Polaritonic Chemistry Using the Density Matrix Renormalization Group Method
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39441199
PubMed Central
PMC11562376
DOI
10.1021/acs.jctc.4c00986
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The emerging field of polaritonic chemistry explores the behavior of molecules under strong coupling with cavity modes. Despite recent developments in ab initio polaritonic methods for simulating polaritonic chemistry under electronic strong coupling, their capabilities are limited, especially in cases where the molecule also features strong electronic correlation. To bridge this gap, we have developed a novel method for cavity QED calculations utilizing the Density Matrix Renormalization Group (DMRG) algorithm in conjunction with the Pauli-Fierz Hamiltonian. Our approach is applied to investigate the effect of the cavity on the S0-S1 transition of n-oligoacenes, with n ranging from 2 to 5, encompassing 22 fully correlated π orbitals in the largest pentacene molecule. Our findings indicate that the influence of the cavity intensifies with larger acenes. Additionally, we demonstrate that, unlike the full determinantal representation, DMRG efficiently optimizes and eliminates excess photonic degrees of freedom, resulting in an asymptotically constant computational cost as the photonic basis increases.
Department of Chemistry University of Washington Seattle Washington 98195 United States
Faculty of Mathematics and Physics Charles University 12116 Prague 2 Czech Republic
Zobrazit více v PubMed
Bernardot F.; Nussenzveig P.; Brune M.; Raimond J. M.; Haroche S. Vacuum Rabi Splitting Observed on a Microscopic Atomic Sample in a Microwave Cavity. EPL 1992, 17, 33.10.1209/0295-5075/17/1/007. DOI
Nussenzveig P.; Bernardot F.; Brune M.; Hare J.; Raimond J. M.; Haroche S.; Gawlik W. Preparation of high-principal-quantum-number “circular” states of rubidium. Phys. Rev. A 1993, 48, 3991–3994. 10.1103/PhysRevA.48.3991. PubMed DOI
Chikkaraddy R.; De Nijs B.; Benz F.; Barrow S. J.; Scherman O. A.; Rosta E.; Demetriadou A.; Fox P.; Hess O.; Baumberg J. J. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016, 535, 127–130. 10.1038/nature17974. PubMed DOI PMC
Hutchison J. A.; Schwartz T.; Genet C.; Devaux E.; Ebbesen T. W. Modifying Chemical Landscapes by Coupling to Vacuum Fields. Angew. Chem., Int. Ed. 2012, 51, 1592.10.1002/anie.201107033. PubMed DOI
Thomas A.; et al. Ground State Chemical Reactivity under Vibrational Strong Coupling to the Vacuum Electromagnetic Field. Angew. Chem., Int. Ed. 2016, 55, 11462.10.1002/anie.201605504. PubMed DOI PMC
Ebbesen T. W.; Rubio A.; Scholes G. D. Introduction: Polaritonic Chemistry. Chem. Rev. 2023, 123, 12037–12038. 10.1021/acs.chemrev.3c00637. PubMed DOI
Hirai K.; Hutchison J. A.; Uji-i H. Molecular Chemistry in Cavity Strong Coupling. Chem. Rev. 2023, 123, 8099–8126. 10.1021/acs.chemrev.2c00748. PubMed DOI
Pavošević F.; Smith R. L.; Rubio A. Cavity Click Chemistry: Cavity-Catalyzed Azide-Alkyne Cycloaddition. J. Phys. Chem. A 2023, 127, 10184–10188. 10.1021/acs.jpca.3c06285. PubMed DOI
Ruggenthaler M.; Mackenroth F.; Bauer D. Time-dependent Kohn-Sham approach to quantum electrodynamics. Phys. Rev. A 2011, 84, 042107.10.1103/PhysRevA.84.042107. DOI
Ruggenthaler M.; Flick J.; Pellegrini C.; Appel H.; Tokatly I. V.; Rubio A. Quantum-electrodynamical density-functional theory: Bridging quantum optics and electronic-structure theory. Phys. Rev. A 2014, 90, 012508.10.1103/PhysRevA.90.012508. DOI
Pellegrini C.; Flick J.; Tokatly I. V.; Appel H.; Rubio A. Optimized Effective Potential for Quantum Electrodynamical Time-Dependent Density Functional Theory. Phys. Rev. Lett. 2015, 115, 093001.10.1103/PhysRevLett.115.093001. PubMed DOI
Flick J.; Schäfer C.; Ruggenthaler M.; Appel H.; Rubio A. Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State. ACS Photonics 2018, 5, 992–1005. 10.1021/acsphotonics.7b01279. PubMed DOI PMC
Jestädt R.; Ruggenthaler M.; Oliveira M. J. T.; Rubio A.; Appel H. Light-matter interactions within the Ehrenfest-Maxwell-Pauli-Kohn-Sham framework: fundamentals, implementation, and nano-optical applications. Adv. Phys. 2019, 68, 225–333. 10.1080/00018732.2019.1695875. DOI
Flick J.; Narang P. Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry. J. Chem. Phys. 2020, 153, 094116.10.1063/5.0021033. PubMed DOI
Ruggenthaler M.; Sidler D.; Rubio A. Understanding polaritonic chemistry from ab initio quantum electrodynamics. Chem. Rev. 2023, 123, 11191–11229. 10.1021/acs.chemrev.2c00788. PubMed DOI PMC
Vu N.; McLeod G. M.; Hanson K.; DePrince A. E. I. Enhanced Diastereocontrol via Strong Light-Matter Interactions in an Optical Cavity. J. Phys. Chem. A 2022, 126, 9303–9312. 10.1021/acs.jpca.2c07134. PubMed DOI
Pavošević F.; Rubio A. Wavefunction embedding for molecular polaritons. J. Chem. Phys. 2022, 157, 094101.10.1063/5.0095552. PubMed DOI
Liebenthal M. D.; Vu N.; DePrince A. E. III Assessing the Effects of Orbital Relaxation and the Coherent-State Transformation in Quantum Electrodynamics Density Functional and Coupled-Cluster Theories. J. Phys. Chem. A 2023, 127, 5264–5275. 10.1021/acs.jpca.3c01842. PubMed DOI
Tokatly I. V. Time-Dependent Density Functional Theory for Many-Electron Systems Interacting with Cavity Photons. Phys. Rev. Lett. 2013, 110, 233001.10.1103/PhysRevLett.110.233001. PubMed DOI
Flick J.; Ruggenthaler M.; Appel H.; Rubio A. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 3026–3034. 10.1073/pnas.1615509114. PubMed DOI PMC
Tokatly I. V. Conserving approximations in cavity quantum electrodynamics: Implications for density functional theory of electron-photon systems. Phys. Rev. B 2018, 98, 235123.10.1103/PhysRevB.98.235123. DOI
Malave J.; Ahrens A.; Pitagora D.; Covington C.; Varga K. Real-space, real-time approach to quantum-electrodynamical time-dependent density functional theory. J. Chem. Phys. 2022, 157, 194106.10.1063/5.0123909. PubMed DOI
Yang J.; Ou Q.; Pei Z.; Wang H.; Weng B.; Shuai Z.; Mullen K.; Shao Y. Quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. J. Chem. Phys. 2021, 155, 064107.10.1063/5.0057542. PubMed DOI PMC
Yang J.; Pei Z.; Leon E. C.; Wickizer C.; Weng B.; Mao Y.; Ou Q.; Shao Y. Cavity quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. II. Analytic energy gradient. J. Chem. Phys. 2022, 156, 124104.10.1063/5.0082386. PubMed DOI
McTague J.; Foley J. J. IV Non-Hermitian cavity quantum electrodynamics-configuration interaction singles approach for polaritonic structure with ab initio molecular Hamiltonians. J. Chem. Phys. 2022, 156, 154103.10.1063/5.0091953. PubMed DOI
Vu N.; Mejia-Rodriguez D.; Bauman N. P.; Panyala A.; Mutlu E.; Govind N.; Foley J. J. I. Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory. J. Chem. Theory Comput. 2024, 20, 1214–1227. 10.1021/acs.jctc.3c01207. PubMed DOI PMC
Bauer M.; Dreuw A. Perturbation theoretical approaches to strong light-matter coupling in ground and excited electronic states for the description of molecular polaritons. J. Chem. Phys. 2023, 158, 124128.10.1063/5.0142403. PubMed DOI
Cui Z.-H.; Mandal A.; Reichman D. R. Variational Lang-Firsov Approach Plus Møller-Plesset Perturbation Theory with Applications to Ab Initio Polariton Chemistry. J. Chem. Theory Comput. 2024, 20, 1143–1156. 10.1021/acs.jctc.3c01166. PubMed DOI
Haugland T. S.; Schäfer C.; Ronca E.; Rubio A.; Koch H. Intermolecular interactions in optical cavities: An ab initio QED study. J. Chem. Phys. 2021, 154, 094113.10.1063/5.0039256. PubMed DOI
Mordovina U.; Bungey C.; Appel H.; Knowles P. J.; Rubio A.; Manby F. R. Polaritonic coupled-cluster theory. Phys. Rev. Res. 2020, 2, 023262.10.1103/PhysRevResearch.2.023262. DOI
DePrince A. E. Cavity-modulated ionization potentials and electron affinities from quantum electrodynamics coupled-cluster theory. J. Chem. Phys. 2021, 154, 094112.10.1063/5.0038748. PubMed DOI
Mallory J. D.; DePrince A. E. Reduced-density-matrix-based ab initio cavity quantum electrodynamics. Phys. Rev. A 2022, 106, 053710.10.1103/PhysRevA.106.053710. DOI
Weight B. M.; Tretiak S.; Zhang Y. Diffusion quantum Monte Carlo approach to the polaritonic ground state. Phys. Rev. A 2024, 109, 032804.10.1103/PhysRevA.109.032804. DOI
Tubman N. M.; Freeman C. D.; Levine D. S.; Hait D.; Head-Gordon M.; Whaley K. B. Modern Approaches to Exact Diagonalization and Selected Configuration Interaction with the Adaptive Sampling CI Method. J. Chem. Theory Comput. 2020, 16, 2139–2159. 10.1021/acs.jctc.8b00536. PubMed DOI
Garniron Y.; Scemama A.; Giner E.; Caffarel M.; Loos P.-F. Selected configuration interaction dressed by perturbation. J. Chem. Phys. 2018, 149, 064103.10.1063/1.5044503. PubMed DOI
Liu W.; Hoffmann M. R. iCI: Iterative CI toward full CI. J. Chem. Theory Comput. 2016, 12, 1169–1178. 10.1021/acs.jctc.5b01099. PubMed DOI
Sharma S.; Holmes A. A.; Jeanmairet G.; Alavi A.; Umrigar C. J. Semistochastic Heat-Bath Configuration Interaction Method: Selected Configuration Interaction with Semistochastic Perturbation Theory. J. Chem. Theory Comput. 2017, 13, 1595–1604. 10.1021/acs.jctc.6b01028. PubMed DOI
Guther K.; et al. NECI: N-Electron Configuration Interaction with an emphasis on state-of-the-art stochastic methods. J. Chem. Phys. 2020, 153, 034107.10.1063/5.0005754. PubMed DOI
Chan G. K.-L.; Sharma S. The Density Matrix Renormalization Group in Quantum Chemistry. Annu. Rev. Phys. Chem. 2011, 62, 465–481. 10.1146/annurev-physchem-032210-103338. PubMed DOI
Szalay S.; Pfeffer M.; Murg V.; Barcza G.; Verstraete F.; Schneider R.; Legeza Ö. Tensor product methods and entanglement optimization for ab initio quantum chemistry. Int. J. Quantum Chem. 2015, 115, 1342–1391. 10.1002/qua.24898. DOI
Baiardi A.; Reiher M. The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. J. Chem. Phys. 2020, 152, 040903.10.1063/1.5129672. PubMed DOI
Brabec J.; Brandejs J.; Kowalski K.; Xantheas S.; Legeza Ö.; Veis L. Massively parallel quantum chemical density matrix renormalization group method. J. Comput. Chem. 2021, 42, 534–544. 10.1002/jcc.26476. PubMed DOI
White S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 1992, 69, 2863–2866. 10.1103/PhysRevLett.69.2863. PubMed DOI
Lopata K.; Reslan R.; Kowalska M.; Neuhauser D.; Govind N.; Kowalski K. Excited-State Studies of Polyacenes: A Comparative Picture Using EOMCCSD, CR-EOMCCSD (T), Range-Separated (LR/RT)-TDDFT, TD-PM3, and TD-ZINDO. J. Chem. Theory Comput. 2011, 7, 3686–3693. 10.1021/ct2005165. PubMed DOI
White S. R. Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 1993, 48, 10345–10356. 10.1103/PhysRevB.48.10345. PubMed DOI
Schollwöck U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 2011, 326, 96–192. 10.1016/j.aop.2010.09.012. DOI
Davidson E. R. The Iterative Calculation of a Few of the Lowest Eigenvalues and Corresponding Eigenvectors of Real-Symmetric Matrices. J. Comput. Phys. 1975, 17, 87–94. 10.1016/0021-9991(75)90065-0. DOI
Xiang T. Density-matrix renormalization-group method in momentum space. Phys. Rev. B 1996, 53, R10445–R10448. 10.1103/PhysRevB.53.R10445. PubMed DOI
Muolo A.; Baiardi A.; Feldmann R.; Reiher M. Nuclear-electronic all-particle density matrix renormalization group. J. Chem. Phys. 2020, 152, 204103.10.1063/5.0007166. PubMed DOI
Feldmann R.; Muolo A.; Baiardi A.; Reiher M. Quantum Proton Effects from Density Matrix Renormalization Group Calculations. J. Chem. Theory Comput. 2022, 18, 234–250. 10.1021/acs.jctc.1c00913. PubMed DOI
Klauder J. R.; Sudarshan E. C. G.. Fundamentals of quantum optics; W. A. Benjamin, Inc, New York, 1968.
Foley J. IV; McTague J.; DePrince A. E. III Ab initio methods for polariton chemistry. Chem. Phys. Rev. 2023, 4, 041301.10.1063/5.0167243. DOI
Legeza O.; Sólyom J. Optimizing the density-matrix renormalization group method using quantum information entropy. Phys. Rev. B 2003, 68, 195116.10.1103/PhysRevB.68.195116. DOI
Larsson H. R.; Zhai H.; Gunst K.; Chan G. K.-L. Matrix Product States with Large Sites. J. Chem. Theory Comput. 2022, 18, 749–762. 10.1021/acs.jctc.1c00957. PubMed DOI
Barcza G.; Werner M. A.; Zaránd G.; Pershin A.; Benedek Z.; Legeza O.; Szilvási T. Toward Large-Scale Restricted Active Space Calculations Inspired by the Schmidt Decomposition. J. Phys. Chem. A 2022, 126, 9709–9718. 10.1021/acs.jpca.2c05952. PubMed DOI
Feldmann R.; Muolo A.; Baiardi A.; Reiher M. Quantum Proton Effects from Density Matrix Renormalization Group Calculations. J. Chem. Theory Comput. 2022, 18, 234–250. 10.1021/acs.jctc.1c00913. PubMed DOI
Jeckelmann E.; White S. R.. Application of the DMRG technique to the Holstein model; 1996; pp O13–10
Jeckelmann E.; White S. R. Density-matrix renormalization-group study of the polaron problem in the Holstein model. Phys. Rev. B 1998, 57, 6376.10.1103/PhysRevB.57.6376. DOI
Tezuka M.; Arita R.; Aoki H. A DMRG study of correlation functions in the Holstein-Hubbard model. Physica B 2005, 359, 708–710. 10.1016/j.physb.2005.01.201. DOI
Zhai H.; Larsson H. R.; Lee S.; Cui Z.-H.; Zhu T.; Sun C.; Peng L.; Peng R.; Liao K.; Tölle J.; et al. Block2: A comprehensive open source framework to develop and apply state-of-the-art DMRG algorithms in electronic structure and beyond. J. Chem. Phys. 2023, 159, 234801.10.1063/5.0180424. PubMed DOI
Beran P.; Matoušek M.; Hapka M.; Pernal K.; Veis L. Density Matrix Renormalization Group with Dynamical Correlation via Adiabatic Connection. J. Chem. Theory Comput. 2021, 17, 7575–7585. 10.1021/acs.jctc.1c00896. PubMed DOI
Dunning T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. 10.1063/1.456153. DOI
Olivares-Amaya R.; Hu W.; Nakatani N.; Sharma S.; Yang J.; Chan G. K.-L. The ab-initio density matrix renormalization group in practice. J. Chem. Phys. 2015, 142, 034102.10.1063/1.4905329. PubMed DOI
Fiedler M. Algebraic connectivity of graphs. Czech. Math. J. 1973, 23, 298–305. 10.21136/CMJ.1973.101168. DOI
Fiedler M. Eigenvectors of acyclic matrices. Czech. Math. J. 1975, 25, 607–618. 10.21136/CMJ.1975.101356. DOI
Barcza G.; Legeza O.; Marti K. H.; Reiher M. Quantum-information analysis of electronic states of different molecular structures. Phys. Rev. A 2011, 83, 012508.10.1103/PhysRevA.83.012508. DOI
Legeza Ö.; Röder J.; Hess B. Controlling the accuracy of the density-matrix renormalization-group method: The dynamical block state selection approach. Phys. Rev. B 2003, 67, 125114.10.1103/PhysRevB.67.125114. DOI
White S. R.; Martin R. L. Ab initio quantum chemistry using the density matrix renormalization group. J. Chem. Phys. 1999, 110, 4127–4130. 10.1063/1.478295. DOI
Chan G. K.-L.; Head-Gordon M. Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group. J. Chem. Phys. 2002, 116, 4462–4476. 10.1063/1.1449459. DOI
George G.; Morris G. The intensity of absorption of naphthalene from 30 000 cm-1 to 53 000 cm-1. J. Mol. Spectrosc. 1968, 26, 67–71. 10.1016/0022-2852(68)90143-4. DOI
Huebner R.; Meilczarek S.; Kuyatt C. Electron energy-loss spectroscopy of naphthalene vapor. Chem. Phys. Lett. 1972, 16, 464–469. 10.1016/0009-2614(72)80401-9. DOI
Bergman A.; Jortner J. Two-photon spectroscopy utilizing dye lasers. Chem. Phys. Lett. 1972, 15, 309–315. 10.1016/0009-2614(72)80178-7. DOI
Steiner R. P.; Michl J. Magnetic circular dichroism of cyclic. pi.-electron systems. 11. Derivatives and aza analogues of anthracene. J. Am. Chem. Soc. 1978, 100, 6861–6867. 10.1021/ja00490a011. DOI
Bree A.; Lyons L. 1002. The intensity of ultraviolet-light absorption by monocrystals. Part IV. Absorption by naphthacene of plane-polarized light. J. Chem. Soc. 1960, 5206–5212. 10.1039/jr9600005206. DOI
Berlman I.Handbook of florescence spectra of aromatic molecules; Elsevier, 2012.
Heinecke E.; Hartmann D.; Müller R.; Hese A. Laser spectroscopy of free pentacene molecules (I): The rotational structure of the vibrationless S1 ← S transition. J. Chem. Phys. 1998, 109, 906–911. 10.1063/1.476631. DOI
Sharma P.; Bernales V.; Knecht S.; Truhlar D. G.; Gagliardi L. Density matrix renormalization group pair-density functional theory (DMRG-PDFT): singlet-triplet gaps in polyacenes and polyacetylenes. Chem. Sci. 2019, 10, 1716–1723. 10.1039/C8SC03569E. PubMed DOI PMC
Veis L.; Antalík A.; Brabec J.; Neese F.; Legeza Ö.; Pittner J. Coupled Cluster Method with Single and Double Excitations Tailored by Matrix Product State Wave Functions. J. Phys. Chem. Lett. 2016, 7, 4072–4078. 10.1021/acs.jpclett.6b01908. PubMed DOI
Roemelt M.; Guo S.; Chan G. K.-L. A projected approximation to strongly contracted N-electron valence perturbation theory for DMRG wavefunctions. J. Chem. Phys. 2016, 144, 204113.10.1063/1.4950757. PubMed DOI
Freitag L.; Knecht S.; Angeli C.; Reiher M. Multireference Perturbation Theory with Cholesky Decomposition for the Density Matrix Renormalization Group. J. Chem. Theory Comput. 2017, 13, 451–459. 10.1021/acs.jctc.6b00778. PubMed DOI PMC