• This record comes from PubMed

Massively parallel quantum chemical density matrix renormalization group method

. 2021 Mar 30 ; 42 (8) : 534-544. [epub] 20201230

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

We present, to the best of our knowledge, the first attempt to exploit the super-computer platform for quantum chemical density matrix renormalization group (QC-DMRG) calculations. We have developed the parallel scheme based on the in-house MPI global memory library, which combines operator and symmetry sector parallelisms, and tested its performance on three different molecules, all typical candidates for QC-DMRG calculations. In case of the largest calculation, which is the nitrogenase FeMo cofactor cluster with the active space comprising 113 electrons in 76 orbitals and bond dimension equal to 6000, our parallel approach scales up to approximately 2000 CPU cores.

See more in PubMed

S. R. White, Phys. Rev. Lett. 1992, 69, 2863. https://doi.org/10.1103/PhysRevLett.69.2863.

S. R. White, Phys. Rev. B 1993, 48, 10345. https://doi.org/10.1103/PhysRevB.48.10345.

S. R. White, R. L. Martin, J. Chem. Phys. 1999, 110, 7127.

G. K.-L. Chan, M. Head-Gordon, J. Chem. Phys. 2002, 116, 4462. https://doi.org/10.1063/1.1449459.

G. K.-L. Chan, M. Head-Gordon, J. Chem. Phys. 2003, 118, 8551. https://doi.org/10.1063/1.1574318.

Ö. Legeza, J. Röder, B. A. Hess, Phys. Rev. B 2003, 67, 125114. https://doi.org/10.1103/PhysRevB.67.125114.

Ö. Legeza, J. Röder, B. A. Hess, Mol. Phys. 2003, 101, 2019. https://doi.org/10.1080/0026897031000155625.

Ö. Legeza, J. S'olyom, Phys. Rev. B 2003, 68, 195116. https://doi.org/10.1103/PhysRevB.68.195116.

Ö. Legeza, R. Noack, J. Sólyom, L. Tincani, in Computational Many-Particle Physics, Vol. 739 Lecture Notes in Physics (Eds: H. Fehske, R. Schneider, A. Weisse), Springer, Berlin Heidelberg 2008, p. 653. https://doi.org/10.1007/978-3-540-74686-7_24.

K. H. Marti, M. Reiher, Zeitschrift für Physikalische Chemie 2010, 224, 583. https://doi.org/10.6125/zpch.2010.6125.xml.

G. K.-L. Chan, S. Sharma, Annu. Rev. Phys. Chem. 2011, 62, 465.

S. Wouters, D. Van Neck, Eur. Phys. J. D 2014, 68, 272 ISSN 1434-6060.

T. Yanai, Y. Kurashige, W. Mizukami, J. Chalupský, T. N. Lan, M. Saitow, Int. J. Quant. Chem. 2014, 115, 283. https://doi.org/10.1002/qua.24808.

S. Z. Szalay, M. Pfeffer, V. Murg, G. Barcza, F. Verstraete, R. Schneider, Ö. Legeza, Int. J. Quant. Chem. 2015, 115, 1342. https://doi.org/10.1002/qua.24898.

G. K.-L. Chan, M. Kállay, J. Gauss, J. Chem. Phys. 2004, 121, 6110. https://doi.org/10.1063/1.1783212.

S. Sharma, T. Yanai, G. H. Booth, C. J. Umrigar, G. K.-L. Chan, J. Chem. Phys. 2014, 140, 104112. https://doi.org/10.1063/1.4867383.

J. Hachmann, J. J. Dorando, M. Aviĺes, G. K.-L. Chan, J. Chem. Phys. 2007, 127, 134309. https://doi.org/10.1063/1.2768362.

D. Ghosh, J. Hachmann, T. Yanai, G. K.-L. Chan, J. Chem. Phys. 2008, 128, 144117. https://doi.org/10.1063/1.2883976.

W. Mizukami, Y. Kurashige, T. Yanai, J. Chem. Theory Comput 2013, 9, 401. https://doi.org/10.1021/ct3008974.

G. Barcza, W. Barford, F. Gebhard, Ö. Legeza, Phys. Rev. B 2013, 87, 245116. https://doi.org/10.1103/PhysRevB.87.245116.

W. Hu, G. K.-L. Chan, J. Chem. Theory Comput. 2015, 11, 3000. https://doi.org/10.1021/acs.jctc.5b00174.

M. Timár, G. Barcza, F. Gebhard, L. Veis, Ö. Legeza, Phys. Chem. Chem. Phys. 2016, 18, 18835. https://doi.org/10.1039/c6cp00726k.

R. Olivares-Amaya, W. Hu, N. Nakatani, S. Sharma, J. Yang, G. K.-L. Chan, J. Chem. Phys. 2015, 142, 034102.

Y. Kurashige, T. Yanai, J. Chem. Phys. 2009, 130, 234114. https://doi.org/10.1063/1.3152576.

G. Barcza, Ö. Legeza, K. H. Marti, M. Reiher, Phys. Rev. A 2011, 012508, 83.

K. Boguslawski, K. H. Marti, Ö. Legeza, M. Reiher, J. Chem. Theory Comput. 2012, 8, 1970.

S. Wouters, T. Bogaerts, P. Van Der Voort, V. Van Speybroeck, D. Van Neck, J. Chem. Phys. 2014, 140, 241103.

D. Nachtigallová, A. Antalík, R. Lo, R. Sedlák, D. Manna, J. Tuček, J. Ugolotti, L. Veis, Ö. Legeza, J. Pittner, R. Zbořil, Chem. -A Eur. J. 2018, 24, 13413. https://doi.org/10.1002/chem.201803380.

S. Knecht, Ö. Legeza, M. Reiher, J. Chem. Phys. 2014, 140, 041101. https://doi.org/10.1063/1.4862495.

S. Battaglia, S. Keller, S. Knecht, J. Chem. Theory Comput. 2018, 14, 2353. https://doi.org/10.1021/acs.jctc.7b01065.

Y. Kurashige, G. K.-L. Chan, T. Yanai, Nat. Chem. 2013, 5, 660. https://doi.org/10.1038/nchem.1677.

S. Sharma, K. Sivalingam, F. Neese, G. K.-L. Chan, Nat. Chem. 2014, 6, 927.

Z. Li, J. Li, N. S. Dattani, C. J. Umrigar, G. K.-L. Chan, J. Chem. Phys. 2019, 150, 024302. https://doi.org/10.1063/1.5063376.

Z. Li, S. Guo, Q. Sun, G. K.-L. Chan, Nat. Chem. 2019, 11, 1026. https://doi.org/10.1038/s41557-019-0337-3.

Y. Kurashige, T. Yanai, J. Chem. Phys. 2011, 135, 094104. https://doi.org/10.1063/1.3629454.

M. Saitow, Y. Kurashige, T. Yanai, J. Chem. Phys. 2013, 139, 044118. https://doi.org/10.1063/1.4816627.

E. Neuscamman, T. Yanai, G. K.-L. Chan, Int. Rev. Phys. Chem. 2010, 29, 231.

S. Sharma, G. Chan, J. Chem. Phys. 2014, 141, 111101.

L. Veis, A. Antalík, J. Brabec, F. Neese, Ö. Legeza, J. Pittner, J. Phys. Chem. Lett. 2016, 7, 4072. https://doi.org/10.1021/acs.

L. Freitag, S. Knecht, C. Angeli, M. Reiher, J. Chem. Theory Comp. 2017, 13, 451. https://doi.org/10.1021/acs.jctc.6b00778.

G. Hager, E. Jeckelmann, H. Fehske, G. Wellein, J. Comput. Phys. 2004, 194, 795 http://www.sciencedirect.com/science/article/pii/S0021999103005084.

G. K.-L. Chan, J. Chem. Phys. 2004, 120, 3172. https://doi.org/10.1063/1.1638734.

G. K.-L. Chan, A. Keselman, N. Nakatani, Z. Li, S. R. White, J. Chem. Phys. 2016, 145, 014102. https://doi.org/10.1063/1.4955108.

E. M. Stoudenmire, S. R. White, Phys. Rev. B 2013, 87, 155137. https://doi.org/10.1103/PhysRevB.87.155137.

C. Nemes, G. Barcza, Z. Nagy, Ö. Legeza, P. Szolgay, Comp. Phys. Commun. 2014, 185, 1570 http://www.sciencedirect.com/science/article/pii/S0010465514000654.

U. Schollwöck, Rev. Modern Phys. 2005, 77, 259. https://doi.org/10.1103/revmodphys.77.259.

A. Szabo, N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Publications, Mineola, N.Y 1996.

J. Rissler, R. M. Noack, S. R. White, Chem. Phys. 2006, 323, 519.

G. K.-L. Chan, Phys. Chem. Chem. Phys. 2008, 10, 3454. https://doi.org/10.1039/B805292C.

T. Xiang, Phys. Rev. B 1996, 53, R10445. https://doi.org/10.1103/PhysRevB.53.R10445.

E. R. Davidson, J. Comp. Phys. 1975), ISSN 0021-9991, 17, 87 http://www.sciencedirect.com/science/article/pii/0021999175900650.

I. P. McCulloch, M. Gulácsi, Aust. J. Phys. 2000, 53, 597 http://www.publish.csiro.au/paper/PH00023.

A. I. Tóth, C. P. Moca, Ö. Legeza, G. Zaránd, Phys. Rev. B 2008, 78, 245109. https://doi.org/10.1103/PhysRevB.78.245109.

S. Sharma, G. K.-L. Chan, J. Chem. Phys. 2012, 136, 124121. https://doi.org/10.1063/1.3695642.

S. Wouters, W. Poelmans, P. W. Ayers, D. V. Neck, Comp. Phys. Commun. 2014, 185, 1501 http://www.sciencedirect.com/science/article/pii/S0010465514000496.

S. Keller, M. Reiher, J. Chem. Phys. 2016, 144, 134101.

U. Schollwöck, Annal. Phys. 2011, 326(96), 96 http://www.sciencedirect.com/science/article/pii/S0003491610001752.

L. Veis, A. Antalík, J. Brabec, F. Neese, Ö. Legeza, J. Pittner, J. Phys. Chem. Lett. 2016, 8, 291. https://doi.org/10.1021/acs.

L. Veis, A. Antalík, Ö. Legeza, A. Alavi, J. Pittner, J. Chem. Theory Comp. 2018, 14, 2439. https://doi.org/10.1021/acs.jctc.8b00022.

F. M. Faulstich, M. Máté, A. Laestadius, M. A. Csirik, L. Veis, A. Antalik, J. Brabec, R. Schneider, J. Pittner, S. Kvaal, O. Legeza, et al., J. Chem. Theory Comput. 2019, 15, 2206. https://doi.org/10.1021/acs.jctc.8b00960.

A. Antalík, L. Veis, J. Brabec, O. Demel, Ö. Legeza, J. Pittner, J. Chem. Phys. 2019, 151, 084112. https://doi.org/10.1063/1.5110477.

A. Antalík, D. Nachtigallová, R. Lo, M. Matoušek, J. Lang, Ö. Legeza, J. Pittner, P. Hobza, L. Veis, Phys. Chem. Chem. Phys. 2020, 22, 17033. https://doi.org/10.1039/d0cp03086d.

S. Wouters, V. Speybroeck, D. V. Neck, J. Chem. Phys. 2016, 145, 054120. https://doi.org/10.1063/1.4959817.

G. L. Manni, A. Alavi, J. Phys. Chem. A 2018, 122, 4935. https://doi.org/10.1021/acs.jpca.7b12710.

G. L. Manni, D. Kats, D. P. Tew, A. Alavi, J. Chem. Theory Comput. 2019, 15, 1492. https://doi.org/10.1021/acs.jctc.8b01277.

A. Sánchez-Grande, B. de la Torre, J. Santos, B. Cirera, K. Lauwaet, T. Chutora, S. Edalatmanesh, P. Mutombo, J. Rosen, R. Zbořil, R. Miranda, J. Bjork, P. Jelínek, N. Martín, D. Écija, Angew. Chem. 2019, 131, 6631. https://doi.org/10.1002/ange.201814154.

J. B. Howard, D. C. Rees, Chem. Rev. 1996, 96, 2965. https://doi.org/10.1021/cr9500545.

M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, M. Troyer, PNAS 2017, 114, 7555. https://doi.org/10.1073/pnas.1619152114.

FeMoco active space Hamiltonian, https://github.com/zhendongli2008//. Active-space-model-for-FeMoco.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...