The Effect of Synovial Fluid Composition, Speed and Load on Frictional Behaviour of Articular Cartilage

. 2020 Mar 15 ; 13 (6) : . [epub] 20200315

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32183442

Grantová podpora
20-00483S Grantová Agentura České Republiky

Articular cartilage ensures smooth motion of natural synovial joints operating at very low friction. However, the number of patients suffering from joint diseases, usually associated with cartilage degradation, continuously increases. Therefore, an understanding of cartilage tribological behaviour is of great interest in order to minimize its degradation, preserving the reliable function of the joints. The aim of the present study is to provide a comprehensive comparison of frictional behaviour of articular cartilage, focusing on the effect of synovial fluid composition (i), speed (ii), and load (iii). The experiments were realized using a pin-on-plate tribometer with reciprocating motion. The articular cartilage pin was loaded against smooth glass plate while the tests consisted of loading and unloading phases in order to enable cartilage rehydration. Various model fluids containing albumin, γ-globulin, hyaluronic acid, and phospholipids were prepared in two different concentrations simulating physiologic and osteoarthritic synovial fluid. Two different speeds, 5 mm/s and 10 mm/s were applied, and the tests were carried out under 5 N and 10 N. It was found that protein-based solutions exhibit almost no difference in friction coefficient, independently of the concentration of the constituents. However, the behaviour is considerably changed when adding hyaluronic acid and phospholipids. Especially when interacting with γ-globulin, friction coefficient decreased substantially. In general, an important role of the interaction of fluid constituents was observed. On the other hand, a limited effect of speed was detected for most of the model fluids. Finally, it was shown that elevated load leads to lower friction, which corresponds well with previous observations. Further study should concentrate on specific explored phenomena focusing on the detailed statistical evaluation.

Zobrazit více v PubMed

Hootman J.M., Helmick C.G., Barbour K., Theis K.A., Boring M.A. Updated Projected Prevalence of Self-Reported Doctor-Diagnosed Arthritis and Arthritis-Attributable Activity Limitation Among US Adults, 2015–2040. Arthritis Rheumatol. 2016;68:1582–1587. doi: 10.1002/art.39692. PubMed DOI PMC

Kopec J., Sayre E.C., Schwartz T.A., Renner J.B., Helmick C.G., Badley E.M., Cibere J., Callahan L.F., Jordan J.M. Occurrence of radiographic osteoarthritis of the knee and hip among African Americans and whites: A population-based prospective cohort study. Arthritis Care Res. 2013;65:928–935. doi: 10.1002/acr.21924. PubMed DOI PMC

Yamamoto M., Chung K.C. Joint Fusion and Arthroplasty in the Hand. Clin. Plast. Surg. 2019;46:479–488. doi: 10.1016/j.cps.2019.03.008. PubMed DOI

Haara M., Manninen P., Kröger H., Arokoski J., Kärkkäinen A., Knekt P., Aromaa A., Heliövaara M. Osteoarthritis of finger joints in Finns aged 30 or over: Prevalence, determinants, and association with mortality. Ann. Rheum. Dis. 2003;62:151–158. doi: 10.1136/ard.62.2.151. PubMed DOI PMC

Australian Institute of Health and Welfare. [(accessed on 10 January 2020)]; Available online: https://www.aihw.gov.au/

Lees D., Partington P. Articular cartilage. Orthop. Trauma. 2016;30:265–272. doi: 10.1016/j.mporth.2016.04.007. DOI

Cherniakova Y.M., Pinchuk L.S. Tribological aspects of joint intraaricular therapy. Acta Bioeng. Biomech. 2011;13:57. PubMed

Colombo F. Help Wanted? OECD Health Policy Studies. OECD; Paris, France: 2011. pp. 1–8.

Katta J., Pawaskar S.S., Jin Z., Ingham E., Fisher J. Effect of load variation on the friction properties of articular cartilage. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2007;221:175–181. doi: 10.1243/13506501JET240. DOI

Sakai N., Hagihara Y., Furusawa T., Hosoda N., Sawae Y., Murakami T. Analysis of biphasic lubrication of articular cartilage loaded by cylindrical indenter. Tribol. Int. 2012;46:225–236. doi: 10.1016/j.triboint.2011.03.016. DOI

Mow V.C., Kuei S.C., Lai W.M., Armstrong C.G. Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments. J. Biomech. Eng. 1980;102:73–84. doi: 10.1115/1.3138202. PubMed DOI

Forster H., Fisher J. The Influence of Loading Time and Lubricant on the Friction of Articular Cartilage. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1996;210:109–119. doi: 10.1243/PIME_PROC_1996_210_399_02. PubMed DOI

Forster H., Fisher J. The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1999;213:329–345. doi: 10.1243/0954411991535167. PubMed DOI

Kienle S., Boettcher K., Wiegleb L., Urban J., Burgkart R.H., Lieleg O., Hugel T. Comparison of friction and wear of articular cartilage on different length scales. J. Biomech. 2015;48:3052–3058. doi: 10.1016/j.jbiomech.2015.07.027. PubMed DOI

Caligaris M., Ateshian G.A. Effects of sustained interstitial fluid pressurization under migrating contact area, and boundary lubrication by synovial fluid, on cartilage friction. Osteoarthr. Cartil. 2008;16:1220–1227. doi: 10.1016/j.joca.2008.02.020. PubMed DOI PMC

Bell C.J., Carrick L.M., Katta J., Jin Z., Ingham E., Aggeli A., Boden N., Waigh T.A., Fisher J. Self-assembling peptides as injectable lubricants for osteoarthritis. J. Biomed. Mater. Res. Part A. 2006;78:236–246. doi: 10.1002/jbm.a.30672. PubMed DOI

Murakami T., Yarimitsu S., Nakashima K., Yamaguchi T., Sawae Y., Sakai N., Suzuki A. Superior lubricity in articular cartilage and artificial hydrogel cartilage. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2014;228:1099–1111. doi: 10.1177/1350650114530273. PubMed DOI

Nakashima K., Sawae Y., Murakami T. Influence of protein conformation on frictional properties of poly (vinyl alcohol) hydrogel for artificial cartilage. Tribol. Lett. 2007;26:145–151. doi: 10.1007/s11249-006-9185-6. DOI

Yarimitsu S., Nakashima K., Sawae Y., Murakami T. Influences of lubricant composition on forming boundary film composed of synovia constituents. Tribol. Int. 2009;42:1615–1623. doi: 10.1016/j.triboint.2008.11.005. DOI

A Hills B., Butler B.D. Surfactants identified in synovial fluid and their ability to act as boundary lubricants. Ann. Rheum. Dis. 1984;43:641–648. doi: 10.1136/ard.43.4.641. PubMed DOI PMC

Bell C.J., Ingham E., Fisher J. Influence of hyaluronic acid on the time-dependent friction response of articular cartilage under different conditions. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2006;220:23–31. doi: 10.1243/095441105X69060. PubMed DOI

Forsey R.W., Fisher J., Thompson J., Stone M.H., Bell C., Ingham E. The effect of hyaluronic acid and phospholipid based lubricants on friction within a human cartilage damage model. Biomaterials. 2006;27:4581–4590. doi: 10.1016/j.biomaterials.2006.04.018. PubMed DOI

Pickard J., Fisher J., Ingham E., Egan J. Investigation into the effects of proteins and lipids on the frictional properties of articular cartilage. Biomaterials. 1998;19:1807–1812. doi: 10.1016/S0142-9612(98)00147-1. PubMed DOI

Jay G.D., Torres J.R., Rhee D.K., Helminen H.J., Hytinnen M.M., Cha C.-J., Elsaid K.A., Kim K.-S., Cui Y., Warman M.L. Association between friction and wear in diarthrodial joints lacking lubricin. Arthritis Rheum. 2007;56:3662–3669. doi: 10.1002/art.22974. PubMed DOI PMC

Ludwig T.E., Hunter M., Schmidt T.A. Cartilage boundary lubrication synergism is mediated by hyaluronan concentration and PRG4 concentration and structure. BMC Musculoskelet. Disord. 2015;16:386. doi: 10.1186/s12891-015-0842-5. PubMed DOI PMC

Schmidt T.A., Gastelum N.S., Nguyen Q.T., Schumacher B.L., Sah R.L. Boundary lubrication of articular cartilage: Role of synovial fluid constituents. Arthritis Rheum. 2007;56:882–891. doi: 10.1002/art.22446. PubMed DOI

Nakashima K., Sawae Y., Murakami T. Study on Wear Reduction Mechanisms of Artificial Cartilage by Synergistic Protein Boundary Film Formation. JSME Int. J. Ser. C. 2005;48:555–561. doi: 10.1299/jsmec.48.555. DOI

Murakami T., Yarimitsu S., Nakashima K., Sawae Y., Sakai N. Influence of synovia constituents on tribological behaviors of articular cartilage. Friction. 2013;1:150–162. doi: 10.1007/s40544-013-0010-6. DOI

Yarimitsu S., Nakashima K., Sawae Y., Murakami T. Influence of Phospholipid and Protein Constituents on Tribological Properties of Artificial Hydrogel Cartilage Material. J. Biomech. Sci. Eng. 2013;8:257–267. doi: 10.1299/jbse.8.257. DOI

Zhu L., Seror J., Day A., Kampf N., Klein J. Ultra-low friction between boundary layers of hyaluronan-phosphatidylcholine complexes. Acta Biomater. 2017;59:283–292. doi: 10.1016/j.actbio.2017.06.043. PubMed DOI

Seror J., Merkher Y., Kampf N., Collinson L., Day A., Maroudas A., Klein J. Articular Cartilage Proteoglycans As Boundary Lubricants: Structure and Frictional Interaction of Surface-Attached Hyaluronan and Hyaluronan–Aggrecan Complexes. Biomacromolecules. 2011;12:3432–3443. doi: 10.1021/bm2004912. PubMed DOI

Seror J., Zhu L., Goldberg R., Day A., Klein J. Supramolecular synergy in the boundary lubrication of synovial joints. Nat. Commun. 2015;6:6497. doi: 10.1038/ncomms7497. PubMed DOI PMC

Stolz M., Raiteri R., Daniels A.U., VanLandingham M.R., Baschong W., Aebi U. Dynamic Elastic Modulus of Porcine Articular Cartilage Determined at Two Different Levels of Tissue Organization by Indentation-Type Atomic Force Microscopy. Biophys. J. 2004;86:3269–3283. doi: 10.1016/S0006-3495(04)74375-1. PubMed DOI PMC

Li F., Wang A., Wang C. Analysis of friction between articular cartilage and polyvinyl alcohol hydrogel artificial cartilage. J. Mater. Sci. Mater. Electron. 2016;27:27. doi: 10.1007/s10856-016-5700-y. PubMed DOI

Burris D.L., Moore A. Cartilage and Joint Lubrication: New Insights Into the Role of Hydrodynamics. Biotribology. 2017;12:8–14. doi: 10.1016/j.biotri.2017.09.001. DOI

Galandakova A., Ulrichova J., Langová K., Hanáková A., Vrbka M., Hartl M., Gallo J. Characteristics of synovial fluid required for optimization of lubrication fluid for biotribological experiments. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2016;105:1422–1431. doi: 10.1002/jbm.b.33663. PubMed DOI

Murakami T., Sawae Y., Nakashima K., Yarimitsu S., Sato T. Micro- and nanoscopic biotribological behaviours in natural synovial joints and artificial joints. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2007;221:237–245. doi: 10.1243/13506501JET245. DOI

Murakami T., Nakashima K., Yarimitsu S., Sawae Y., Sakai N. Effectiveness of adsorbed film and gel layer in hydration lubrication as adaptive multimode lubrication mechanism for articular cartilage. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2011;225:1174–1185. doi: 10.1177/1350650111415756. DOI

Walker P.S., Dowson D., Longfield M.D., Wright V. Lubrication of human joints. Ann. Rheum. Dis. 1969;28:194. doi: 10.1136/ard.28.2.194-a. PubMed DOI PMC

Nečas D., Vrbka M., Urban F., Krupka I., Hartl M. The effect of lubricant constituents on lubrication mechanisms in hip joint replacements. J. Mech. Behav. Biomed. Mater. 2016;55:295–307. doi: 10.1016/j.jmbbm.2015.11.006. PubMed DOI

Nečas D., Vrbka M., Galandáková A., Křupka I., Hartl M. On the observation of lubrication mechanisms within hip joint replacements. Part I: Hard-on-soft bearing pairs. J. Mech. Behav. Biomed. Mater. 2019;89:237–248. doi: 10.1016/j.jmbbm.2018.09.022. PubMed DOI

Higaki H., Murakami T., Nakanishi Y., Miura H., Mawatari T., Iwamoto Y. The lubricating ability of biomembrane models with dipalmitoyl phosphatidylcholine and γ-globulin. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 1998;212:337–346. doi: 10.1243/0954411981534114. PubMed DOI

Čípek P., Rebenda D., Nečas D., Vrbka M., Křupka I., Hartl M. Visualization of Lubrication Film in Model of Synovial Joint. Tribol. Ind. 2019;41:387–393. doi: 10.24874/ti.2019.41.03.08. DOI

Myant C., Cann P. The effect of transient conditions on synovial fluid protein aggregation lubrication. J. Mech. Behav. Biomed. Mater. 2014;34:349–357. doi: 10.1016/j.jmbbm.2014.02.005. PubMed DOI

Mazzucco D., Spector M. THE JOHN CHARNLEY AWARD PAPER: The Role of Joint Fluid in the Tribology of Total Joint Arthroplasty. Clin. Orthop. Relat. Res. 2004;429:17–32. doi: 10.1097/01.blo.0000150315.47697.b9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...