Massively parallel quantum chemical density matrix renormalization group method
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
33377527
DOI
10.1002/jcc.26476
Knihovny.cz E-resources
- Keywords
- DMRG, MPI, massive parallelization, quantum chemistry, strong correlation,
- Publication type
- Journal Article MeSH
We present, to the best of our knowledge, the first attempt to exploit the super-computer platform for quantum chemical density matrix renormalization group (QC-DMRG) calculations. We have developed the parallel scheme based on the in-house MPI global memory library, which combines operator and symmetry sector parallelisms, and tested its performance on three different molecules, all typical candidates for QC-DMRG calculations. In case of the largest calculation, which is the nitrogenase FeMo cofactor cluster with the active space comprising 113 electrons in 76 orbitals and bond dimension equal to 6000, our parallel approach scales up to approximately 2000 CPU cores.
Faculty of Mathematics and Physics Charles University Prague Czech Republic
Pacific Northwest National Laboratory Richland Washington USA
See more in PubMed
S. R. White, Phys. Rev. Lett. 1992, 69, 2863. https://doi.org/10.1103/PhysRevLett.69.2863.
S. R. White, Phys. Rev. B 1993, 48, 10345. https://doi.org/10.1103/PhysRevB.48.10345.
S. R. White, R. L. Martin, J. Chem. Phys. 1999, 110, 7127.
G. K.-L. Chan, M. Head-Gordon, J. Chem. Phys. 2002, 116, 4462. https://doi.org/10.1063/1.1449459.
G. K.-L. Chan, M. Head-Gordon, J. Chem. Phys. 2003, 118, 8551. https://doi.org/10.1063/1.1574318.
Ö. Legeza, J. Röder, B. A. Hess, Phys. Rev. B 2003, 67, 125114. https://doi.org/10.1103/PhysRevB.67.125114.
Ö. Legeza, J. Röder, B. A. Hess, Mol. Phys. 2003, 101, 2019. https://doi.org/10.1080/0026897031000155625.
Ö. Legeza, J. S'olyom, Phys. Rev. B 2003, 68, 195116. https://doi.org/10.1103/PhysRevB.68.195116.
Ö. Legeza, R. Noack, J. Sólyom, L. Tincani, in Computational Many-Particle Physics, Vol. 739 Lecture Notes in Physics (Eds: H. Fehske, R. Schneider, A. Weisse), Springer, Berlin Heidelberg 2008, p. 653. https://doi.org/10.1007/978-3-540-74686-7_24.
K. H. Marti, M. Reiher, Zeitschrift für Physikalische Chemie 2010, 224, 583. https://doi.org/10.6125/zpch.2010.6125.xml.
G. K.-L. Chan, S. Sharma, Annu. Rev. Phys. Chem. 2011, 62, 465.
S. Wouters, D. Van Neck, Eur. Phys. J. D 2014, 68, 272 ISSN 1434-6060.
T. Yanai, Y. Kurashige, W. Mizukami, J. Chalupský, T. N. Lan, M. Saitow, Int. J. Quant. Chem. 2014, 115, 283. https://doi.org/10.1002/qua.24808.
S. Z. Szalay, M. Pfeffer, V. Murg, G. Barcza, F. Verstraete, R. Schneider, Ö. Legeza, Int. J. Quant. Chem. 2015, 115, 1342. https://doi.org/10.1002/qua.24898.
G. K.-L. Chan, M. Kállay, J. Gauss, J. Chem. Phys. 2004, 121, 6110. https://doi.org/10.1063/1.1783212.
S. Sharma, T. Yanai, G. H. Booth, C. J. Umrigar, G. K.-L. Chan, J. Chem. Phys. 2014, 140, 104112. https://doi.org/10.1063/1.4867383.
J. Hachmann, J. J. Dorando, M. Aviĺes, G. K.-L. Chan, J. Chem. Phys. 2007, 127, 134309. https://doi.org/10.1063/1.2768362.
D. Ghosh, J. Hachmann, T. Yanai, G. K.-L. Chan, J. Chem. Phys. 2008, 128, 144117. https://doi.org/10.1063/1.2883976.
W. Mizukami, Y. Kurashige, T. Yanai, J. Chem. Theory Comput 2013, 9, 401. https://doi.org/10.1021/ct3008974.
G. Barcza, W. Barford, F. Gebhard, Ö. Legeza, Phys. Rev. B 2013, 87, 245116. https://doi.org/10.1103/PhysRevB.87.245116.
W. Hu, G. K.-L. Chan, J. Chem. Theory Comput. 2015, 11, 3000. https://doi.org/10.1021/acs.jctc.5b00174.
M. Timár, G. Barcza, F. Gebhard, L. Veis, Ö. Legeza, Phys. Chem. Chem. Phys. 2016, 18, 18835. https://doi.org/10.1039/c6cp00726k.
R. Olivares-Amaya, W. Hu, N. Nakatani, S. Sharma, J. Yang, G. K.-L. Chan, J. Chem. Phys. 2015, 142, 034102.
Y. Kurashige, T. Yanai, J. Chem. Phys. 2009, 130, 234114. https://doi.org/10.1063/1.3152576.
G. Barcza, Ö. Legeza, K. H. Marti, M. Reiher, Phys. Rev. A 2011, 012508, 83.
K. Boguslawski, K. H. Marti, Ö. Legeza, M. Reiher, J. Chem. Theory Comput. 2012, 8, 1970.
S. Wouters, T. Bogaerts, P. Van Der Voort, V. Van Speybroeck, D. Van Neck, J. Chem. Phys. 2014, 140, 241103.
D. Nachtigallová, A. Antalík, R. Lo, R. Sedlák, D. Manna, J. Tuček, J. Ugolotti, L. Veis, Ö. Legeza, J. Pittner, R. Zbořil, Chem. -A Eur. J. 2018, 24, 13413. https://doi.org/10.1002/chem.201803380.
S. Knecht, Ö. Legeza, M. Reiher, J. Chem. Phys. 2014, 140, 041101. https://doi.org/10.1063/1.4862495.
S. Battaglia, S. Keller, S. Knecht, J. Chem. Theory Comput. 2018, 14, 2353. https://doi.org/10.1021/acs.jctc.7b01065.
Y. Kurashige, G. K.-L. Chan, T. Yanai, Nat. Chem. 2013, 5, 660. https://doi.org/10.1038/nchem.1677.
S. Sharma, K. Sivalingam, F. Neese, G. K.-L. Chan, Nat. Chem. 2014, 6, 927.
Z. Li, J. Li, N. S. Dattani, C. J. Umrigar, G. K.-L. Chan, J. Chem. Phys. 2019, 150, 024302. https://doi.org/10.1063/1.5063376.
Z. Li, S. Guo, Q. Sun, G. K.-L. Chan, Nat. Chem. 2019, 11, 1026. https://doi.org/10.1038/s41557-019-0337-3.
Y. Kurashige, T. Yanai, J. Chem. Phys. 2011, 135, 094104. https://doi.org/10.1063/1.3629454.
M. Saitow, Y. Kurashige, T. Yanai, J. Chem. Phys. 2013, 139, 044118. https://doi.org/10.1063/1.4816627.
E. Neuscamman, T. Yanai, G. K.-L. Chan, Int. Rev. Phys. Chem. 2010, 29, 231.
S. Sharma, G. Chan, J. Chem. Phys. 2014, 141, 111101.
L. Veis, A. Antalík, J. Brabec, F. Neese, Ö. Legeza, J. Pittner, J. Phys. Chem. Lett. 2016, 7, 4072. https://doi.org/10.1021/acs.
L. Freitag, S. Knecht, C. Angeli, M. Reiher, J. Chem. Theory Comp. 2017, 13, 451. https://doi.org/10.1021/acs.jctc.6b00778.
G. Hager, E. Jeckelmann, H. Fehske, G. Wellein, J. Comput. Phys. 2004, 194, 795 http://www.sciencedirect.com/science/article/pii/S0021999103005084.
G. K.-L. Chan, J. Chem. Phys. 2004, 120, 3172. https://doi.org/10.1063/1.1638734.
G. K.-L. Chan, A. Keselman, N. Nakatani, Z. Li, S. R. White, J. Chem. Phys. 2016, 145, 014102. https://doi.org/10.1063/1.4955108.
E. M. Stoudenmire, S. R. White, Phys. Rev. B 2013, 87, 155137. https://doi.org/10.1103/PhysRevB.87.155137.
C. Nemes, G. Barcza, Z. Nagy, Ö. Legeza, P. Szolgay, Comp. Phys. Commun. 2014, 185, 1570 http://www.sciencedirect.com/science/article/pii/S0010465514000654.
U. Schollwöck, Rev. Modern Phys. 2005, 77, 259. https://doi.org/10.1103/revmodphys.77.259.
A. Szabo, N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Publications, Mineola, N.Y 1996.
J. Rissler, R. M. Noack, S. R. White, Chem. Phys. 2006, 323, 519.
G. K.-L. Chan, Phys. Chem. Chem. Phys. 2008, 10, 3454. https://doi.org/10.1039/B805292C.
T. Xiang, Phys. Rev. B 1996, 53, R10445. https://doi.org/10.1103/PhysRevB.53.R10445.
E. R. Davidson, J. Comp. Phys. 1975), ISSN 0021-9991, 17, 87 http://www.sciencedirect.com/science/article/pii/0021999175900650.
I. P. McCulloch, M. Gulácsi, Aust. J. Phys. 2000, 53, 597 http://www.publish.csiro.au/paper/PH00023.
A. I. Tóth, C. P. Moca, Ö. Legeza, G. Zaránd, Phys. Rev. B 2008, 78, 245109. https://doi.org/10.1103/PhysRevB.78.245109.
S. Sharma, G. K.-L. Chan, J. Chem. Phys. 2012, 136, 124121. https://doi.org/10.1063/1.3695642.
S. Wouters, W. Poelmans, P. W. Ayers, D. V. Neck, Comp. Phys. Commun. 2014, 185, 1501 http://www.sciencedirect.com/science/article/pii/S0010465514000496.
S. Keller, M. Reiher, J. Chem. Phys. 2016, 144, 134101.
U. Schollwöck, Annal. Phys. 2011, 326(96), 96 http://www.sciencedirect.com/science/article/pii/S0003491610001752.
L. Veis, A. Antalík, J. Brabec, F. Neese, Ö. Legeza, J. Pittner, J. Phys. Chem. Lett. 2016, 8, 291. https://doi.org/10.1021/acs.
L. Veis, A. Antalík, Ö. Legeza, A. Alavi, J. Pittner, J. Chem. Theory Comp. 2018, 14, 2439. https://doi.org/10.1021/acs.jctc.8b00022.
F. M. Faulstich, M. Máté, A. Laestadius, M. A. Csirik, L. Veis, A. Antalik, J. Brabec, R. Schneider, J. Pittner, S. Kvaal, O. Legeza, et al., J. Chem. Theory Comput. 2019, 15, 2206. https://doi.org/10.1021/acs.jctc.8b00960.
A. Antalík, L. Veis, J. Brabec, O. Demel, Ö. Legeza, J. Pittner, J. Chem. Phys. 2019, 151, 084112. https://doi.org/10.1063/1.5110477.
A. Antalík, D. Nachtigallová, R. Lo, M. Matoušek, J. Lang, Ö. Legeza, J. Pittner, P. Hobza, L. Veis, Phys. Chem. Chem. Phys. 2020, 22, 17033. https://doi.org/10.1039/d0cp03086d.
S. Wouters, V. Speybroeck, D. V. Neck, J. Chem. Phys. 2016, 145, 054120. https://doi.org/10.1063/1.4959817.
G. L. Manni, A. Alavi, J. Phys. Chem. A 2018, 122, 4935. https://doi.org/10.1021/acs.jpca.7b12710.
G. L. Manni, D. Kats, D. P. Tew, A. Alavi, J. Chem. Theory Comput. 2019, 15, 1492. https://doi.org/10.1021/acs.jctc.8b01277.
A. Sánchez-Grande, B. de la Torre, J. Santos, B. Cirera, K. Lauwaet, T. Chutora, S. Edalatmanesh, P. Mutombo, J. Rosen, R. Zbořil, R. Miranda, J. Bjork, P. Jelínek, N. Martín, D. Écija, Angew. Chem. 2019, 131, 6631. https://doi.org/10.1002/ange.201814154.
J. B. Howard, D. C. Rees, Chem. Rev. 1996, 96, 2965. https://doi.org/10.1021/cr9500545.
M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, M. Troyer, PNAS 2017, 114, 7555. https://doi.org/10.1073/pnas.1619152114.
FeMoco active space Hamiltonian, https://github.com/zhendongli2008//. Active-space-model-for-FeMoco.
Polaritonic Chemistry Using the Density Matrix Renormalization Group Method
Variational Quantum Eigensolver Boosted by Adiabatic Connection
Projection-Based Density Matrix Renormalization Group in Density Functional Theory Embedding