ard.43.4.641. PubMed DOI PMC
Bell C.J., Ingham E., Fisher J. Influence of hyaluronic acid on the time-dependent friction response of articular cartilage under different conditions. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2006;220:23–31. doi: 10.1243/095441105X69060. PubMed DOI
Forsey R.W., Fisher J., Thompson J., Stone M.H., Bell C., Ingham E. The effect of hyaluronic acid and phospholipid based lubricants on friction within a human cartilage damage model. Biomaterials. 2006;27:4581–4590. doi: 10.1016/j.biomaterials.2006.04.018. PubMed DOI
Pickard J., Fisher J., Ingham E., Egan J. Investigation into the effects of proteins and lipids on the frictional properties of articular cartilage. Biomaterials. 1998;19:1807–1812. doi: 10.1016/S0142-9612(98)00147-1. PubMed DOI
Jay G.D., Torres J.R., Rhee D.K., Helminen H.J., Hytinnen M.M., Cha C.-J., Elsaid K.A., Kim K.-S., Cui Y., Warman M.L. Association between friction and wear in diarthrodial joints lacking lubricin. Arthritis Rheum. 2007;56:3662–3669. doi: 10.1002/art.22974. PubMed DOI PMC
Ludwig T.E., Hunter M., Schmidt T.A. Cartilage boundary lubrication synergism is mediated by hyaluronan concentration and PRG4 concentration and structure. BMC Musculoskelet. Disord. 2015;16:386. doi: 10.1186/s12891-015-0842-5. PubMed DOI PMC
Schmidt T.A., Gastelum N.S., Nguyen Q.T., Schumacher B.L., Sah R.L. Boundary lubrication of articular cartilage: Role of synovial fluid constituents. Arthritis Rheum. 2007;56:882–891. doi: 10.1002/art.22446. PubMed DOI
Nakashima K., Sawae Y., Murakami T. Study on Wear Reduction Mechanisms of Artificial Cartilage by Synergistic Protein Boundary Film Formation. JSME Int. J. Ser. C. 2005;48:555–561. doi: 10.1299/jsmec.48.555. DOI
Murakami T., Yarimitsu S., Nakashima K., Sawae Y., Sakai N. Influence of synovia constituents on tribological behaviors of articular cartilage. Friction. 2013;1:150–162. doi: 10.1007/s40544-013-0010-6. DOI
Yarimitsu S., Nakashima K., Sawae Y., Murakami T. Influence of Phospholipid and Protein Constituents on Tribological Properties of Artificial Hydrogel Cartilage Material. J. Biomech. Sci. Eng. 2013;8:257–267. doi: 10.1299/jbse.8.257. DOI
Zhu L., Seror J., Day A., Kampf N., Klein J. Ultra-low friction between boundary layers of hyaluronan-phosphatidylcholine complexes. Acta Biomater. 2017;59:283–292. doi: 10.1016/j.actbio.2017.06.043. PubMed DOI
Seror J., Merkher Y., Kampf N., Collinson L., Day A., Maroudas A., Klein J. Articular Cartilage Proteoglycans As Boundary Lubricants: Structure and Frictional Interaction of Surface-Attached Hyaluronan and Hyaluronan–Aggrecan Complexes. Biomacromolecules. 2011;12:3432–3443. doi: 10.1021/bm2004912. PubMed DOI
Seror J., Zhu L., Goldberg R., Day A., Klein J. Supramolecular synergy in the boundary lubrication of synovial joints. Nat. Commun. 2015;6:6497. doi: 10.1038/ncomms7497. PubMed DOI PMC
Stolz M., Raiteri R., Daniels A.U., VanLandingham M.R., Baschong W., Aebi U. Dynamic Elastic Modulus of Porcine Articular Cartilage Determined at Two Different Levels of Tissue Organization by Indentation-Type Atomic Force Microscopy. Biophys. J. 2004;86:3269–3283. doi: 10.1016/S0006-3495(04)74375-1. PubMed DOI PMC
Li F., Wang A., Wang C. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage. J. Mater. Sci. Mater. Electron. 2016;27:27. doi: 10.1007/s10856-016-5700-y. PubMed DOI
Burris D.L., Moore A. Cartilage and Joint Lubrication: New Insights Into the Role of Hydrodynamics. Biotribology. 2017;12:8–14. doi: 10.1016/j.biotri.2017.09.001. DOI
Galandakova A., Ulrichova J., Langová K., Hanáková A., Vrbka M., Hartl M., Gallo J. Characteristics of synovial fluid required for optimization of lubrication fluid for biotribological experiments. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2016;105:1422–1431. doi: 10.1002/jbm.b.33663. PubMed DOI
Murakami T., Sawae Y., Nakashima K., Yarimitsu S., Sato T. Micro- and nanoscopic biotribological behaviours in natural synovial joints and artificial joints. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2007;221:237–245. doi: 10.1243/13506501JET245. DOI
Murakami T., Nakashima K., Yarimitsu S., Sawae Y., Sakai N. Effectiveness of adsorbed film and gel layer in hydration lubrication as adaptive multimode lubrication mechanism for articular cartilage. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2011;225:1174–1185. doi: 10.1177/1350650111415756. DOI
Walker P.S., Dowson D., Longfield M.D., Wright V. Lubrication of human joints. Ann. Rheum. Dis. 1969;28:194. doi: 10.1136/ard.28.2.194-a. PubMed DOI PMC
Nečas D., Vrbka M., Urban F., Krupka I., Hartl M. The effect of lubricant constituents on lubrication mechanisms in hip joint replacements. J. Mech. Behav. Biomed. Mater. 2016;55:295–307. doi: 10.1016/j.jmbbm.2015.11.006. PubMed DOI
Nečas D., Vrbka M., Galandáková A., Křupka I., Hartl M. On the observation of lubrication mechanisms within hip joint replacements. Part I: Hard-on-soft bearing pairs. J. Mech. Behav. Biomed. Mater. 2019;89:237–248. doi: 10.1016/j.jmbbm.2018.09.022. PubMed DOI
Higaki H., Murakami T., Nakanishi Y., Miura H., Mawatari T., Iwamoto Y. The lubricating ability of biomembrane models with dipalmitoyl phosphatidylcholine and γ-globulin. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1998;212:337–346. doi: 10.1243/0954411981534114. PubMed DOI
Čípek P., Rebenda D., Nečas D., Vrbka M., Křupka I., Hartl M. Visualization of Lubrication Film in Model of Synovial Joint. Tribol. Ind. 2019;41:387–393. doi: 10.24874/ti.2019.41.03.08. DOI
Myant C., Cann P. The effect of transient conditions on synovial fluid protein aggregation lubrication. J. Mech. Behav. Biomed. Mater. 2014;34:349–357. doi: 10.1016/j.jmbbm.2014.02.005. PubMed DOI
Mazzucco D., Spector M. THE JOHN CHARNLEY AWARD PAPER: The Role of Joint Fluid in the Tribology of Total Joint Arthroplasty. Clin. Orthop. Relat. Res. 2004;429:17–32. doi: 10.1097/01.blo.0000150315.47697.b9. PubMed DOI
Analysis of Chemisorbed Tribo-Film for Ceramic-on-Ceramic Hip Joint Prostheses by Raman Spectroscopy