Monitoring On-Surface Chemical Reactions by Low-Energy Electron Microscopy: from Conformation Change to Ring Closure in 2D Molecular Gas

. 2025 Apr 04 ; 31 (20) : e202500561. [epub] 20250225

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39950395

Grantová podpora
22-05114S Grantová Agentura České Republiky
LM2023051 Ministerstvo Školství, Mládeže a Tělovýchovy
PID2021-122734OB-I00 MCIN/AEI
RED2022-134939-T MCIN/AEI
22058/PI/22 Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia

On-surface synthesis is a promising strategy for the preparation of molecules that are not achievable otherwise. Understanding the mechanism of on-surface reactions requires knowledge of the molecular structure and possible organization of reactants into supramolecular assemblies during the reaction. Scanning probe techniques are essential for the unambiguous identification of the products and for determining their electronic and magnetic properties. However, these are generally not capable of imaging the surface at reaction conditions and, therefore, answering some of the key questions about the reaction mechanism. Here, we show that real-time low-energy electron microscopy (LEEM) can monitor the surface processes in real time and provide the necessary complementary mechanistic insights into on-surface reactions. We monitor the intramolecular ring-closure reaction of 1,3,5-tris(7-methyl-α-carbolin-6-yl)benzene on the Au(111) surface and show that it takes place in the 2D molecular gas phase at elevated temperatures. Products condense into separate islands upon cooling, enabling fast and efficient assessment of product yields. This makes LEEM an efficient tool for studying intramolecular chemical reactions.

Zobrazit více v PubMed

Yang B., Dong B., Chi L., ACS Nano 2020, 14, 6376–6382. PubMed

Goronzy D. P., Ebrahimi M., Rosei F., Arramel, Fang Y., De Feyter S., Tait S. L., Wang C., Beton P. H., Wee A. T. S., Weiss P. S., Perepichka D. F., ACS Nano 2018, 12, 7445–7481. PubMed

Clair S., de Oteyza D. G., Chem. Rev. 2019, 119, 4717–4776. PubMed PMC

Grill L., Hecht S., Nat. Chem. 2020, 12, 115–130. PubMed

de Oteyza D. G., Frederiksen T., J. Phys. Condens. Matter 2022, 34, 443001. PubMed

Rascon E. C., Riss A., Matěj A., Wiengarten A., Mutombo P., Soler D., Jelinek P., Auwärter W., J. Am. Chem. Soc. 2023, 145, 967–977. PubMed

Zhao Y., Jiang K., Li C., Liu Y., Zhu G., Pizzochero M., Kaxiras E., Guan D., Li Y., Zheng H., Liu C., Jia J., Qin M., Zhuang X., Wang S., . Chem. 2023, 15, 53–60. PubMed

Di Giovannantonio M., Eimre K., Yakutovich A. V., Chen Q., Mishra S., Urgel J. I., Pignedoli C. A., Ruffieux P., Müllen K., Narita A., Fasel R., J. Am. Chem. Soc. 2019, 141, 12346–12354. PubMed

Urgel J. I., Mishra S., Hayashi H., Wilhelm J., Pignedoli C. A., Di Giovannantonio M., Widmer R., Yamashita M., Hieda N., Ruffieux P., Yamada H., Fasel R., Nat. Commun. 2019, 10, 861. PubMed PMC

Zuzak R., Dorel R., Kolmer M., Szymonski M., Godlewski S., Echavarren A. M., Angew. Chem. Int. Ed. 2018, 57, 10500–10505. PubMed PMC

Mallada B., de la Torre B., Mendieta-Moreno J. I., Nachtigallová D., Matěj A., Matoušek M., Mutombo P., Brabec J., Veis L., Cadart T., Kotora M., Jelínek P., J. Am. Chem. Soc. 2021, 143, 14694–14702. PubMed

Bischoff F., Riss A., Michelitsch G. S., Ducke J., Barth J. V., Reuter K., Auwärter W., J. Am. Chem. Soc. 2021, 143, 15131–15138. PubMed

Ji P., Dettmann D., Liu Y.-H., Berti G., Preetha Genesh N., Cui D., MacLean O., Perepichka D. F., Chi L., Rosei F., ACS Nano 2022, 16, 6506–6514. PubMed

Liu J., Abel M., Lin N., J. Phys. Chem. Lett. 2022, 13, 1356–1365. PubMed

Frezza F., Matěj A., Sánchez-Grande A., Carrera M., Mutombo P., Kumar M., Curiel D., Jelínek P., J. Am. Chem. Soc. 2024, 146, 3531–3538. PubMed PMC

Song L., Yang B., Fan X., Mao Y., Shan H., Wang J., Niu K., Hao Z., Zeng Z., Li Y., Zhao A., Lin H., Chi L., Li Q., J. Phys. Chem. Lett. 2022, 13, 8902–8907. PubMed

Elemans J. A. A. W., Lei S., De Feyter S., Angew. Chem. Int. Ed. 2009, 48, 7298–7332. PubMed

Shen Q., Gao H.-Y., Fuchs H., Nano Today 2017, 13, 77–96.

Song S., Pinar Solé A., Matěj A., Li G., Stetsovych O., Soler D., Yang H., Telychko M., Li J., Kumar M., Chen Q., Edalatmanesh S., Brabec J., Veis L., Wu J., Jelinek P., Lu J., Nat. Chem. 2024, 16, 938–944. PubMed

Yang Z., Freund H.-J., Prog. Surf. Sci. 2024, 99, 100744.

Björk J., J. Phys. Condens. Matter 2016, 28, 083002. PubMed

Biswas K., Chen Q., Obermann S., Ma J., Soler-Polo D., Melidonie J., Barragán A., Sánchez-Grande A., Lauwaet K., Gallego J. M., Miranda R., Écija D., Jelínek P., Feng X., Urgel J. I., Angew. Chem. Int. Ed. 2024, 136, e202318185. PubMed

Tromp R. M., IBM J. Res. Dev. 2000, 44, 503–516.

Bauer E., “Surface microscopy with low energy electrons: LEEM” J. Electron Spectrosc. Relat. Phenom. 2020, 241, 146806.

Wagner T., Antczak G., Ghanbari E., Navarro-Quezada A., Györök M., Volokitina A., Marschner F., Zeppenfeld P., Ultramicroscopy 2022, 233, 113427. PubMed

Martín-García L., Quesada A., Pérez L., Foerster M., Aballe L., de la Figuera J., Phys. Procedia 2016, 85, 12–19.

Meyer zu Heringdorf F.-J., J. Phys. Condens. Matter 2008, 20, 184007.

Procházka P., Gosalvez M. A., Kormoš L., de la Torre B., Gallardo A., Alberdi-Rodriguez J., Chutora T., Makoveev A. O., Shahsavar A., Arnau A., Jelínek P., Čechal J., ACS Nano 2020, 14, 7269–7279. PubMed

Procházka P., Kormoš L., Shahsavar A., Stará V., Makoveev A. O., Skála T., Blatnik M., Čechal J., Appl. Surf. Sci. 2021, 547, 149115.

Procházka P., Čechal J., Ultramicroscopy 2023, 253, 113799. PubMed

Jobst J., Boers L. M., Yin C., Aarts J., Tromp R. M., van der Molen S. J., Ultramicroscopy 2019, 200, 43–49. PubMed

Nataf G. F., Grysan P., Guennou M., Kreisel J., Martinotti D., Rountree C. L., Mathieu C., Barrett N., Sci. Rep. 2016, 6, 33098. PubMed PMC

Rodríguez L. M., Gómez P., Más-Montoya M., Abad J., Tárraga A., Cerdá J. I., Méndez J., Curiel D., Angew. Chem. Int. Ed. 2021, 60, 1782–1788. PubMed

Grunbaum B., Shephard G. C., Tilings and Patterns: Second Edition, Dover Publications Inc., 2016.

Springer M. A., Liu T.-J., Kuc A., Heine T., . Soc. Rev. 2020, 49, 2007–2019. PubMed

Ernst K., Phys. Status Solidi 2012, 249, 2057–2088.

Ernst K.-H., Chimia (Aarau). 2014, 68, 49. PubMed

Xu Y., Duan J.-J., Yi Z.-Y., Zhang K.-X., Chen T., Wang D., Surf. Sci. Rep. 2021, 76, 100531.

Antczak G., Wagner T., Wilgocka-Ślęzak D., Gołyszny B., Spiridis N., J. Phys. Chem. C 2024, 128, 5338–5344.

Makoveev A. O., Procházka P., Blatnik M., Kormoš L., Skála T., Čechal J., J. Phys. Chem. C 2022, 126, 9989–9997.

Abad J., Martínez J. I., Gómez P., Más-Montoya M., Rodríguez L., Cossaro A., Verdini A., Floreano L., Martín-Gago J. A., Curiel D., Méndez J., J. Phys. Chem. C 2023, 127, 11591–11599. PubMed PMC

Hill T. L., An Introduction to Statistical Thermodynamics, Dover Publications Inc., 1986.

Palma C.-A., Cecchini M., Samorì P., . Soc. Rev. 2012, 41, 3713. PubMed

Lei Y., Sun H., Tang Z., Zhou C., J. Phys. Chem. C 2022, 126, 14626–14633.

Giessibl F. J., Rev. Sci. Instrum. 2019, 90, 011101. PubMed

Gross L., Mohn F., Moll N., Liljeroth P., Meyer G., Science 2009, 325, 1110–1114. PubMed

Horcas I., Fernández R., Gómez-Rodríguez J. M., Colchero J., Gómez-Herrero J., Baro A. M., Rev. Sci. Instrum. 2007, 78, 013705. PubMed

Mendieta-Moreno J. I., Walker R. C., Lewis J. P., Gómez-Puertas P., Mendieta J., Ortega J., “Fireball/Amber: An Efficient Local-Orbital DFT QM/MM Method for Biomolecular Systems” J. Chem. Theory Comput. 2014, 10, 2185–2193. PubMed

Lewis J. P., Jelínek P., Ortega J., Demkov A. A., Trabada D. G., Haycock B., Wang H., Adams G., Tomfohr J. K., Abad E., Wang H., Drabold D. A., Phys. Status Solidi 2011, 248, 1989–2007.

Pearlman D. A., Case D. A., Caldwell J. W., Ross W. S., Cheatham T. E., DeBolt S., Ferguson D., Seibel G., Kollman P., Comput. Phys. Commun. 1995, 91, 1–41.

Pastor R. W., Brooks B. R., Szabo A., Mol. Phys. 1988, 65, 1409–1419.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...