On-Surface Synthesis of a Large-Scale 2D MOF with Competing π-d Ferromagnetic/Antiferromagnetic Order

. 2025 Jun 11 ; 147 (23) : 19575-19582. [epub] 20250530

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40445041

Metal-organic frameworks (MOFs) represent an interesting class of versatile materials with important properties, including magnetism. However, the synthesis of atomically precise large-scale 2D MOFs with nontrivial strong magnetic coupling represents a current research challenge. In this regard, we report on the synthesis of a high-quality large-scale 2D MOF, with strong π-d magnetic exchange coupling. To this aim, we present a new two-step synthetic approach that consists of the initial formation of an extended supramolecular organic framework on a Au(111) surface, establishing the large-scale order of organic ligands and their subsequent metalation by single cobalt atoms assisted by annealing. Moreover, we show that the usage of radical asymmetric organic ligands enables us to form a magnetic 2D MOF with strong π-d electron interactions. According to the multireference calculations, the 2D MOF shows complex spin interactions beyond the traditional superexchange mechanism, with the interplay between antiferromagnetic and ferromagnetic couplings. We anticipate that this synthetic strategy can be adapted to different approaches, such as liquid interfaces or insulating substrates, to synthesize high-quality 2D MOFs. Accompanied by the high control with atomic precision over the magnetic properties of the ligands and metals, this approach enables the formation of large-scale 2D MOFs with complex spin interactions, which will open new avenues in the field of 2D magnetic materials.

Zobrazit více v PubMed

Yaghi O. M., O’Keeffe M., Ockwig N. W., Chae H. K., Eddaoudi M., Kim J.. Reticular Synthesis and the Design of New Materials. Nature. 2003;423(6941):705–714. doi: 10.1038/nature01650. PubMed DOI

Yaghi O. M., Li H., Davis C., Richardson D., Groy T. L.. Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids. Acc. Chem. Res. 1998;31(8):474–484. doi: 10.1021/ar970151f. DOI

Dong L., Gao Z., Lin N.. Self-Assembly of Metal–Organic Coordination Structures on Surfaces. Prog. Surf. Sci. 2016;91(3):101–135. doi: 10.1016/j.progsurf.2016.08.001. DOI

Barth J. V.. Fresh Perspectives for Surface Coordination Chemistry. Surf. Sci. 2009;603(10):1533–1541. doi: 10.1016/j.susc.2008.09.049. DOI

Zhao M., Huang Y., Peng Y., Huang Z., Ma Q., Zhang H.. Two-Dimensional Metal–Organic Framework Nanosheets: Synthesis and Applications. Chem. Soc. Rev. 2018;47(16):6267–6295. doi: 10.1039/C8CS00268A. PubMed DOI

Xue Y., Zhao G., Yang R., Chu F., Chen J., Wang L., Huang X.. 2D Metal–Organic Framework-Based Materials for Electrocatalytic, Photocatalytic and Thermocatalytic Applications. Nanoscale. 2021;13(7):3911–3936. doi: 10.1039/D0NR09064F. PubMed DOI

Liu J., Abel M., Lin N.. On-Surface Synthesis: A New Route Realizing Single-Layer Conjugated Metal–Organic Structures. J. Phys. Chem. Lett. 2022;13(5):1356–1365. doi: 10.1021/acs.jpclett.1c04134. PubMed DOI

Cucinotta A., Kahlfuss C., Minoia A., Eyley S., Zwaenepoel K., Velpula G., Thielemans W., Lazzaroni R., Bulach V., Hosseini M. W., Mali K. S., De Feyter S.. Metal Ion and Guest-Mediated Spontaneous Resolution and Solvent-Induced Chiral Symmetry Breaking in Guanine-Based Metallosupramolecular Networks. J. Am. Chem. Soc. 2023;145(2):1194–1205. doi: 10.1021/jacs.2c10933. PubMed DOI

Thorarinsdottir A. E., Harris T. D.. Metal–Organic Framework Magnets. Chem. Rev. 2020;120(16):8716–8789. doi: 10.1021/acs.chemrev.9b00666. PubMed DOI

Umbach T. R., Bernien M., Hermanns C. F., Krüger A., Sessi V., Fernandez-Torrente I., Stoll P., Pascual J. I., Franke K. J., Kuch W.. Ferromagnetic Coupling of Mononuclear Fe Centers in a Self-Assembled Metal-Organic Network on Au(111) Phys. Rev. Lett. 2012;109(26):267207. doi: 10.1103/PhysRevLett.109.267207. PubMed DOI

Abdurakhmanova N., Tseng T.-C., Langner A., Kley C. S., Sessi V., Stepanow S., Kern K.. Superexchange-Mediated Ferromagnetic Coupling in Two-Dimensional Ni-TCNQ Networks on Metal Surfaces. Phys. Rev. Lett. 2013;110(2):027202. doi: 10.1103/PhysRevLett.110.027202. PubMed DOI

Giovanelli L., Savoyant A., Abel M., Maccherozzi F., Ksari Y., Koudia M., Hayn R., Choueikani F., Otero E., Ohresser P., Themlin J.-M., Dhesi S. S., Clair S.. Magnetic Coupling and Single-Ion Anisotropy in Surface-Supported Mn-Based Metal–Organic Networks. J. Phys. Chem. C. 2014;118(22):11738–11744. doi: 10.1021/jp502209q. DOI

Moreno D., Parreiras S. O., Urgel J. I., Muñiz-Cano B., Martín-Fuentes C., Lauwaet K., Valvidares M., Valbuena M. A., Gallego J. M., Martínez J. I., Gargiani P., Camarero J., Miranda R., Écija D.. Engineering Periodic Dinuclear Lanthanide-Directed Networks Featuring Tunable Energy Level Alignment and Magnetic Anisotropy by Metal Exchange. Small. 2022;18(22):2107073. doi: 10.1002/smll.202107073. PubMed DOI

Parreiras S. O., Martín-Fuentes C., Moreno D., Mathialagan S. K., Biswas K., Muñiz-Cano B., Lauwaet K., Valvidares M., Valbuena M. A., Urgel J. I., Gargiani P., Camarero J., Miranda R., Martínez J. I., Gallego J. M., Écija D.. 2D Co-Directed Metal–Organic Networks Featuring Strong Antiferromagnetism and Perpendicular Anisotropy. Small. 2024;20(22):2309555. doi: 10.1002/smll.202309555. PubMed DOI

Lu Y., Hu Z., Petkov P., Fu S., Qi H., Huang C., Liu Y., Huang X., Wang M., Zhang P., Kaiser U., Bonn M., Wang H. I., Samorì P., Coronado E., Dong R., Feng X.. Tunable Charge Transport and Spin Dynamics in Two-Dimensional Conjugated Metal–Organic Frameworks. J. Am. Chem. Soc. 2024;146:2574. doi: 10.1021/jacs.3c11172. PubMed DOI

Jeon I.-R., Negru B., Van Duyne R. P., Harris T. D.. A 2D Semiquinone Radical-Containing Microporous Magnet with Solvent-Induced Switching from Tc = 26 to 80 K. J. Am. Chem. Soc. 2015;137(50):15699–15702. doi: 10.1021/jacs.5b10382. PubMed DOI

Dong R., Zhang Z., Tranca D. C., Zhou S., Wang M., Adler P., Liao Z., Liu F., Sun Y., Shi W., Zhang Z., Zschech E., Mannsfeld S. C. B., Felser C., Feng X.. A Coronene-Based Semiconducting Two-Dimensional Metal-Organic Framework with Ferromagnetic Behavior. Nat. Commun. 2018;9(1):2637. doi: 10.1038/s41467-018-05141-4. PubMed DOI PMC

Wang X.-B., Xia B., Lyu C.-K., Kim D., Li E., Fu S.-Q., Chen J.-Y., Liu P.-N., Liu F., Lin N.. A P-Orbital Honeycomb-Kagome Lattice Realized in a Two-Dimensional Metal-Organic Framework. Commun. Chem. 2023;6(1):1–6. doi: 10.1038/s42004-023-00869-7. PubMed DOI PMC

Lobo-Checa J., Hernández-López L., Otrokov M. M., Piquero-Zulaica I., Candia A. E., Gargiani P., Serrate D., Delgado F., Valvidares M., Cerdá J., Arnau A., Bartolomé F.. Ferromagnetism on an Atom-Thick & Extended 2D Metal-Organic Coordination Network. Nat. Commun. 2024;15(1):1858. doi: 10.1038/s41467-024-46115-z. PubMed DOI PMC

Gao Z., Gao Y., Hua M., Liu J., Huang L., Lin N.. Design and Synthesis of a Single-Layer Ferromagnetic Metal–Organic Framework with Topological Nontrivial Gaps. J. Phys. Chem. C. 2020;124(49):27017–27023. doi: 10.1021/acs.jpcc.0c08140. DOI

López-Cabrelles J., Mañas-Valero S., Vitórica-Yrezábal I. J., Šiškins M., Lee M., Steeneken P. G., van der Zant H. S. J., Mínguez Espallargas G., Coronado E.. Chemical Design and Magnetic Ordering in Thin Layers of 2D Metal–Organic Frameworks (MOFs) J. Am. Chem. Soc. 2021;143(44):18502–18510. doi: 10.1021/jacs.1c07802. PubMed DOI PMC

Lyu C.-K., Gao Y.-F., Gao Z.-A., Mo S.-Y., Hua M.-Q., Li E., Fu S.-Q., Chen J.-Y., Liu P.-N., Huang L., Lin N.. Synthesis of Single-Layer Two-Dimensional Metal–Organic Frameworks M3­(HAT)­2 (M = Ni, Fe, Co, HAT = 1,4,5,8,9,12-Hexaazatriphenylene) Using an On-Surface Reaction. Angew. Chem., Int. Ed. 2022;61(27):e202204528. doi: 10.1002/anie.202204528. PubMed DOI

Anderson P. W.. Antiferromagnetism. Theory of Superexchange Interaction. Phys. Rev. 1950;79(2):350–356. doi: 10.1103/PhysRev.79.350. DOI

Mínguez Espallargas G., Coronado E.. Magnetic Functionalities in MOFs: From the Framework to the Pore. Chem. Soc. Rev. 2018;47(2):533–557. doi: 10.1039/C7CS00653E. PubMed DOI

Faust T. B., D’Alessandro D. M.. Radicals in Metal–Organic Frameworks. RSC Adv. 2014;4(34):17498–17512. doi: 10.1039/C4RA00958D. DOI

Maspoch D., Ruiz-Molina D., Wurst K., Domingo N., Cavallini M., Biscarini F., Tejada J., Rovira C., Veciana J.. A Nanoporous Molecular Magnet with Reversible Solvent-Induced Mechanical and Magnetic Properties. Nat. Mater. 2003;2(3):190–195. doi: 10.1038/nmat834. PubMed DOI

Antalík A., Nachtigallová D., Lo R., Matoušek M., Lang J., Legeza Ö., Pittner J., Hobza P., Veis L.. Ground State of the Fe­(II)-Porphyrin Model System Corresponds to Quintet: A DFT and DMRG-Based Tailored CC Study. Phys. Chem. Chem. Phys. 2020;22(30):17033–17037. doi: 10.1039/D0CP03086D. PubMed DOI

Matsuura H., Ogata M., Miyake K., Fukuyama H.. Theory of Mechanism of π–d Interaction in Iron–Phthalocyanine. J. Phys. Soc. Jpn. 2012;81(10):104705. doi: 10.1143/JPSJ.81.104705. DOI

Takano Y., Kitagawa Y., Onishi T., Yoshioka Y., Yamaguchi K., Koga N., Iwamura H.. Theoretical Studies of Magnetic Interactions in Mn­(II)­(Hfac)­2­{di­(4-Pyridyl)­Phenylcarbene} and Cu­(II)­(Hfac)­2­{di­(4-Pyridyl)­Phenylcarbene} J. Am. Chem. Soc. 2002;124(3):450–461. doi: 10.1021/ja015967x. PubMed DOI

Lv H., Wu D., Cui X., Wu X., Yang J.. Enhancing Magnetic Ordering in Two-Dimensional Metal–Organic Frameworks via Frontier Molecular Orbital Engineering. J. Phys. Chem. Lett. 2024;15:9960–9967. doi: 10.1021/acs.jpclett.4c02136. PubMed DOI

Sun Q., Mateo L. M., Robles R., Ruffieux P., Bottari G., Torres T., Fasel R., Lorente N.. Magnetic Interplay between π-Electrons of Open-Shell Porphyrins and d-Electrons of Their Central Transition Metal Ions. Advanced Science. 2022;9(19):2105906. doi: 10.1002/advs.202105906. PubMed DOI PMC

Li D.-Y., Zheng Y., Ortiz R., Wang B.-X., Jiang Y., Yuan B., Zhang X.-Y., Li C., Liu L., Liu X., Guan D., Li Y., Zheng H., Liu C., Jia J., Frederiksen T., Liu P.-N., Wang S.. Magnetic Exchange Interaction between Unpaired π- and d-Electrons in Nanographene-Metal Coordination Complexes. National Science Review. 2025;12(4):nwaf033. doi: 10.1093/nsr/nwaf033. PubMed DOI PMC

Zhang X., Li X., Li J., Pan H., Yu M., Zhang Y., Zhu G.-L., Xu Z., Shen Z., Hou S., Zang Y., Wang B., Wu K., Jiang S.-D., Castelli I. E., Peng L., Hedegård P., Gao S., Lü J.-T., Wang Y.. Atomic-Scale Observation of d-π-d Spin Coupling in Coordination Structures. arXiv. 2025:2501.01162. doi: 10.48550/arXiv.2501.01162. DOI

Coronado E.. Molecular Magnetism: From Chemical Design to Spin Control in Molecules, Materials and Devices. Nat. Rev. Mater. 2020;5(2):87–104. doi: 10.1038/s41578-019-0146-8. DOI

Jiang Q., Zhou C., Meng H., Han Y., Shi X., Zhan C., Zhang R.. Two-Dimensional Metal–Organic Framework Nanosheets: Synthetic Methodologies and Electrocatalytic Applications. J. Mater. Chem. A. 2020;8(31):15271–15301. doi: 10.1039/D0TA00468E. DOI

de Oteyza D. G., Frederiksen T.. Carbon-Based Nanostructures as a Versatile Platform for Tunable π-Magnetism. J. Phys.: Condens. Matter. 2022;34(44):443001. doi: 10.1088/1361-648X/ac8a7f. PubMed DOI

Frezza F., Matěj A., Sánchez-Grande A., Carrera M., Mutombo P., Kumar M., Curiel D., Jelínek P.. On-Surface Synthesis of a Radical 2D Supramolecular Organic Framework. J. Am. Chem. Soc. 2024;146(5):3531–3538. doi: 10.1021/jacs.3c13702. PubMed DOI PMC

Ternes M., Heinrich A. J., Schneider W.-D.. Spectroscopic Manifestations of the Kondo Effect on Single Adatoms. J. Phys.: Condens. Matter. 2009;21(5):053001. doi: 10.1088/0953-8984/21/5/053001. PubMed DOI

Kondo J.. Resistance Minimum in Dilute Magnetic Alloys. Prog. Theor. Phys. 1964;32(1):37–49. doi: 10.1143/PTP.32.37. DOI

Procházka P., Frezza F., Sánchez-Grande A., Carrera M., Chen Q., Stará V., Kurowská A., Curiel D., Jelínek P., Čechal J.. Monitoring On-Surface Chemical Reactions by Low-Energy Electron Microscopy: From Conformation Change to Ring Closure in 2D Molecular Gas. Chem.Eur. J. 2025;31:e202500561. doi: 10.1002/chem.202500561. PubMed DOI PMC

Gross L., Mohn F., Moll N., Liljeroth P., Meyer G.. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science. 2009;325(5944):1110–1114. doi: 10.1126/science.1176210. PubMed DOI

Verlhac B., Bachellier N., Garnier L., Ormaza M., Abufager P., Robles R., Bocquet M.-L., Ternes M., Lorente N., Limot L.. Atomic-Scale Spin Sensing with a Single Molecule at the Apex of a Scanning Tunneling Microscope. Science. 2019;366(6465):623–627. doi: 10.1126/science.aax8222. PubMed DOI

Wäckerlin C., Cahlík A., Goikoetxea J., Stetsovych O., Medvedeva D., Redondo J., Švec M., Delley B., Ondráček M., Pinar A., Blanco-Rey M., Kolorenč J., Arnau A., Jelínek P.. Role of the Magnetic Anisotropy in Atomic-Spin Sensing of 1D Molecular Chains. ACS Nano. 2022;16(10):16402–16413. doi: 10.1021/acsnano.2c05609. PubMed DOI

Song S., Pinar Solé A., Matěj A., Li G., Stetsovych O., Soler D., Yang H., Telychko M., Li J., Kumar M., Chen Q., Edalatmanesh S., Brabec J., Veis L., Wu J., Jelinek P., Lu J.. Highly Entangled Polyradical Nanographene with Coexisting Strong Correlation and Topological Frustration. Nat. Chem. 2024;16(6):938–944. doi: 10.1038/s41557-024-01453-9. PubMed DOI

Pinar Solé A., Kumar M., Soler-Polo D., Stetsovych O., Jelínek P.. Nickelocene SPM Tip as a Molecular Spin Sensor. J. Phys.: Condens. Matter. 2025;37(9):095802. doi: 10.1088/1361-648X/ad9c08. PubMed DOI

Martin R. L.. Natural Transition Orbitals. J. Chem. Phys. 2003;118(11):4775–4777. doi: 10.1063/1.1558471. DOI

Adamo C., Barone V.. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0Model. J. Chem. Phys. 1999;110(13):6158–6170. doi: 10.1063/1.478522. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...