Highly entangled polyradical nanographene with coexisting strong correlation and topological frustration
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
A20E5c0089
Agency for Science, Technology and Research (A*STAR)
MOE2019-T2-2-044
Ministry of Education - Singapore (MOE)
PubMed
38374456
DOI
10.1038/s41557-024-01453-9
PII: 10.1038/s41557-024-01453-9
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Open-shell nanographenes exhibit unconventional π-magnetism arising from topological frustration or strong electron-electron interaction. However, conventional design approaches are typically limited to a single magnetic origin, which can restrict the number of correlated spins or the type of magnetic ordering in open-shell nanographenes. Here we present a design strategy that combines topological frustration and electron-electron interactions to fabricate a large fully fused 'butterfly'-shaped tetraradical nanographene on Au(111). We employ bond-resolved scanning tunnelling microscopy and spin-excitation spectroscopy to resolve the molecular backbone and reveal the strongly correlated open-shell character, respectively. This nanographene contains four unpaired electrons with both ferromagnetic and anti-ferromagnetic interactions, harbouring a many-body singlet ground state and strong multi-spin entanglement, which is well described by many-body calculations. Furthermore, we study the magnetic properties and spin states in the nanographene using a nickelocene magnetic probe. The ability to imprint and characterize many-body strongly correlated spins in polyradical nanographenes paves the way for future advancements in quantum information technologies.
Department of Chemistry National University of Singapore Singapore Singapore
Institute for Functional Intelligent Materials National University of Singapore Singapore Singapore
Institute of Physics Czech Academy of Sciences Prague Czech Republic
National University of Singapore Research Institute Suzhou China
Zobrazit více v PubMed
de Oteyza, D. G. & Frederiksen, T. Carbon-based nanostructures as a versatile platform for tunable π-magnetism. J. Phys. Condens. Matter 34, 443001 (2022). DOI
Song, S. et al. On-surface synthesis of graphene nanostructures with π-magnetism. Chem. Soc. Rev. 50, 3238–3262 (2021). PubMed DOI
Mishra, S. et al. Large magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery. Nat. Chem. 13, 581–586 (2021). PubMed DOI
Mishra, S. et al. Topological frustration induces unconventional magnetism in a nanographene. Nat. Nanotechnol. 15, 22–28 (2020). PubMed DOI
Hieulle, J. et al. On‐surface synthesis and collective spin excitations of a triangulene‐based nanostar. Angew. Chem. Int. Ed. 60, 25224–25229 (2021). DOI
Mishra, S. et al. Synthesis and characterization of π-extended triangulene. J. Am. Chem. Soc. 141, 10621–10625 (2019). PubMed DOI
Zeng, Z. et al. Pro-aromatic and anti-aromatic π-conjugated molecules: an irresistible wish to be diradicals. Chem. Soc. Rev. 44, 6578–6596 (2015). PubMed DOI
Pavliček, N. et al. Synthesis and characterization of triangulene. Nat. Nanotechnol. 12, 308–311 (2017). PubMed DOI
Mishra, S. et al. Observation of fractional edge excitations in nanographene spin chains. Nature 598, 287–292 (2021). PubMed DOI
Zheng, Y. et al. Designer spin order in diradical nanographenes. Nat. Commun. 11, 6076 (2020). PubMed DOI PMC
Su, X. et al. Atomically precise synthesis and characterization of heptauthrene with triplet ground state. Nano Lett. 20, 6859–6864 (2020). PubMed DOI
Sun, Z., Ye, Q., Chi, C. & Wu, J. Low band gap polycyclic hydrocarbons: from closed-shell near infrared dyes and semiconductors to open-shell radicals. Chem. Soc. Rev. 41, 7857–7889 (2012). PubMed DOI
Zeng, W. & Wu, J. Open-shell graphene fragments. Chem 7, 358–386 (2021). DOI
Xiang, Q. et al. Stable olympicenyl radicals and their π-dimers. J. Am. Chem. Soc. 142, 11022–11031 (2020). PubMed DOI
Guo, Y. et al. π-Extended doublet open-shell graphene fragments exhibiting one-dimensional chain stacking. J. Am. Chem. Soc. 144, 2095–2100 (2022). PubMed DOI
Yazyev, O. V. & Katsnelson, M. Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett. 100, 047209 (2008). PubMed DOI
Su, J. et al. Atomically precise bottom-up synthesis of π-extended [5] triangulene. Sci. Adv. 5, eaav7717 (2019). PubMed DOI PMC
Mishra, S. et al. Collective all‐carbon magnetism in triangulene dimers. Angew. Chem. Int. Ed. 132, 12139–12145 (2020). DOI
Li, J. et al. Uncovering the triplet ground state of triangular graphene nanoflakes engineered with atomic precision on a metal surface. Phys. Rev. Lett. 124, 177201 (2020). PubMed DOI
Wang, T. et al. Aza-triangulene: on-surface synthesis and electronic and magnetic properties. J. Am. Chem. Soc. 144, 4522–4529 (2022). PubMed DOI PMC
Mishra, S. et al. Synthesis and characterization of [7] triangulene. Nanoscale 13, 1624–1628 (2021). PubMed DOI
Su, J. et al. On-surface synthesis and characterization of [7] triangulene quantum ring. Nano Lett. 21, 861–867 (2020). PubMed DOI
Turco, E. et al. Observation of the magnetic ground state of the two smallest triangular nanographenes. JACS Au 3, 1358–1364 (2023).
Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016). PubMed DOI
Blackwell, R. E. et al. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 600, 647–652 (2021). PubMed DOI
Wen, E. C. H. et al. Magnetic interactions in substitutional core-doped graphene nanoribbons. J. Am. Chem. Soc. 144, 13696–13703 (2022). PubMed DOI
Sanz, S. et al. Spin-polarizing electron beam splitter from crossed graphene nanoribbons. Phys. Rev. Lett. 129, 037701 (2022). PubMed DOI
Wang, D. et al. Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states. Nat. Commun. 14, 1018 (2023). PubMed DOI PMC
Ovchinnikov, A. A. Multiplicity of the ground state of large alternant organic molecules with conjugated bonds: (Do organic ferromagnetics exist?). Theor. Chim. Acta 47, 297–304 (1978). DOI
Lieb, E. H. Two theorems on the Hubbard model. Phy. Rev. Lett. 62, 1201 (1989). DOI
Wang, W. L., Yazyev, O. V., Meng, S. & Kaxiras, E. Topological frustration in graphene nanoflakes: magnetic order and spin logic devices. Phys. Rev. Lett. 102, 157201 (2009). PubMed DOI
Biswas, K. et al. Steering large magnetic exchange coupling in nanographenes near the closed-shell to open-shell transition. J. Am. Chem. Soc. 145, 2968–2974 (2023). PubMed DOI
González‐Herrero, H. et al. Atomic scale control and visualization of topological quantum phase transition in π‐conjugated polymers driven by their length. Adv. Mater. 33, 2104495 (2021). DOI
Fajtlowicz, S., John, P. E. & Sachs, H. On maximum matchings and eigenvalues of benzenoid graphs. Croat. Chem. Acta 78, 195–201 (2005).
Ortiz, R. et al. Exchange rules for diradical π-conjugated hydrocarbons. Nano Lett. 19, 5991–5997 (2019). PubMed DOI
Schüler, M., Rösner, M., Wehling, T., Lichtenstein, A. & Katsnelson, M. Optimal Hubbard models for materials with nonlocal Coulomb interactions: graphene, silicene, and benzene. Phys. Rev. Lett. 111, 036601 (2013). PubMed DOI
Malrieu, J.-P. & Trinquier, G. Can a topological approach predict spin-symmetry breaking in conjugated hydrocarbons? J. Phys. Chem. A 120, 9564–9578 (2016). PubMed DOI
Sánchez-Grande, A. et al. Unravelling the open-shell character of peripentacene on Au (111). J. Phys. Chem. Lett. 12, 330–336 (2020). PubMed DOI
Biswas, K. et al. Synthesis and characterization of peri‐heptacene on a metallic surface. Angew. Chem. Int. Ed. 134, e202114983 (2022). DOI
Guo, Y., Sivalingam, K., Valeev, E. F. & Neese, F. SparseMaps—a systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory. J. Chem. Phys. 144, 094111 (2016). PubMed DOI
Truhlar, D. G., Hiberty, P. C., Shaik, S., Gordon, M. S. & Danovich, D. Orbitals and the interpretation of photoelectron spectroscopy and (e, 2e) ionization experiments. Angew. Chem. Int. Ed. 131, 12460–12466 (2019). DOI
Ortiz, J. Dyson-orbital concepts for description of electrons in molecules. J. Chem. Phys. 153, 070902 (2020). PubMed DOI
Ormaza, M. et al. Efficient spin-flip excitation of a nickelocene molecule. Nano Lett. 17, 1877–1882 (2017). PubMed DOI
Czap, G. et al. Probing and imaging spin interactions with a magnetic single-molecule sensor. Science 364, 670–673 (2019). PubMed DOI
Verlhac, B. et al. Atomic-scale spin sensing with a single molecule at the apex of a scanning tunneling microscope. Science 366, 623–627 (2019). PubMed DOI
Wäckerlin, C. et al. Role of the magnetic anisotropy in atomic-spin sensing of 1D molecular chains. ACS Nano 16, 16402–16413 (2022). PubMed DOI
Lombardi, F. et al. Quantum units from the topological engineering of molecular graphenoids. Science 366, 1107–1110 (2019). PubMed DOI
Torbrügge, S., Schaff, O. & Rychen, J. Application of the KolibriSensor to combined atomic-resolution scanning tunneling microscopy and noncontact atomic-force microscopy imaging. J. Vac. Sci. Technol. B 28, C4E12–C14E20 (2010). DOI
Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73–78 (2012). DOI
Brabec, J. et al. Massively parallel quantum chemical density matrix renormalization group method. J. Comput. Chem. 42, 534–544 (2021). PubMed DOI