In Vitro Transformation of Human Bronchial Epithelial Cells by Diesel Exhaust Particles: Gene Expression Profiling and Early Toxic Responses
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30010986
PubMed Central
PMC6204768
DOI
10.1093/toxsci/kfy183
PII: 5054330
Knihovny.cz E-zdroje
- MeSH
- bronchy účinky léků metabolismus ultrastruktura MeSH
- buněčné kultury MeSH
- epitelo-mezenchymální tranzice účinky léků genetika MeSH
- epitelové buňky účinky léků metabolismus ultrastruktura MeSH
- interleukin-1beta genetika MeSH
- látky znečišťující vzduch toxicita MeSH
- lidé MeSH
- pevné částice toxicita MeSH
- poškození DNA MeSH
- stanovení celkové genové exprese MeSH
- transformované buněčné linie MeSH
- transkriptom účinky léků MeSH
- výfukové emise vozidel toxicita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- interleukin-1beta MeSH
- látky znečišťující vzduch MeSH
- pevné částice MeSH
- výfukové emise vozidel MeSH
Occupational exposure to diesel exhaust may cause lung cancer in humans. Mechanisms include DNA-damage and inflammatory responses. Here, the potential of NIST SRM2975 diesel exhaust particles (DEP) to transform human bronchial epithelial cells (HBEC3) in vitro was investigated. Long-term exposure of HBEC3 to DEP led to increased colony growth in soft agar. Several DEP-transformed cell lines were established and based on the expression of epithelial-to-mesenchymal-transition (EMT) marker genes, one of them (T2-HBEC3) was further characterized. T2-HBEC3 showed a mesenchymal/fibroblast-like morphology, reduced expression of CDH1, and induction of CDH2 and VIM. T2-HBEC3 had reduced migration potential compared with HBEC3 and little invasion capacity. Gene expression profiling showed baseline differences between HBEC3 and T2-HBEC3 linked to lung carcinogenesis. Next, to assess differences in sensitivity to DEP between parental HBEC3 and T2-HBEC3, gene expression profiling was carried out after DEP short-term exposure. Results revealed changes in genes involved in metabolism of xenobiotics and lipids, as well as inflammation. HBEC3 displayed a higher steady state of IL1B gene expression and release of IL-1β compared with T2-HBEC3. HBEC3 and T2-HBEC3 showed similar susceptibility towards DEP-induced genotoxic effects. Liquid-chromatography-tandem-mass-spectrometry was used to measure secretion of eicosanoids. Generally, major prostaglandin species were released in higher concentrations from T2-HBEC3 than from HBEC3 and several analytes were altered after DEP-exposure. In conclusion, long-term exposure to DEP-transformed human bronchial epithelial cells in vitro. Differences between HBEC3 and T2-HBEC3 regarding baseline levels and DEP-induced changes of particularly CYP1A1, IL-1β, PGE2, and PGF2α may have implications for acute inflammation and carcinogenesis.
Department of Chemistry and Toxicology Veterinary Research Institute 621 00 Brno Czech Republic
Division of Infection Control Environment and Health Department of Air and Noise
Zobrazit více v PubMed
Alessandrini F., Beck-Speier I., Krappmann D., Weichenmeier I., Takenaka S., Karg E., Kloo B., Schulz H., Jakob T., Mempel M., et al. (2009). Role of oxidative stress in ultrafine particle-induced exacerbation of allergic lung inflammation. Am. J. Respir. Crit. Care Med. 179, 984–991. PubMed
Andrysík Z., Vondráček J., Marvanová S., Ciganek M., Neča J., Pěnčíková K., Mahadevan B., Topinka J., Baird W. M., Kozubík A., et al. (2011). Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: The role of polycyclic aromatic hydrocarbons. Mutat. Res. 714, 53–62. PubMed
Arlt V. M., Krais A. M., Godschalk R. W., Riffo-Vasquez Y., Mrizova I., Roufosse C. A., Corbin C., Shi Q., Frei E., Stiborova M., et al. (2015). Pulmonary Inflammation Impacts on CYP1A1-Mediated Respiratory Tract DNA Damage Induced by the Carcinogenic Air Pollutant Benzo[a]pyrene. Toxicol. Sci. 146, 213–225. PubMed PMC
Bals R., Hiemstra P. S. (2004). Innate immunity in the lung: How epithelial cells fight against respiratory pathogens. Eur. Respir. J. 23, 327–333. PubMed
Beck-Speier I., Dayal N., Karg E., Maier K. L., Schumann G., Schulz H., Semmler M., Takenaka S., Stettmaier K., Bors W., et al. (2005). Oxidative stress and lipid mediators induced in alveolar macrophages by ultrafine particles. Free Radic. Biol. Med. 38, 1080–1092. PubMed
Benbrahim-Tallaa L., Baan R. A., Grosse Y., Lauby-Secretan B., El Ghissassi F., Bouvard V., Guha N., Loomis D., Straif K. (2012). Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes. Lancet Oncol. 13, 663–664. PubMed
Bersaas A., Arnoldussen Y. J., Sjoberg M., Haugen A., Mollerup S. (2016). Epithelial-mesenchymal transition and FOXA genes during tobacco smoke carcinogen induced transformation of human bronchial epithelial cells. Toxicol. In Vitro 35, 55–65. PubMed
Bhavaraju L., Shannahan J., William A., McCormick R., McGee J., Kodavanti U., Madden M. (2014). Diesel and biodiesel exhaust particle effects on rat alveolar macrophages with in vitro exposure. Chemosphere 104, 126–133. PubMed PMC
Boland S., Baeza-Squiban A., Fournier T., Houcine O., Gendron M. C., Chevrier M., Jouvenot G., Coste A., Aubier M., Marano F. (1999). Diesel exhaust particles are taken up by human airway epithelial cells in vitro and alter cytokine production. Am. J. Physiol. 276, L604–L613. PubMed
Brouxhon S., Kyrkanides S., O'Banion M. K., Johnson R., Pearce D. A., Centola G. M., Miller J. N., McGrath K. H., Erdle B., Scott G., et al. (2007). Sequential down-regulation of E-cadherin with squamous cell carcinoma progression: Loss of E-cadherin via a prostaglandin E2-EP2 dependent posttranslational mechanism. Cancer Res. 67, 7654–7664. PubMed
Cassee F. R., Heroux M. E., Gerlofs-Nijland M. E., Kelly F. J. (2013). Particulate matter beyond mass: Recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhal. Toxicol. 25, 802–812. PubMed PMC
Cohen A. J., Ross A. H., Ostro B., Pandey K. D., Krzyzanowski M., Kunzli N., Gutschmidt K., Pope A., Romieu I., Samet J. M., et al. (2005). The global burden of disease due to outdoor air pollution. J. Toxicol. Environ. Health A 68, 1301–1307. PubMed
Damiani L. A., Yingling C. M., Leng S., Romo P. E., Nakamura J., Belinsky S. A. (2008). Carcinogen-induced gene promoter hypermethylation is mediated by DNMT1 and causal for transformation of immortalized bronchial epithelial cells. Cancer Res. 68, 9005–9014. PubMed
De L. A., Maiello M. R., D'Alessio A., Pergameno M., Normanno N. (2012). The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: Role in cancer pathogenesis and implications for therapeutic approaches. Expert. Opin. Ther. Targets 16, S17–S27. PubMed
Delgado O., Kaisani A. A., Spinola M., Xie X. J., Batten K. G., Minna J. D., Wright W. E., Shay J. W. (2011). Multipotent capacity of immortalized human bronchial epithelial cells. PLoS One 6, e22023.. PubMed PMC
Du P., Kibbe W. A., Lin S. M. (2008). lumi: A pipeline for processing Illumina microarray. Bioinformatics 24, 1547–1548. PubMed
Ekman S., Wynes M. W., Hirsch F. R. (2012). The mTOR pathway in lung cancer and implications for therapy and biomarker analysis. J. Thorac. Oncol. 7, 947–953. PubMed
Ensell M. X., Whong W. Z., Heng Z. C., Nath J., Ong T. (1998). In vitro and in vivo transformation in rat tracheal epithelial cells exposed to diesel emission particles and related compounds. Mutat. Res. 412, 283–291. PubMed
Gazdar A. F., Gao B., Minna J. D. (2010). Lung cancer cell lines: Useless artifacts or invaluable tools for medical science? Lung Cancer 68, 309–318. PubMed PMC
Goldstein J. L., Brown M. S. (1990). Regulation of the mevalonate pathway. Nature 343, 425–430. PubMed
Gualtieri M., Longhin E., Mattioli M., Mantecca P., Tinaglia V., Mangano E., Proverbio M. C., Bestetti G., Camatini M., Battaglia C. (2012). Gene expression profiling of A549 cells exposed to Milan PM2.5. Toxicol. Lett 209, 136–145. PubMed
Gualtieri M., Ovrevik J., Mollerup S., Asare N., Longhin E., Dahlman H. J., Camatini M., Holme J. A. (2011). Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: Effects on DNA, mitochondria, AhR binding and spindle organization. Mutat. Res. 713, 18–31. PubMed
Gutzkow K. B., Langleite T. M., Meier S., Graupner A., Collins A. R., Brunborg G. (2013). High-throughput comet assay using 96 minigels. Mutagenesis 28, 333–340. PubMed
Hasegawa M. M., Nishi Y., Tsuda H., Inui N., Morimoto K. (1988). Effects of diesel exhaust particles on chromosome aberration, sister chromatid exchange and morphological transformation in cultured mammalian cells. Cancer Lett. 42, 61–66. PubMed
HEI Diesel Epidemiology Panel. 2015. Diesel Emissions and Lung Cancer: An Evaluation of Recent Epidemiological Evidence for Quantitative Risk Assessment. Special Report 19. Boston, MA: Health Effects Institute PubMed
Henderson R. F., Leung H. W., Harmsen A. G., McClellan R. O. (1988). Species differences in release of arachidonate metabolites in response to inhaled diluted diesel exhaust. Toxicol. Lett. 42, 325–332. PubMed
Jantzen K., Roursgaard M., Desler C., Loft S., Rasmussen L. J., Moller P. (2012). Oxidative damage to DNA by diesel exhaust particle exposure in co-cultures of human lung epithelial cells and macrophages. Mutagenesis 27, 693–701. PubMed
Kalluri R., Weinberg R. A. (2009). The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428. PubMed PMC
Karlic H., Thaler R., Gerner C., Grunt T., Proestling K., Haider F., Varga F. (2015). Inhibition of the mevalonate pathway affects epigenetic regulation in cancer cells. Cancer Genet. 208, 241–252. PubMed PMC
Kazmi N., Márquez-Garbán D. C., Aivazyan L., Hamilton N., Garon E. B., Goodglick L., Pietras R. J. M.-G. D. A. L. e. a. (2012). The role of estrogen, progesterone and aromatase in human non-small-cell lung cancer. Lung Cancer Manag. 1, 259–272. PubMed PMC
Klein S. G., Cambier S., Hennen J., Legay S., Serchi T., Nelissen I., Chary A., Moschini E., Krein A., Blömeke B., et al. (2017). Endothelial responses of the alveolar barrier in vitro in a dose-controlled exposure to diesel exhaust particulate matter. Part Fibre Toxicol. 14, 7. PubMed PMC
Konstantinopoulos P. A., Karamouzis M. V., Papavassiliou A. G. (2007). Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat. Rev. Drug Discov. 6, 541–555. PubMed
LaGier A. J., Manzo N. D., Dye J. A. (2013). Diesel exhaust particles induce aberrant alveolar epithelial directed cell movement by disruption of polarity mechanisms. J. Toxicol. Environ. Health A 76, 71–85. PubMed
Lamouille S., Xu J., Derynck R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196. PubMed PMC
Li N., Hao M., Phalen R. F., Hinds W. C., Nel A. E. (2003). Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin. Immunol. 109, 250–265. PubMed
Libalova H., Rossner P., Vrbova K., Brzicova T., Sikorova J., Vojtisek-Lom M., Beranek V., Klema J., Ciganek M., Neca J., et al. (2016). Comparative Analysis of Toxic Responses of Organic Extracts from Diesel and Selected Alternative Fuels Engine Emissions in Human Lung BEAS-2B Cells. Int. J. Mol. Sci. 17, 1833. PubMed PMC
Liu C. Y., Lin H. H., Tang M. J., Wang Y. K. (2015). Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget 6, 15966–15983. PubMed PMC
Longhin E., Capasso L., Battaglia C., Proverbio M. C., Cosentino C., Cifola I., Mangano E., Camatini M., Gualtieri M. (2016). Integrative transcriptomic and protein analysis of human bronchial BEAS-2B exposed to seasonal urban particulate matter. Environ. Pollut. 209, 87–98. PubMed
Menter D. G., Dubois R. N. (2012). Prostaglandins in cancer cell adhesion, migration, and invasion. Int. J. Cell Biol. 2012, 723419.. PubMed PMC
Morrow J. D., Hill K. E., Burk R. F., Nammour T. M., Badr K. F., Roberts L. J. (1990). A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci U. S. A. 87, 9383–9387. PubMed PMC
Nasarre P., Potiron V., Drabkin H., Roche J. l. (2010). Guidance molecules in lung cancer. Cell Adhes. Migr. 4, 130–145. PubMed PMC
Olsen A. K., Duale N., Bjoras M., Larsen C. T., Wiger R., Holme J. A., Seeberg E. C., Brunborg G. (2003). Limited repair of 8-hydroxy-7, 8-dihydroguanine residues in human testicular cells. Nucleic Acids Res. 31, 1351–1363. PubMed PMC
Opitz C. A., Litzenburger U. M., Sahm F., Ott M., Tritschler I., Trump S., Schumacher T., Jestaedt L., Schrenk D., Weller M., et al. (2011). An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478, 197–203. PubMed
Øvrevik J., Refsnes M., Låg M., Holme J. A., Schwarze P. E. (2015). Activation of proinflammatory responses in cells of the airway mucosa by particulate matter: Oxidant- and non-oxidant-mediated triggering mechanisms. Biomolecules 5, 1399–1440. PubMed PMC
Pálková L., Vondráček J., Trilecová L., Ciganek M., Pěnčíková K., Neča J., Milcová A., Topinka J., Machala M. (2015). The aryl hydrocarbon receptor-mediated and genotoxic effects of fractionated extract of standard reference diesel exhaust particle material in pulmonary, liver and prostate cells. Toxicol. In Vitro 29, 438–448. PubMed
Pallier K., Cessot A., Cote J. F., Just P. A., Cazes A., Fabre E., Danel C., Riquet M., Devouassoux-Shisheboran M., Ansieau S., et al. (2012). TWIST1 a new determinant of epithelial to mesenchymal transition in EGFR mutated lung adenocarcinoma. PLoS. One 7, e29954.. PubMed PMC
Paoli P., Giannoni E., Chiarugi P. (2013). Anoikis molecular pathways and its role in cancer progression. Biochim. Biophys. Acta 1833, 3481–3498. PubMed
Peinado H., Olmeda D., Cano A. (2007). Snail, Zeb and bHLH factors in tumour progression: An alliance against the epithelial phenotype? Nat. Rev. Cancer 7, 415–428. PubMed
Plantier L., Besnard V., Xu Y., Ikegami M., Wert S. E., Hunt A. N., Postle A. D., Whitsett J. A. (2012). Activation of sterol-response element-binding proteins (SREBP) in alveolar type II cells enhances lipogenesis causing pulmonary lipotoxicity. J. Biol. Chem. 287, 10099–10114. PubMed PMC
Pope C. A. III, Burnett R. T., Thun M. J., Calle E. E., Krewski D., Ito K., Thurston G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287, 1132–1141. PubMed PMC
Provoost S., Maes T., Pauwels N. S., Vanden Berghe T., Vandenabeele P., Lambrecht B. N., Joos G. F., Tournoy K. G. (2011). NLRP3/caspase-1-independent IL-1beta production mediates diesel exhaust particle-induced pulmonary inflammation. J. Immunol. 187, 3331–3337. PubMed
Ramirez R. D., Sheridan S., Girard L., Sato M., Kim Y., Pollack J., Peyton M., Zou Y., Kurie J. M., Dimaio J. M., et al. (2004). Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins. Cancer Res 64, 9027–9034. PubMed
Schaeffer D., Somarelli J. A., Hanna G., Palmer G. M., Garcia-Blanco M. A. (2014). Cellular migration and invasion uncoupled: Increased migration is not an inexorable consequence of epithelial-to-mesenchymal transition. Mol. Cell Biol. 34, 3486–3499. PubMed PMC
Schwarze P. E., Totlandsdal A. I., Lag M., Refsnes M., Holme J. A., Ovrevik J. (2013). Inflammation-related effects of diesel engine exhaust particles: Studies on lung cells in vitro. Biomed. Res. Int. 2013, 685142 PubMed PMC
Shimada T., Fujii-Kuriyama Y. (2004). Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci. 95, 1–6. PubMed PMC
Steffens S., Mach F. (2004). Anti-inflammatory properties of statins. Semin. Vasc. Med. 4, 417–422. PubMed
Sydbom A., Blomberg A., Parnia S., Stenfors N., Sandstrom T., Dahlen S. E. (2001). Health effects of diesel exhaust emissions. Eur. Respir. J. 17, 733–746. PubMed
Totlandsdal A. I., Cassee F. R., Schwarze P., Refsnes M., Lag M. (2010). Diesel exhaust particles induce CYP1A1 and pro-inflammatory responses via differential pathways in human bronchial epithelial cells. Part Fibre Toxicol. 7, 41–47. PubMed PMC
Toyokuni S., Okamoto K., Yodoi J., Hiai H. (1995). Persistent oxidative stress in cancer. FEBS Lett. 358, 1–3. PubMed
Vaz M., Hwang S. Y., Kagiampakis I., Phallen J., Patil A., O'Hagan H. M., Murphy L., Zahnow C. A., Gabrielson E., Velculescu V. E., et al. (2017). Chronic cigarette smoke-induced epigenomic changes precede sensitization of bronchial epithelial cells to single-step transformation by KRAS mutations. Cancer Cell 32, 360–376. PubMed PMC
Westerholm R., Egebäck K. E. (1994). Exhaust emissions from light- and heavy-duty vehicles: Chemical composition, impact of exhaust after treatment, and fuel parameters. Environ. Health Perspect. 102, 13–23. PubMed PMC