Highly entangled polyradical nanographene with coexisting strong correlation and topological frustration

. 2024 Jun ; 16 (6) : 938-944. [epub] 20240219

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38374456

Grantová podpora
A20E5c0089 Agency for Science, Technology and Research (A*STAR)
MOE2019-T2-2-044 Ministry of Education - Singapore (MOE)

Odkazy

PubMed 38374456
DOI 10.1038/s41557-024-01453-9
PII: 10.1038/s41557-024-01453-9
Knihovny.cz E-zdroje

Open-shell nanographenes exhibit unconventional π-magnetism arising from topological frustration or strong electron-electron interaction. However, conventional design approaches are typically limited to a single magnetic origin, which can restrict the number of correlated spins or the type of magnetic ordering in open-shell nanographenes. Here we present a design strategy that combines topological frustration and electron-electron interactions to fabricate a large fully fused 'butterfly'-shaped tetraradical nanographene on Au(111). We employ bond-resolved scanning tunnelling microscopy and spin-excitation spectroscopy to resolve the molecular backbone and reveal the strongly correlated open-shell character, respectively. This nanographene contains four unpaired electrons with both ferromagnetic and anti-ferromagnetic interactions, harbouring a many-body singlet ground state and strong multi-spin entanglement, which is well described by many-body calculations. Furthermore, we study the magnetic properties and spin states in the nanographene using a nickelocene magnetic probe. The ability to imprint and characterize many-body strongly correlated spins in polyradical nanographenes paves the way for future advancements in quantum information technologies.

Zobrazit více v PubMed

de Oteyza, D. G. & Frederiksen, T. Carbon-based nanostructures as a versatile platform for tunable π-magnetism. J. Phys. Condens. Matter 34, 443001 (2022). DOI

Song, S. et al. On-surface synthesis of graphene nanostructures with π-magnetism. Chem. Soc. Rev. 50, 3238–3262 (2021). PubMed DOI

Mishra, S. et al. Large magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery. Nat. Chem. 13, 581–586 (2021). PubMed DOI

Mishra, S. et al. Topological frustration induces unconventional magnetism in a nanographene. Nat. Nanotechnol. 15, 22–28 (2020). PubMed DOI

Hieulle, J. et al. On‐surface synthesis and collective spin excitations of a triangulene‐based nanostar. Angew. Chem. Int. Ed. 60, 25224–25229 (2021). DOI

Mishra, S. et al. Synthesis and characterization of π-extended triangulene. J. Am. Chem. Soc. 141, 10621–10625 (2019). PubMed DOI

Zeng, Z. et al. Pro-aromatic and anti-aromatic π-conjugated molecules: an irresistible wish to be diradicals. Chem. Soc. Rev. 44, 6578–6596 (2015). PubMed DOI

Pavliček, N. et al. Synthesis and characterization of triangulene. Nat. Nanotechnol. 12, 308–311 (2017). PubMed DOI

Mishra, S. et al. Observation of fractional edge excitations in nanographene spin chains. Nature 598, 287–292 (2021). PubMed DOI

Zheng, Y. et al. Designer spin order in diradical nanographenes. Nat. Commun. 11, 6076 (2020). PubMed DOI PMC

Su, X. et al. Atomically precise synthesis and characterization of heptauthrene with triplet ground state. Nano Lett. 20, 6859–6864 (2020). PubMed DOI

Sun, Z., Ye, Q., Chi, C. & Wu, J. Low band gap polycyclic hydrocarbons: from closed-shell near infrared dyes and semiconductors to open-shell radicals. Chem. Soc. Rev. 41, 7857–7889 (2012). PubMed DOI

Zeng, W. & Wu, J. Open-shell graphene fragments. Chem 7, 358–386 (2021). DOI

Xiang, Q. et al. Stable olympicenyl radicals and their π-dimers. J. Am. Chem. Soc. 142, 11022–11031 (2020). PubMed DOI

Guo, Y. et al. π-Extended doublet open-shell graphene fragments exhibiting one-dimensional chain stacking. J. Am. Chem. Soc. 144, 2095–2100 (2022). PubMed DOI

Yazyev, O. V. & Katsnelson, M. Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett. 100, 047209 (2008). PubMed DOI

Su, J. et al. Atomically precise bottom-up synthesis of π-extended [5] triangulene. Sci. Adv. 5, eaav7717 (2019). PubMed DOI PMC

Mishra, S. et al. Collective all‐carbon magnetism in triangulene dimers. Angew. Chem. Int. Ed. 132, 12139–12145 (2020). DOI

Li, J. et al. Uncovering the triplet ground state of triangular graphene nanoflakes engineered with atomic precision on a metal surface. Phys. Rev. Lett. 124, 177201 (2020). PubMed DOI

Wang, T. et al. Aza-triangulene: on-surface synthesis and electronic and magnetic properties. J. Am. Chem. Soc. 144, 4522–4529 (2022). PubMed DOI PMC

Mishra, S. et al. Synthesis and characterization of [7] triangulene. Nanoscale 13, 1624–1628 (2021). PubMed DOI

Su, J. et al. On-surface synthesis and characterization of [7] triangulene quantum ring. Nano Lett. 21, 861–867 (2020). PubMed DOI

Turco, E. et al. Observation of the magnetic ground state of the two smallest triangular nanographenes. JACS Au 3, 1358–1364 (2023).

Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016). PubMed DOI

Blackwell, R. E. et al. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 600, 647–652 (2021). PubMed DOI

Wen, E. C. H. et al. Magnetic interactions in substitutional core-doped graphene nanoribbons. J. Am. Chem. Soc. 144, 13696–13703 (2022). PubMed DOI

Sanz, S. et al. Spin-polarizing electron beam splitter from crossed graphene nanoribbons. Phys. Rev. Lett. 129, 037701 (2022). PubMed DOI

Wang, D. et al. Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states. Nat. Commun. 14, 1018 (2023). PubMed DOI PMC

Ovchinnikov, A. A. Multiplicity of the ground state of large alternant organic molecules with conjugated bonds: (Do organic ferromagnetics exist?). Theor. Chim. Acta 47, 297–304 (1978). DOI

Lieb, E. H. Two theorems on the Hubbard model. Phy. Rev. Lett. 62, 1201 (1989). DOI

Wang, W. L., Yazyev, O. V., Meng, S. & Kaxiras, E. Topological frustration in graphene nanoflakes: magnetic order and spin logic devices. Phys. Rev. Lett. 102, 157201 (2009). PubMed DOI

Biswas, K. et al. Steering large magnetic exchange coupling in nanographenes near the closed-shell to open-shell transition. J. Am. Chem. Soc. 145, 2968–2974 (2023). PubMed DOI

González‐Herrero, H. et al. Atomic scale control and visualization of topological quantum phase transition in π‐conjugated polymers driven by their length. Adv. Mater. 33, 2104495 (2021). DOI

Fajtlowicz, S., John, P. E. & Sachs, H. On maximum matchings and eigenvalues of benzenoid graphs. Croat. Chem. Acta 78, 195–201 (2005).

Ortiz, R. et al. Exchange rules for diradical π-conjugated hydrocarbons. Nano Lett. 19, 5991–5997 (2019). PubMed DOI

Schüler, M., Rösner, M., Wehling, T., Lichtenstein, A. & Katsnelson, M. Optimal Hubbard models for materials with nonlocal Coulomb interactions: graphene, silicene, and benzene. Phys. Rev. Lett. 111, 036601 (2013). PubMed DOI

Malrieu, J.-P. & Trinquier, G. Can a topological approach predict spin-symmetry breaking in conjugated hydrocarbons? J. Phys. Chem. A 120, 9564–9578 (2016). PubMed DOI

Sánchez-Grande, A. et al. Unravelling the open-shell character of peripentacene on Au (111). J. Phys. Chem. Lett. 12, 330–336 (2020). PubMed DOI

Biswas, K. et al. Synthesis and characterization of peri‐heptacene on a metallic surface. Angew. Chem. Int. Ed. 134, e202114983 (2022). DOI

Guo, Y., Sivalingam, K., Valeev, E. F. & Neese, F. SparseMaps—a systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory. J. Chem. Phys. 144, 094111 (2016). PubMed DOI

Truhlar, D. G., Hiberty, P. C., Shaik, S., Gordon, M. S. & Danovich, D. Orbitals and the interpretation of photoelectron spectroscopy and (e, 2e) ionization experiments. Angew. Chem. Int. Ed. 131, 12460–12466 (2019). DOI

Ortiz, J. Dyson-orbital concepts for description of electrons in molecules. J. Chem. Phys. 153, 070902 (2020). PubMed DOI

Ormaza, M. et al. Efficient spin-flip excitation of a nickelocene molecule. Nano Lett. 17, 1877–1882 (2017). PubMed DOI

Czap, G. et al. Probing and imaging spin interactions with a magnetic single-molecule sensor. Science 364, 670–673 (2019). PubMed DOI

Verlhac, B. et al. Atomic-scale spin sensing with a single molecule at the apex of a scanning tunneling microscope. Science 366, 623–627 (2019). PubMed DOI

Wäckerlin, C. et al. Role of the magnetic anisotropy in atomic-spin sensing of 1D molecular chains. ACS Nano 16, 16402–16413 (2022). PubMed DOI

Lombardi, F. et al. Quantum units from the topological engineering of molecular graphenoids. Science 366, 1107–1110 (2019). PubMed DOI

Torbrügge, S., Schaff, O. & Rychen, J. Application of the KolibriSensor to combined atomic-resolution scanning tunneling microscopy and noncontact atomic-force microscopy imaging. J. Vac. Sci. Technol. B 28, C4E12–C14E20 (2010). DOI

Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012). DOI

Brabec, J. et al. Massively parallel quantum chemical density matrix renormalization group method. J. Comput. Chem. 42, 534–544 (2021). PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...