On-Surface Synthesis of a Large-Scale 2D MOF with Competing π-d Ferromagnetic/Antiferromagnetic Order
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40445041
PubMed Central
PMC12164333
DOI
10.1021/jacs.4c17993
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Metal-organic frameworks (MOFs) represent an interesting class of versatile materials with important properties, including magnetism. However, the synthesis of atomically precise large-scale 2D MOFs with nontrivial strong magnetic coupling represents a current research challenge. In this regard, we report on the synthesis of a high-quality large-scale 2D MOF, with strong π-d magnetic exchange coupling. To this aim, we present a new two-step synthetic approach that consists of the initial formation of an extended supramolecular organic framework on a Au(111) surface, establishing the large-scale order of organic ligands and their subsequent metalation by single cobalt atoms assisted by annealing. Moreover, we show that the usage of radical asymmetric organic ligands enables us to form a magnetic 2D MOF with strong π-d electron interactions. According to the multireference calculations, the 2D MOF shows complex spin interactions beyond the traditional superexchange mechanism, with the interplay between antiferromagnetic and ferromagnetic couplings. We anticipate that this synthetic strategy can be adapted to different approaches, such as liquid interfaces or insulating substrates, to synthesize high-quality 2D MOFs. Accompanied by the high control with atomic precision over the magnetic properties of the ligands and metals, this approach enables the formation of large-scale 2D MOFs with complex spin interactions, which will open new avenues in the field of 2D magnetic materials.
CATRIN RCPTM Palacký University Šlechtitelů 27 783 71 Olomouc Czech Republic
Department of Organic Chemistry University of Murcia Campus of Espinardo 30100 Murcia Spain
Institute of Physics of Czech Academy of Sciences Cukrovarnická 10 16200 Prague 6 Czech Republic
Zobrazit více v PubMed
Yaghi O. M., O’Keeffe M., Ockwig N. W., Chae H. K., Eddaoudi M., Kim J.. Reticular Synthesis and the Design of New Materials. Nature. 2003;423(6941):705–714. doi: 10.1038/nature01650. PubMed DOI
Yaghi O. M., Li H., Davis C., Richardson D., Groy T. L.. Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids. Acc. Chem. Res. 1998;31(8):474–484. doi: 10.1021/ar970151f. DOI
Dong L., Gao Z., Lin N.. Self-Assembly of Metal–Organic Coordination Structures on Surfaces. Prog. Surf. Sci. 2016;91(3):101–135. doi: 10.1016/j.progsurf.2016.08.001. DOI
Barth J. V.. Fresh Perspectives for Surface Coordination Chemistry. Surf. Sci. 2009;603(10):1533–1541. doi: 10.1016/j.susc.2008.09.049. DOI
Zhao M., Huang Y., Peng Y., Huang Z., Ma Q., Zhang H.. Two-Dimensional Metal–Organic Framework Nanosheets: Synthesis and Applications. Chem. Soc. Rev. 2018;47(16):6267–6295. doi: 10.1039/C8CS00268A. PubMed DOI
Xue Y., Zhao G., Yang R., Chu F., Chen J., Wang L., Huang X.. 2D Metal–Organic Framework-Based Materials for Electrocatalytic, Photocatalytic and Thermocatalytic Applications. Nanoscale. 2021;13(7):3911–3936. doi: 10.1039/D0NR09064F. PubMed DOI
Liu J., Abel M., Lin N.. On-Surface Synthesis: A New Route Realizing Single-Layer Conjugated Metal–Organic Structures. J. Phys. Chem. Lett. 2022;13(5):1356–1365. doi: 10.1021/acs.jpclett.1c04134. PubMed DOI
Cucinotta A., Kahlfuss C., Minoia A., Eyley S., Zwaenepoel K., Velpula G., Thielemans W., Lazzaroni R., Bulach V., Hosseini M. W., Mali K. S., De Feyter S.. Metal Ion and Guest-Mediated Spontaneous Resolution and Solvent-Induced Chiral Symmetry Breaking in Guanine-Based Metallosupramolecular Networks. J. Am. Chem. Soc. 2023;145(2):1194–1205. doi: 10.1021/jacs.2c10933. PubMed DOI
Thorarinsdottir A. E., Harris T. D.. Metal–Organic Framework Magnets. Chem. Rev. 2020;120(16):8716–8789. doi: 10.1021/acs.chemrev.9b00666. PubMed DOI
Umbach T. R., Bernien M., Hermanns C. F., Krüger A., Sessi V., Fernandez-Torrente I., Stoll P., Pascual J. I., Franke K. J., Kuch W.. Ferromagnetic Coupling of Mononuclear Fe Centers in a Self-Assembled Metal-Organic Network on Au(111) Phys. Rev. Lett. 2012;109(26):267207. doi: 10.1103/PhysRevLett.109.267207. PubMed DOI
Abdurakhmanova N., Tseng T.-C., Langner A., Kley C. S., Sessi V., Stepanow S., Kern K.. Superexchange-Mediated Ferromagnetic Coupling in Two-Dimensional Ni-TCNQ Networks on Metal Surfaces. Phys. Rev. Lett. 2013;110(2):027202. doi: 10.1103/PhysRevLett.110.027202. PubMed DOI
Giovanelli L., Savoyant A., Abel M., Maccherozzi F., Ksari Y., Koudia M., Hayn R., Choueikani F., Otero E., Ohresser P., Themlin J.-M., Dhesi S. S., Clair S.. Magnetic Coupling and Single-Ion Anisotropy in Surface-Supported Mn-Based Metal–Organic Networks. J. Phys. Chem. C. 2014;118(22):11738–11744. doi: 10.1021/jp502209q. DOI
Moreno D., Parreiras S. O., Urgel J. I., Muñiz-Cano B., Martín-Fuentes C., Lauwaet K., Valvidares M., Valbuena M. A., Gallego J. M., Martínez J. I., Gargiani P., Camarero J., Miranda R., Écija D.. Engineering Periodic Dinuclear Lanthanide-Directed Networks Featuring Tunable Energy Level Alignment and Magnetic Anisotropy by Metal Exchange. Small. 2022;18(22):2107073. doi: 10.1002/smll.202107073. PubMed DOI
Parreiras S. O., Martín-Fuentes C., Moreno D., Mathialagan S. K., Biswas K., Muñiz-Cano B., Lauwaet K., Valvidares M., Valbuena M. A., Urgel J. I., Gargiani P., Camarero J., Miranda R., Martínez J. I., Gallego J. M., Écija D.. 2D Co-Directed Metal–Organic Networks Featuring Strong Antiferromagnetism and Perpendicular Anisotropy. Small. 2024;20(22):2309555. doi: 10.1002/smll.202309555. PubMed DOI
Lu Y., Hu Z., Petkov P., Fu S., Qi H., Huang C., Liu Y., Huang X., Wang M., Zhang P., Kaiser U., Bonn M., Wang H. I., Samorì P., Coronado E., Dong R., Feng X.. Tunable Charge Transport and Spin Dynamics in Two-Dimensional Conjugated Metal–Organic Frameworks. J. Am. Chem. Soc. 2024;146:2574. doi: 10.1021/jacs.3c11172. PubMed DOI
Jeon I.-R., Negru B., Van Duyne R. P., Harris T. D.. A 2D Semiquinone Radical-Containing Microporous Magnet with Solvent-Induced Switching from Tc = 26 to 80 K. J. Am. Chem. Soc. 2015;137(50):15699–15702. doi: 10.1021/jacs.5b10382. PubMed DOI
Dong R., Zhang Z., Tranca D. C., Zhou S., Wang M., Adler P., Liao Z., Liu F., Sun Y., Shi W., Zhang Z., Zschech E., Mannsfeld S. C. B., Felser C., Feng X.. A Coronene-Based Semiconducting Two-Dimensional Metal-Organic Framework with Ferromagnetic Behavior. Nat. Commun. 2018;9(1):2637. doi: 10.1038/s41467-018-05141-4. PubMed DOI PMC
Wang X.-B., Xia B., Lyu C.-K., Kim D., Li E., Fu S.-Q., Chen J.-Y., Liu P.-N., Liu F., Lin N.. A P-Orbital Honeycomb-Kagome Lattice Realized in a Two-Dimensional Metal-Organic Framework. Commun. Chem. 2023;6(1):1–6. doi: 10.1038/s42004-023-00869-7. PubMed DOI PMC
Lobo-Checa J., Hernández-López L., Otrokov M. M., Piquero-Zulaica I., Candia A. E., Gargiani P., Serrate D., Delgado F., Valvidares M., Cerdá J., Arnau A., Bartolomé F.. Ferromagnetism on an Atom-Thick & Extended 2D Metal-Organic Coordination Network. Nat. Commun. 2024;15(1):1858. doi: 10.1038/s41467-024-46115-z. PubMed DOI PMC
Gao Z., Gao Y., Hua M., Liu J., Huang L., Lin N.. Design and Synthesis of a Single-Layer Ferromagnetic Metal–Organic Framework with Topological Nontrivial Gaps. J. Phys. Chem. C. 2020;124(49):27017–27023. doi: 10.1021/acs.jpcc.0c08140. DOI
López-Cabrelles J., Mañas-Valero S., Vitórica-Yrezábal I. J., Šiškins M., Lee M., Steeneken P. G., van der Zant H. S. J., Mínguez Espallargas G., Coronado E.. Chemical Design and Magnetic Ordering in Thin Layers of 2D Metal–Organic Frameworks (MOFs) J. Am. Chem. Soc. 2021;143(44):18502–18510. doi: 10.1021/jacs.1c07802. PubMed DOI PMC
Lyu C.-K., Gao Y.-F., Gao Z.-A., Mo S.-Y., Hua M.-Q., Li E., Fu S.-Q., Chen J.-Y., Liu P.-N., Huang L., Lin N.. Synthesis of Single-Layer Two-Dimensional Metal–Organic Frameworks M3(HAT)2 (M = Ni, Fe, Co, HAT = 1,4,5,8,9,12-Hexaazatriphenylene) Using an On-Surface Reaction. Angew. Chem., Int. Ed. 2022;61(27):e202204528. doi: 10.1002/anie.202204528. PubMed DOI
Anderson P. W.. Antiferromagnetism. Theory of Superexchange Interaction. Phys. Rev. 1950;79(2):350–356. doi: 10.1103/PhysRev.79.350. DOI
Mínguez Espallargas G., Coronado E.. Magnetic Functionalities in MOFs: From the Framework to the Pore. Chem. Soc. Rev. 2018;47(2):533–557. doi: 10.1039/C7CS00653E. PubMed DOI
Faust T. B., D’Alessandro D. M.. Radicals in Metal–Organic Frameworks. RSC Adv. 2014;4(34):17498–17512. doi: 10.1039/C4RA00958D. DOI
Maspoch D., Ruiz-Molina D., Wurst K., Domingo N., Cavallini M., Biscarini F., Tejada J., Rovira C., Veciana J.. A Nanoporous Molecular Magnet with Reversible Solvent-Induced Mechanical and Magnetic Properties. Nat. Mater. 2003;2(3):190–195. doi: 10.1038/nmat834. PubMed DOI
Antalík A., Nachtigallová D., Lo R., Matoušek M., Lang J., Legeza Ö., Pittner J., Hobza P., Veis L.. Ground State of the Fe(II)-Porphyrin Model System Corresponds to Quintet: A DFT and DMRG-Based Tailored CC Study. Phys. Chem. Chem. Phys. 2020;22(30):17033–17037. doi: 10.1039/D0CP03086D. PubMed DOI
Matsuura H., Ogata M., Miyake K., Fukuyama H.. Theory of Mechanism of π–d Interaction in Iron–Phthalocyanine. J. Phys. Soc. Jpn. 2012;81(10):104705. doi: 10.1143/JPSJ.81.104705. DOI
Takano Y., Kitagawa Y., Onishi T., Yoshioka Y., Yamaguchi K., Koga N., Iwamura H.. Theoretical Studies of Magnetic Interactions in Mn(II)(Hfac)2{di(4-Pyridyl)Phenylcarbene} and Cu(II)(Hfac)2{di(4-Pyridyl)Phenylcarbene} J. Am. Chem. Soc. 2002;124(3):450–461. doi: 10.1021/ja015967x. PubMed DOI
Lv H., Wu D., Cui X., Wu X., Yang J.. Enhancing Magnetic Ordering in Two-Dimensional Metal–Organic Frameworks via Frontier Molecular Orbital Engineering. J. Phys. Chem. Lett. 2024;15:9960–9967. doi: 10.1021/acs.jpclett.4c02136. PubMed DOI
Sun Q., Mateo L. M., Robles R., Ruffieux P., Bottari G., Torres T., Fasel R., Lorente N.. Magnetic Interplay between π-Electrons of Open-Shell Porphyrins and d-Electrons of Their Central Transition Metal Ions. Advanced Science. 2022;9(19):2105906. doi: 10.1002/advs.202105906. PubMed DOI PMC
Li D.-Y., Zheng Y., Ortiz R., Wang B.-X., Jiang Y., Yuan B., Zhang X.-Y., Li C., Liu L., Liu X., Guan D., Li Y., Zheng H., Liu C., Jia J., Frederiksen T., Liu P.-N., Wang S.. Magnetic Exchange Interaction between Unpaired π- and d-Electrons in Nanographene-Metal Coordination Complexes. National Science Review. 2025;12(4):nwaf033. doi: 10.1093/nsr/nwaf033. PubMed DOI PMC
Zhang X., Li X., Li J., Pan H., Yu M., Zhang Y., Zhu G.-L., Xu Z., Shen Z., Hou S., Zang Y., Wang B., Wu K., Jiang S.-D., Castelli I. E., Peng L., Hedegård P., Gao S., Lü J.-T., Wang Y.. Atomic-Scale Observation of d-π-d Spin Coupling in Coordination Structures. arXiv. 2025:2501.01162. doi: 10.48550/arXiv.2501.01162. DOI
Coronado E.. Molecular Magnetism: From Chemical Design to Spin Control in Molecules, Materials and Devices. Nat. Rev. Mater. 2020;5(2):87–104. doi: 10.1038/s41578-019-0146-8. DOI
Jiang Q., Zhou C., Meng H., Han Y., Shi X., Zhan C., Zhang R.. Two-Dimensional Metal–Organic Framework Nanosheets: Synthetic Methodologies and Electrocatalytic Applications. J. Mater. Chem. A. 2020;8(31):15271–15301. doi: 10.1039/D0TA00468E. DOI
de Oteyza D. G., Frederiksen T.. Carbon-Based Nanostructures as a Versatile Platform for Tunable π-Magnetism. J. Phys.: Condens. Matter. 2022;34(44):443001. doi: 10.1088/1361-648X/ac8a7f. PubMed DOI
Frezza F., Matěj A., Sánchez-Grande A., Carrera M., Mutombo P., Kumar M., Curiel D., Jelínek P.. On-Surface Synthesis of a Radical 2D Supramolecular Organic Framework. J. Am. Chem. Soc. 2024;146(5):3531–3538. doi: 10.1021/jacs.3c13702. PubMed DOI PMC
Ternes M., Heinrich A. J., Schneider W.-D.. Spectroscopic Manifestations of the Kondo Effect on Single Adatoms. J. Phys.: Condens. Matter. 2009;21(5):053001. doi: 10.1088/0953-8984/21/5/053001. PubMed DOI
Kondo J.. Resistance Minimum in Dilute Magnetic Alloys. Prog. Theor. Phys. 1964;32(1):37–49. doi: 10.1143/PTP.32.37. DOI
Procházka P., Frezza F., Sánchez-Grande A., Carrera M., Chen Q., Stará V., Kurowská A., Curiel D., Jelínek P., Čechal J.. Monitoring On-Surface Chemical Reactions by Low-Energy Electron Microscopy: From Conformation Change to Ring Closure in 2D Molecular Gas. Chem.Eur. J. 2025;31:e202500561. doi: 10.1002/chem.202500561. PubMed DOI PMC
Gross L., Mohn F., Moll N., Liljeroth P., Meyer G.. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science. 2009;325(5944):1110–1114. doi: 10.1126/science.1176210. PubMed DOI
Verlhac B., Bachellier N., Garnier L., Ormaza M., Abufager P., Robles R., Bocquet M.-L., Ternes M., Lorente N., Limot L.. Atomic-Scale Spin Sensing with a Single Molecule at the Apex of a Scanning Tunneling Microscope. Science. 2019;366(6465):623–627. doi: 10.1126/science.aax8222. PubMed DOI
Wäckerlin C., Cahlík A., Goikoetxea J., Stetsovych O., Medvedeva D., Redondo J., Švec M., Delley B., Ondráček M., Pinar A., Blanco-Rey M., Kolorenč J., Arnau A., Jelínek P.. Role of the Magnetic Anisotropy in Atomic-Spin Sensing of 1D Molecular Chains. ACS Nano. 2022;16(10):16402–16413. doi: 10.1021/acsnano.2c05609. PubMed DOI
Song S., Pinar Solé A., Matěj A., Li G., Stetsovych O., Soler D., Yang H., Telychko M., Li J., Kumar M., Chen Q., Edalatmanesh S., Brabec J., Veis L., Wu J., Jelinek P., Lu J.. Highly Entangled Polyradical Nanographene with Coexisting Strong Correlation and Topological Frustration. Nat. Chem. 2024;16(6):938–944. doi: 10.1038/s41557-024-01453-9. PubMed DOI
Pinar Solé A., Kumar M., Soler-Polo D., Stetsovych O., Jelínek P.. Nickelocene SPM Tip as a Molecular Spin Sensor. J. Phys.: Condens. Matter. 2025;37(9):095802. doi: 10.1088/1361-648X/ad9c08. PubMed DOI
Martin R. L.. Natural Transition Orbitals. J. Chem. Phys. 2003;118(11):4775–4777. doi: 10.1063/1.1558471. DOI
Adamo C., Barone V.. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0Model. J. Chem. Phys. 1999;110(13):6158–6170. doi: 10.1063/1.478522. DOI