Polaritonic Chemistry Using the Density Matrix Renormalization Group Method

. 2024 Nov 12 ; 20 (21) : 9424-9434. [epub] 20241023

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39441199

The emerging field of polaritonic chemistry explores the behavior of molecules under strong coupling with cavity modes. Despite recent developments in ab initio polaritonic methods for simulating polaritonic chemistry under electronic strong coupling, their capabilities are limited, especially in cases where the molecule also features strong electronic correlation. To bridge this gap, we have developed a novel method for cavity QED calculations utilizing the Density Matrix Renormalization Group (DMRG) algorithm in conjunction with the Pauli-Fierz Hamiltonian. Our approach is applied to investigate the effect of the cavity on the S0-S1 transition of n-oligoacenes, with n ranging from 2 to 5, encompassing 22 fully correlated π orbitals in the largest pentacene molecule. Our findings indicate that the influence of the cavity intensifies with larger acenes. Additionally, we demonstrate that, unlike the full determinantal representation, DMRG efficiently optimizes and eliminates excess photonic degrees of freedom, resulting in an asymptotically constant computational cost as the photonic basis increases.

Zobrazit více v PubMed

Bernardot F.; Nussenzveig P.; Brune M.; Raimond J. M.; Haroche S. Vacuum Rabi Splitting Observed on a Microscopic Atomic Sample in a Microwave Cavity. EPL 1992, 17, 33.10.1209/0295-5075/17/1/007. DOI

Nussenzveig P.; Bernardot F.; Brune M.; Hare J.; Raimond J. M.; Haroche S.; Gawlik W. Preparation of high-principal-quantum-number “circular” states of rubidium. Phys. Rev. A 1993, 48, 3991–3994. 10.1103/PhysRevA.48.3991. PubMed DOI

Chikkaraddy R.; De Nijs B.; Benz F.; Barrow S. J.; Scherman O. A.; Rosta E.; Demetriadou A.; Fox P.; Hess O.; Baumberg J. J. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016, 535, 127–130. 10.1038/nature17974. PubMed DOI PMC

Hutchison J. A.; Schwartz T.; Genet C.; Devaux E.; Ebbesen T. W. Modifying Chemical Landscapes by Coupling to Vacuum Fields. Angew. Chem., Int. Ed. 2012, 51, 1592.10.1002/anie.201107033. PubMed DOI

Thomas A.; et al. Ground State Chemical Reactivity under Vibrational Strong Coupling to the Vacuum Electromagnetic Field. Angew. Chem., Int. Ed. 2016, 55, 11462.10.1002/anie.201605504. PubMed DOI PMC

Ebbesen T. W.; Rubio A.; Scholes G. D. Introduction: Polaritonic Chemistry. Chem. Rev. 2023, 123, 12037–12038. 10.1021/acs.chemrev.3c00637. PubMed DOI

Hirai K.; Hutchison J. A.; Uji-i H. Molecular Chemistry in Cavity Strong Coupling. Chem. Rev. 2023, 123, 8099–8126. 10.1021/acs.chemrev.2c00748. PubMed DOI

Pavošević F.; Smith R. L.; Rubio A. Cavity Click Chemistry: Cavity-Catalyzed Azide-Alkyne Cycloaddition. J. Phys. Chem. A 2023, 127, 10184–10188. 10.1021/acs.jpca.3c06285. PubMed DOI

Ruggenthaler M.; Mackenroth F.; Bauer D. Time-dependent Kohn-Sham approach to quantum electrodynamics. Phys. Rev. A 2011, 84, 042107.10.1103/PhysRevA.84.042107. DOI

Ruggenthaler M.; Flick J.; Pellegrini C.; Appel H.; Tokatly I. V.; Rubio A. Quantum-electrodynamical density-functional theory: Bridging quantum optics and electronic-structure theory. Phys. Rev. A 2014, 90, 012508.10.1103/PhysRevA.90.012508. DOI

Pellegrini C.; Flick J.; Tokatly I. V.; Appel H.; Rubio A. Optimized Effective Potential for Quantum Electrodynamical Time-Dependent Density Functional Theory. Phys. Rev. Lett. 2015, 115, 093001.10.1103/PhysRevLett.115.093001. PubMed DOI

Flick J.; Schäfer C.; Ruggenthaler M.; Appel H.; Rubio A. Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State. ACS Photonics 2018, 5, 992–1005. 10.1021/acsphotonics.7b01279. PubMed DOI PMC

Jestädt R.; Ruggenthaler M.; Oliveira M. J. T.; Rubio A.; Appel H. Light-matter interactions within the Ehrenfest-Maxwell-Pauli-Kohn-Sham framework: fundamentals, implementation, and nano-optical applications. Adv. Phys. 2019, 68, 225–333. 10.1080/00018732.2019.1695875. DOI

Flick J.; Narang P. Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry. J. Chem. Phys. 2020, 153, 094116.10.1063/5.0021033. PubMed DOI

Ruggenthaler M.; Sidler D.; Rubio A. Understanding polaritonic chemistry from ab initio quantum electrodynamics. Chem. Rev. 2023, 123, 11191–11229. 10.1021/acs.chemrev.2c00788. PubMed DOI PMC

Vu N.; McLeod G. M.; Hanson K.; DePrince A. E. I. Enhanced Diastereocontrol via Strong Light-Matter Interactions in an Optical Cavity. J. Phys. Chem. A 2022, 126, 9303–9312. 10.1021/acs.jpca.2c07134. PubMed DOI

Pavošević F.; Rubio A. Wavefunction embedding for molecular polaritons. J. Chem. Phys. 2022, 157, 094101.10.1063/5.0095552. PubMed DOI

Liebenthal M. D.; Vu N.; DePrince A. E. III Assessing the Effects of Orbital Relaxation and the Coherent-State Transformation in Quantum Electrodynamics Density Functional and Coupled-Cluster Theories. J. Phys. Chem. A 2023, 127, 5264–5275. 10.1021/acs.jpca.3c01842. PubMed DOI

Tokatly I. V. Time-Dependent Density Functional Theory for Many-Electron Systems Interacting with Cavity Photons. Phys. Rev. Lett. 2013, 110, 233001.10.1103/PhysRevLett.110.233001. PubMed DOI

Flick J.; Ruggenthaler M.; Appel H.; Rubio A. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 3026–3034. 10.1073/pnas.1615509114. PubMed DOI PMC

Tokatly I. V. Conserving approximations in cavity quantum electrodynamics: Implications for density functional theory of electron-photon systems. Phys. Rev. B 2018, 98, 235123.10.1103/PhysRevB.98.235123. DOI

Malave J.; Ahrens A.; Pitagora D.; Covington C.; Varga K. Real-space, real-time approach to quantum-electrodynamical time-dependent density functional theory. J. Chem. Phys. 2022, 157, 194106.10.1063/5.0123909. PubMed DOI

Yang J.; Ou Q.; Pei Z.; Wang H.; Weng B.; Shuai Z.; Mullen K.; Shao Y. Quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. J. Chem. Phys. 2021, 155, 064107.10.1063/5.0057542. PubMed DOI PMC

Yang J.; Pei Z.; Leon E. C.; Wickizer C.; Weng B.; Mao Y.; Ou Q.; Shao Y. Cavity quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. II. Analytic energy gradient. J. Chem. Phys. 2022, 156, 124104.10.1063/5.0082386. PubMed DOI

McTague J.; Foley J. J. IV Non-Hermitian cavity quantum electrodynamics-configuration interaction singles approach for polaritonic structure with ab initio molecular Hamiltonians. J. Chem. Phys. 2022, 156, 154103.10.1063/5.0091953. PubMed DOI

Vu N.; Mejia-Rodriguez D.; Bauman N. P.; Panyala A.; Mutlu E.; Govind N.; Foley J. J. I. Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory. J. Chem. Theory Comput. 2024, 20, 1214–1227. 10.1021/acs.jctc.3c01207. PubMed DOI PMC

Bauer M.; Dreuw A. Perturbation theoretical approaches to strong light-matter coupling in ground and excited electronic states for the description of molecular polaritons. J. Chem. Phys. 2023, 158, 124128.10.1063/5.0142403. PubMed DOI

Cui Z.-H.; Mandal A.; Reichman D. R. Variational Lang-Firsov Approach Plus Møller-Plesset Perturbation Theory with Applications to Ab Initio Polariton Chemistry. J. Chem. Theory Comput. 2024, 20, 1143–1156. 10.1021/acs.jctc.3c01166. PubMed DOI

Haugland T. S.; Schäfer C.; Ronca E.; Rubio A.; Koch H. Intermolecular interactions in optical cavities: An ab initio QED study. J. Chem. Phys. 2021, 154, 094113.10.1063/5.0039256. PubMed DOI

Mordovina U.; Bungey C.; Appel H.; Knowles P. J.; Rubio A.; Manby F. R. Polaritonic coupled-cluster theory. Phys. Rev. Res. 2020, 2, 023262.10.1103/PhysRevResearch.2.023262. DOI

DePrince A. E. Cavity-modulated ionization potentials and electron affinities from quantum electrodynamics coupled-cluster theory. J. Chem. Phys. 2021, 154, 094112.10.1063/5.0038748. PubMed DOI

Mallory J. D.; DePrince A. E. Reduced-density-matrix-based ab initio cavity quantum electrodynamics. Phys. Rev. A 2022, 106, 053710.10.1103/PhysRevA.106.053710. DOI

Weight B. M.; Tretiak S.; Zhang Y. Diffusion quantum Monte Carlo approach to the polaritonic ground state. Phys. Rev. A 2024, 109, 032804.10.1103/PhysRevA.109.032804. DOI

Tubman N. M.; Freeman C. D.; Levine D. S.; Hait D.; Head-Gordon M.; Whaley K. B. Modern Approaches to Exact Diagonalization and Selected Configuration Interaction with the Adaptive Sampling CI Method. J. Chem. Theory Comput. 2020, 16, 2139–2159. 10.1021/acs.jctc.8b00536. PubMed DOI

Garniron Y.; Scemama A.; Giner E.; Caffarel M.; Loos P.-F. Selected configuration interaction dressed by perturbation. J. Chem. Phys. 2018, 149, 064103.10.1063/1.5044503. PubMed DOI

Liu W.; Hoffmann M. R. iCI: Iterative CI toward full CI. J. Chem. Theory Comput. 2016, 12, 1169–1178. 10.1021/acs.jctc.5b01099. PubMed DOI

Sharma S.; Holmes A. A.; Jeanmairet G.; Alavi A.; Umrigar C. J. Semistochastic Heat-Bath Configuration Interaction Method: Selected Configuration Interaction with Semistochastic Perturbation Theory. J. Chem. Theory Comput. 2017, 13, 1595–1604. 10.1021/acs.jctc.6b01028. PubMed DOI

Guther K.; et al. NECI: N-Electron Configuration Interaction with an emphasis on state-of-the-art stochastic methods. J. Chem. Phys. 2020, 153, 034107.10.1063/5.0005754. PubMed DOI

Chan G. K.-L.; Sharma S. The Density Matrix Renormalization Group in Quantum Chemistry. Annu. Rev. Phys. Chem. 2011, 62, 465–481. 10.1146/annurev-physchem-032210-103338. PubMed DOI

Szalay S.; Pfeffer M.; Murg V.; Barcza G.; Verstraete F.; Schneider R.; Legeza Ö. Tensor product methods and entanglement optimization for ab initio quantum chemistry. Int. J. Quantum Chem. 2015, 115, 1342–1391. 10.1002/qua.24898. DOI

Baiardi A.; Reiher M. The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. J. Chem. Phys. 2020, 152, 040903.10.1063/1.5129672. PubMed DOI

Brabec J.; Brandejs J.; Kowalski K.; Xantheas S.; Legeza Ö.; Veis L. Massively parallel quantum chemical density matrix renormalization group method. J. Comput. Chem. 2021, 42, 534–544. 10.1002/jcc.26476. PubMed DOI

White S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 1992, 69, 2863–2866. 10.1103/PhysRevLett.69.2863. PubMed DOI

Lopata K.; Reslan R.; Kowalska M.; Neuhauser D.; Govind N.; Kowalski K. Excited-State Studies of Polyacenes: A Comparative Picture Using EOMCCSD, CR-EOMCCSD (T), Range-Separated (LR/RT)-TDDFT, TD-PM3, and TD-ZINDO. J. Chem. Theory Comput. 2011, 7, 3686–3693. 10.1021/ct2005165. PubMed DOI

White S. R. Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 1993, 48, 10345–10356. 10.1103/PhysRevB.48.10345. PubMed DOI

Schollwöck U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 2011, 326, 96–192. 10.1016/j.aop.2010.09.012. DOI

Davidson E. R. The Iterative Calculation of a Few of the Lowest Eigenvalues and Corresponding Eigenvectors of Real-Symmetric Matrices. J. Comput. Phys. 1975, 17, 87–94. 10.1016/0021-9991(75)90065-0. DOI

Xiang T. Density-matrix renormalization-group method in momentum space. Phys. Rev. B 1996, 53, R10445–R10448. 10.1103/PhysRevB.53.R10445. PubMed DOI

Muolo A.; Baiardi A.; Feldmann R.; Reiher M. Nuclear-electronic all-particle density matrix renormalization group. J. Chem. Phys. 2020, 152, 204103.10.1063/5.0007166. PubMed DOI

Feldmann R.; Muolo A.; Baiardi A.; Reiher M. Quantum Proton Effects from Density Matrix Renormalization Group Calculations. J. Chem. Theory Comput. 2022, 18, 234–250. 10.1021/acs.jctc.1c00913. PubMed DOI

Klauder J. R.; Sudarshan E. C. G.. Fundamentals of quantum optics; W. A. Benjamin, Inc, New York, 1968.

Foley J. IV; McTague J.; DePrince A. E. III Ab initio methods for polariton chemistry. Chem. Phys. Rev. 2023, 4, 041301.10.1063/5.0167243. DOI

Legeza O.; Sólyom J. Optimizing the density-matrix renormalization group method using quantum information entropy. Phys. Rev. B 2003, 68, 195116.10.1103/PhysRevB.68.195116. DOI

Larsson H. R.; Zhai H.; Gunst K.; Chan G. K.-L. Matrix Product States with Large Sites. J. Chem. Theory Comput. 2022, 18, 749–762. 10.1021/acs.jctc.1c00957. PubMed DOI

Barcza G.; Werner M. A.; Zaránd G.; Pershin A.; Benedek Z.; Legeza O.; Szilvási T. Toward Large-Scale Restricted Active Space Calculations Inspired by the Schmidt Decomposition. J. Phys. Chem. A 2022, 126, 9709–9718. 10.1021/acs.jpca.2c05952. PubMed DOI

Feldmann R.; Muolo A.; Baiardi A.; Reiher M. Quantum Proton Effects from Density Matrix Renormalization Group Calculations. J. Chem. Theory Comput. 2022, 18, 234–250. 10.1021/acs.jctc.1c00913. PubMed DOI

Jeckelmann E.; White S. R.. Application of the DMRG technique to the Holstein model; 1996; pp O13–10

Jeckelmann E.; White S. R. Density-matrix renormalization-group study of the polaron problem in the Holstein model. Phys. Rev. B 1998, 57, 6376.10.1103/PhysRevB.57.6376. DOI

Tezuka M.; Arita R.; Aoki H. A DMRG study of correlation functions in the Holstein-Hubbard model. Physica B 2005, 359, 708–710. 10.1016/j.physb.2005.01.201. DOI

Zhai H.; Larsson H. R.; Lee S.; Cui Z.-H.; Zhu T.; Sun C.; Peng L.; Peng R.; Liao K.; Tölle J.; et al. Block2: A comprehensive open source framework to develop and apply state-of-the-art DMRG algorithms in electronic structure and beyond. J. Chem. Phys. 2023, 159, 234801.10.1063/5.0180424. PubMed DOI

Beran P.; Matoušek M.; Hapka M.; Pernal K.; Veis L. Density Matrix Renormalization Group with Dynamical Correlation via Adiabatic Connection. J. Chem. Theory Comput. 2021, 17, 7575–7585. 10.1021/acs.jctc.1c00896. PubMed DOI

Dunning T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. 10.1063/1.456153. DOI

Olivares-Amaya R.; Hu W.; Nakatani N.; Sharma S.; Yang J.; Chan G. K.-L. The ab-initio density matrix renormalization group in practice. J. Chem. Phys. 2015, 142, 034102.10.1063/1.4905329. PubMed DOI

Fiedler M. Algebraic connectivity of graphs. Czech. Math. J. 1973, 23, 298–305. 10.21136/CMJ.1973.101168. DOI

Fiedler M. Eigenvectors of acyclic matrices. Czech. Math. J. 1975, 25, 607–618. 10.21136/CMJ.1975.101356. DOI

Barcza G.; Legeza O.; Marti K. H.; Reiher M. Quantum-information analysis of electronic states of different molecular structures. Phys. Rev. A 2011, 83, 012508.10.1103/PhysRevA.83.012508. DOI

Legeza Ö.; Röder J.; Hess B. Controlling the accuracy of the density-matrix renormalization-group method: The dynamical block state selection approach. Phys. Rev. B 2003, 67, 125114.10.1103/PhysRevB.67.125114. DOI

White S. R.; Martin R. L. Ab initio quantum chemistry using the density matrix renormalization group. J. Chem. Phys. 1999, 110, 4127–4130. 10.1063/1.478295. DOI

Chan G. K.-L.; Head-Gordon M. Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group. J. Chem. Phys. 2002, 116, 4462–4476. 10.1063/1.1449459. DOI

George G.; Morris G. The intensity of absorption of naphthalene from 30 000 cm-1 to 53 000 cm-1. J. Mol. Spectrosc. 1968, 26, 67–71. 10.1016/0022-2852(68)90143-4. DOI

Huebner R.; Meilczarek S.; Kuyatt C. Electron energy-loss spectroscopy of naphthalene vapor. Chem. Phys. Lett. 1972, 16, 464–469. 10.1016/0009-2614(72)80401-9. DOI

Bergman A.; Jortner J. Two-photon spectroscopy utilizing dye lasers. Chem. Phys. Lett. 1972, 15, 309–315. 10.1016/0009-2614(72)80178-7. DOI

Steiner R. P.; Michl J. Magnetic circular dichroism of cyclic. pi.-electron systems. 11. Derivatives and aza analogues of anthracene. J. Am. Chem. Soc. 1978, 100, 6861–6867. 10.1021/ja00490a011. DOI

Bree A.; Lyons L. 1002. The intensity of ultraviolet-light absorption by monocrystals. Part IV. Absorption by naphthacene of plane-polarized light. J. Chem. Soc. 1960, 5206–5212. 10.1039/jr9600005206. DOI

Berlman I.Handbook of florescence spectra of aromatic molecules; Elsevier, 2012.

Heinecke E.; Hartmann D.; Müller R.; Hese A. Laser spectroscopy of free pentacene molecules (I): The rotational structure of the vibrationless S1 ← S transition. J. Chem. Phys. 1998, 109, 906–911. 10.1063/1.476631. DOI

Sharma P.; Bernales V.; Knecht S.; Truhlar D. G.; Gagliardi L. Density matrix renormalization group pair-density functional theory (DMRG-PDFT): singlet-triplet gaps in polyacenes and polyacetylenes. Chem. Sci. 2019, 10, 1716–1723. 10.1039/C8SC03569E. PubMed DOI PMC

Veis L.; Antalík A.; Brabec J.; Neese F.; Legeza Ö.; Pittner J. Coupled Cluster Method with Single and Double Excitations Tailored by Matrix Product State Wave Functions. J. Phys. Chem. Lett. 2016, 7, 4072–4078. 10.1021/acs.jpclett.6b01908. PubMed DOI

Roemelt M.; Guo S.; Chan G. K.-L. A projected approximation to strongly contracted N-electron valence perturbation theory for DMRG wavefunctions. J. Chem. Phys. 2016, 144, 204113.10.1063/1.4950757. PubMed DOI

Freitag L.; Knecht S.; Angeli C.; Reiher M. Multireference Perturbation Theory with Cholesky Decomposition for the Density Matrix Renormalization Group. J. Chem. Theory Comput. 2017, 13, 451–459. 10.1021/acs.jctc.6b00778. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...