Fungal communities in bat guano, speleothem surfaces, and cavern water in Madai cave, Northern Borneo (Malaysia)
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34552810
PubMed Central
PMC8451656
DOI
10.1080/21501203.2021.1877204
PII: 1877204
Knihovny.cz E-zdroje
- Klíčová slova
- Biodiversity, Madai, borneo, fungi, limestone cave,
- Publikační typ
- časopisecké články MeSH
The island of Borneo is a global biodiversity hotspot. However, its limestone caves are one of its least-studied ecosystems. We report for the first time the fungal species richness, diversity and abundance from Madai cave, situated in north-eastern Borneo. Environmental samples from inside the cave environment were collected (guano, speleothem, and cavern water) via opportunistic sampling. The dilution method was performed for isolation of fungi. Morphological characterisation and molecular analysis of the ITS region were utilised for the identification of isolates. Fifty-five pure cultures of fungi were attained, comprising 32 species from 15 genera, eight orders, and two divisions, Ascomycota and Basidiomycota. Ascomycetes dominated the fungal composition, accounting for 53 (96%) out of 55 total isolates. Penicillium spp. accounted for more than 47.1% of fungal abundance in all sample types. However, Aspergillus spp. had the highest occurrence rate, being isolated from all environmental samples except one. Purpureocillium lilacinum was isolated most frequently, appearing in five separate samples across all three substrates. Annulohypoxylon nitens, Ganoderma australe, Pyrrhoderma noxium, and Xylaria feejeensis were discovered and reported for the first time from the cave environment. This study provides additional data for further research on the mycoflora of Sabah's various ecosystems, especially limestone caves.
Zobrazit více v PubMed
Alvindia DG, Hirooka Y.. 2011. Identification of clonostachys and trichoderma spp. from banana fruit surfaces by cultural, morphological and molecular methods. Mycol. 2(2):109–115. doi:10.1080/21501203.2011.554904. DOI
.
Ann PJ, Chang TT, Ko WH. 2002. Phellinus noxius brown root rot of fruit and ornamental trees in taiwan. Plant Dis. 86(8):820–826. doi:10.1094/PDIS.2002.86.8.820. PubMed DOI
JPM Araújo, Hughes DP. 2016. Diversity of Entomopathogenic Fungi. Which Groups Conquered the Insect Body? Adv Genet. 94:1–39. doi:10.1016/bs.adgen.2016.01.001 PubMed DOI
Atkins SD, Clark IM, Sosnowska D, Hirsch PR, Kerry BR. 2003. Detection and quantification of plectosphaerella cucumerina, a potential biological control agent of potato cyst nematodes, by using conventional PCR, real-time PCR, selective media, and baiting. Appl Environ Microbiol. 69(8):4788–4793. doi:10.1128/AEM.69.8.4788-4793.2003. PubMed DOI PMC
Barton HA, Jurado V. 2007. What’s up down there? microbial diversity in caves microorganisms in caves survive under nutrient-poor conditions and are metabolically versatile and unexpectedly diverse. Microbe. 2(3):132–138.
Barton HA, Northup DE. 2007. Geomicrobiology in cave environments: past, current and future perspectives. J Cave Karst Stud. 69(1):163–178.
Bastian F, Jurado V, Nováková A, Alabouvette C, Saiz-Jimenez C. 2010. The microbiology of lascaux cave. Microbiology. 156(3):644–652. doi:10.1099/mic.0.036160-0. PubMed DOI
Beck-Sagué CM, Jarvis WR, National Nosocomial Infections Surveillance System . 1993. Secular trends in the epidemiology of nosocomial fungal infections in the united states, 1980-1990. The J Infect Dis. 167(5):1247–1251. doi:10.1093/infdis/167.5.1247 PubMed DOI
Berman JJ. 2019. Taxonomic guide to infectious diseases: understanding the biologic classes of pathogenic organisms. London (UK): Academic Press Ltd.
Caira M, Posteraro B, Sanguinetti M, De Carolis E, Leone G, Pagano L. 2012. First case of breakthrough pneumonia due to aspergillus nomius in a patient with acute myeloid leukemia. Med Mycol. 50(7):746–750. doi:10.3109/13693786.2012.660507. PubMed DOI
Carlucci A, Raimondo ML, Santos J, Phillips AJL. 2012. Plectosphaerella species associated with root and collar rots of horticultural crops in southern italy. Pers - Mol Phylogeny and Evol Fungi. 28(1):34. doi:10.3767/003158512X638251. PubMed DOI PMC
Chelius MK, Beresford G, Horton H, Quirk M, Selby G, Simpson RT, Horrocks R, Moore JC. 2009. Impacts of alterations of organic inputs on the bacterial community within the sediments of wind cave, south dakota, USA. Int J Speleol. 38(1):1. doi:10.5038/1827-806X.38.1.1. DOI
Chung CL, Huang SY, Huang YC, Tzean SS, Ann PJ, Tsai JN, Yang CC, Lee HH, Huang TW, Huang HY, et al. 2015. The genetic structure of phellinus noxius and dissemination pattern of brown root rot disease in taiwan. PLoS ONE. 10(10):10. doi:10.1371/journal.pone.0139445. PubMed DOI PMC
Cunha AO, Bezerra JD, Oliveira TG, Barbier E, Bernard E, Machado AR, Souza-Motta CM. 2020. Living in the dark: bat caves as hotspots of fungal diversity. Plos One. 15(12):e0243494. doi:10.1371/journal.pone.0243494. PubMed DOI PMC
Cunningham KI, Northup DE, Pollastro RM, Wright WG, LaRock EJ. 1995. Bacteria, fungi and biokarst in lechuguilla cave, carlsbad caverns national park, new mexico. Environ Geol. 25(1):2–8. doi:10.1007/BF01061824. DOI
Deberdt P, Mfegue CV, Tondje PR, Bon MC, Ducamp M, Hurard C, Begoude BAD, Ndoumbe-Nkeng M, Hebbar PK, Cilas C. 2008. Impact of environmental factors, chemical fungicide and biological control on cacao pod production dynamics and black pod disease (phytophthora megakarya) in cameroon. Biol Control. 44(2):149–159. doi:10.1016/j.biocontrol.2007.10.026. DOI
Dodge-Wan D, Deng AHM. 2013. Biologically influenced stalagmites in niah and mulu caves (sarawak, malaysia). Acta Carsologica. 42(1):155–163. doi:10.3986/ac.v42i1.634. DOI
Domsch KH, Gams W, Anderson TH. 1980. Compendium of soil fungi. volume 1. London (UK): Academic Press Ltd.
Dupont J, Jacquet C, Dennetière B, Lacoste S, Bousta F, Orial G, Roquebert MF. 2007. Invasion of the french paleolithic painted cave of lascaux by members of the fusarium solani species complex. Mycol. 99(4):526–533. doi:10.1080/15572536.2007.11832546. PubMed DOI
Engel AS, Stern LA, Bennett PC. 2004. Microbial contributions to cave formation: new insights into sulfuric acid speleogenesis. Geol. 32(5):369–372. doi:10.1130/G20288.1. DOI
Fisher MC, Garner TWJ, Walker SF. 2009. Global emergence of batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol. 63(1):291–310. doi:10.1146/annurev.micro.091208.073435. PubMed DOI
Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nat. 484(7393):186. doi:10.1038/nature10947. PubMed DOI PMC
Frey SD, Elliott ET, Paustian K. 1999. Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biol Biochem. 31(4):573–585. doi:10.1016/S0038-0717(98)00161-8. DOI
Gabriel CR, Northup DE. 2013. Microbial ecology: caves as an extreme habitat. In: Cheeptham N, editor. Cave microbiomes: a novel resource for drug discovery. New York (NY): Springer; p. 85–108.
Golzar H, Wang C. 2012. First report of phaeosphaeriopsis glaucopunctata as the cause of leaf spot and necrosis on ruscus aculeatus in australia. Australas Plant Dis Notes. 7(1):3–15. doi:10.1007/s13314-011-0035-5. DOI
Griffin DW, Gray MA, Lyles MB, Northup DE. 2014. The transport of nonindigenous microorganisms into caves by human visitation: a case study at carlsbad caverns national park. Geomicrobiol J. 31(3):175–185. doi:10.1080/01490451.2013.815294. DOI
Gunde-Cimerman N, Zalar P, Jeram S. 1998. Mycoflora of cave cricket troglophilus neglectus cadavers. Mycopathol. 141(2):111–114. doi:10.1023/A:1006947524503. DOI
Harrison T. 1998. Vertebrate faunal remains from the madai caves (MAD 1/28), sabah, east malaysia. Bull Indo-Pac Prehis Assoc. 17:85–92.
Hawksworth DL, Lücking R. 2017. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr. 5(4). FUNK–0052–2016. DOI: 10.1128/microbiolspec.FUNK-0052-2016. PubMed DOI PMC
Hibbett DS, Ohman A, Kirk PM. 2009. Fungal ecology catches fire. New Phytol. 184(2):279–282. doi:10.1111/j.1469-8137.2009.03042.x. PubMed DOI
Hoppert M, Flies C, Pohl W, Günzl B, Schneider J. 2004. Colonization strategies of lithobiontic microorganisms on carbonate rocks. Environ Geol. 46(3–4):421–428. doi:10.1007/s00254-004-1043-y. DOI
Hose LD, Palmer AN, Palmer MV, Northup DE, Boston PJ, DuChene HR. 2000. Microbiology and geochemistry in a hydrogen-sulfide-rich karst environment. Chem Geol. 169(3–4):399–423. doi:10.1016/S0009-2541(00)00217-5. DOI
Hsu LY, Wijaya L, Ng EST, Gotuzzo E. 2012. Tropical fungal infections. Infect Dis Clin North Am. 26(2):497–512. doi:10.1016/j.idc.2012.02.004. PubMed DOI
Hsu MJ, Agoramoorthy G. 2001. Occurrence and diversity of thermophilous soil microfungi in forest and cave ecosystems of taiwan. Fungal Divers. 7:27–33.
Ikeda A, Matsuoka S, Masuya H, Mori AS, Hirose D, Osono T. 2014. Comparison of the diversity, composition, and host recurrence of xylariaceous endophytes in subtropical, cool temperate, and subboreal regions in japan. Popul Ecol. 56:289–300.
Ikner LA, Toomey RS, Nolan G, Neilson JW, Pryor BM, Maier RM. 2007. Culturable microbial diversity and the impact of tourism in kartchner caverns, arizona. Microb Ecol. 53(1):30–42. doi:10.1007/s00248-006-9135-8. PubMed DOI
Jablonsky P, Kraemer S, Yett B. 1993. Lint in caves. In: Proceedings 1993 National Cave Management Symposium, Carlsbad, New Mexico. Am Cave Conserv Assoc.73–81.
Ju Y, Rogers JD, Hsieh H, Ju Y, Rogers JD. 2017. New hypoxylon species and notes on some names associated with or related to hypoxylon. Mycol. 96(1):154–161. doi:10.1080/15572536.2005.11833006. PubMed DOI
Jurado V, Laiz L, Rodriguez-Nava V, Boiron P, Hermosin B, Sanchez-Moral S, Saiz-Jimenez C. 2010. Pathogenic and opportunistic microorganisms in caves. Int J of Speleol. 39(1):15–24. doi:10.5038/1827-806x.39.1.2. DOI
Jurado V, Sanchez-Moral S, Saiz-Jimenez C. 2008. Entomogenous fungi and the conservation of the cultural heritage: A review. Int Biodeterior Biodegrad. 62(4):325–330. doi:10.1016/j.ibiod.2008.05.002. DOI
Karunarathna SC, Dong Y, Karasaki S, Tibpromma S, Hyde KD, Lumyong S, Xu J, Sheng J, Mortimer PE. 2020. Discovery of novel fungal species and pathogens on bat carcasses in a cave in yunnan province, china. Emerg Microbe Infect. 9(1):1554–1566. doi:10.1080/22221751.2020.1785333. PubMed DOI PMC
Kepenekçi İ, Toktay H, Oksal E, Bozbuğa R, İmren M. 2018. Effect of purpureocillium lilacinum on root lesion nematode, pratylenchus thornei. J Agric Sci. 24(3):323–328.
Kerry BR. 2000. Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol. 38(1):423–441. doi:10.1146/annurev.phyto.38.1.423. PubMed DOI
Klich MA. 2002. Biogeography of aspergillus species in soil and litter. Mycol. 94(1):21–27. doi:10.1080/15572536.2003.11833245. PubMed DOI
Kobayasi T, Maeda K, Harada M. 1980. Studies on the small mammal fauna of sabah, east malaysia i. order chiroptera and genus tupaia (primates). Contributions from the Biological Laboratory, Kyoto University. 26(1):67–82.
Kuzmina LY, Galimzianova NF, Abdullin SR, Ryabova AS. 2012. Microbiota of the kinderlinskaya cave (south urals, russia). Microbiology. 81(2):251–258. doi:10.1134/S0026261712010109. DOI
Larcher G, Bouchara JP, Pailley P, Montfort D, Beguin H, De Bièvre C, Chabasse D. 2003. Fungal biota associated with bats in western france. J Mycol Méd. 13:29–34.
Li PL, Chai AL, Shi YX, Xie XW, Li BJ. 2017. First report of root rot caused by plectosphaerella cucumerina on cabbage in china. Mycobiol. 45(2):110–113. doi:10.5941/MYCO.2017.45.2.110. PubMed DOI PMC
Liu T, Liu L, Jiang X, Hou J, Fu K, Zhou F, Chen J. 2010. Agrobacterium-mediated transformation as a useful tool for the molecular genetic study of the phytopathogen Curvularia lunata. Eur J Plant Pathol. 126(3):363–371. doi:10.1007/s10658-009-9541-0. DOI
Lorch JM, Knowles S, Lankton JS, Michell K, Edwards JL, Kapfer JM, Staffen RA, Wild ER, Schmidt KZ, Ballmann AE, et al. 2016. Snake fungal disease: an emerging threat to wild snakes. Philos Trans R Soc B Biol Sci. 371(1709):1709. doi:10.1098/rstb.2015.0457. PubMed DOI PMC
Maketon M, Amnuaykanjanasin A, Kaysorngup A. 2013. A rapid knockdown effect of penicillium citrinum for control of the mosquito culex quinquefasciatus in thailand. World J Microbiol Biotechnol. 30(2):727–736. doi:10.1007/s11274-013-1500-4. PubMed DOI
Man B, Wang H, Yun Y, Xiang X, Wang R, Duan Y, Cheng X. 2018. Diversity of fungal communities in heshang cave of central china revealed by mycobiome-sequencing. Front Microb. 9:1400. doi:10.3389/fmicb.2018.01400. PubMed DOI PMC
Marr KA, Carter RA, Crippa F, Wald A, Corey L. 2002. Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin Infect Dis. 34(7):909–917. doi:10.1086/339202. PubMed DOI
Mulec J, Vaupotič J, Walochnik J. 2012. Prokaryotic and eukaryotic airborne microorganisms as tracers of microclimatic changes in the underground (postojna cave, slovenia). Microb Ecol. 64(3):654–667. doi:10.1007/s00248-012-0059-1. PubMed DOI
Nieves-Rivera ÁM. 2003. Mycological survey of río camuy caves park, puerto rico. J Cave and Karst Stud. 65(1):23–28.
Nieves-Rivera ÁM., Santos-Flores CJ, Dugan FM, Miller TE. 2009. Guanophilic fungi in three caves of southwestern Puerto Rico. International Journal of Speleology. 38(1):61–70. 10.5038/1827-806X DOI
Northup DE, Lavoie KH. 2001. Geomicrobiology of caves: a review. Geomicrobiol J. 18(3):199–222. doi:10.1080/01490450152467750. DOI
Nováková A. 2009. Microscopic fungi isolated from the domica cave system (slovak karst national park, slovakia). a review. Int J Speleol. 38(1):71–82. doi:10.5038/1827-806X.38.1.8. DOI
Nováková A, Hubka V, Saiz-Jimenez C, Kolarik M. 2012. Aspergillus baeticus sp. nov. and aspergillus thesauricus sp. Nov., two species in section usti from spanish caves. Intern J Syst Evol Microb. 62(Pt_11):2778–2785. doi:10.1099/ijs.0.041004-0. PubMed DOI
Nováková A, Kubátová A, Sklenář F, Hubka V. 2018. Microscopic fungi on cadavers and skeletons from cave and mine environments. Czech Mycol. 70(2):101–121. doi:10.33585/cmy.70201. DOI
Ogórek R, Piecuch A, Višňovská Z, Cal M, Niedźwiecka K. 2019. First report on the occurence of Dermatophytes of Microsporum Cookei Clade and Close Affinities to Paraphyton Cookei in the Harmanecká Cave (Veľká Fatra Mts., Slovakia). Divers. 11(10): 191
Ogórek R, Lejman A, Matkowski K. 2013. Fungi isolated from niedźwiedzia cave in kletno (lower silesia, poland). Int J Speleol. 42(2):161–166. doi:10.5038/1827-806X.42.2.9. DOI
Ogórek R, Pusz W, Zagożdżon PP, Kozak B, Bujak H. 2017. Abundance and diversity of psychrotolerant cultivable mycobiota in winter of a former aluminous shale mine. Geomicrobiol J. 34(10):823–833. doi:10.1080/01490451.2017.1280860. DOI
Ortiz M, Legatzki A, Neilson JW, Fryslie B, Nelson WM, Wing RA, Soderlund CA, Pryor BM, Maier RM. 2014. Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave. Isme J. 8(2):478–491. doi:10.1038/ismej.2013.159. PubMed DOI PMC
Paulson TL. 1972. Bat guano ecosystems. Bull of the Natl Speleol Soc. 34(2):55–59.
Pereira J, Rogers JD, Bezerra JL. 2010. New annulohypoxylon species from brazil. Mycol. 102(1):248–252. doi:10.3852/09-116. PubMed DOI
Porca E, Jurado V, Martin-Sanchez PM, Hermosin B, Bastian F, Alabouvette C, Saiz-Jimenez C. 2011. Aerobiology: an ecological indicator for early detection and control of fungal outbreaks in caves. Ecol Indic. 11(6):1594–1598. doi:10.1016/j.ecolind.2011.04.003. DOI
Puechmaille SJ, Frick WF, Kunz TH, Racey PA, Voigt CC, Wibbelt G, Teeling EC. 2011. White-nose syndrome: Is this emerging disease a threat to european bats? trends in ecol & evol. 26(11):570–576. doi:10.1016/j.tree.2011.06.013. PubMed DOI
Pusz W, Ogórek R, Knapik R, Kozak B, Bujak H. 2015. The occurrence of fungi in the recently discovered jarkowicka cave in the karkonosze mts. (poland). Geomicrobiol J. 32(1):59–67. doi:10.1080/01490451.2014.925010. DOI
Pusz W, Ogórek R, Uklańska-Pusz CM, Zagożdżon P. 2014. Speleomycological research in underground osówka complex in sowie mountains (lower silesia, poland). Intern J Speleol. 43(1):3. doi:10.5038/1827-806X.43.1.3. DOI
Raper KB, Fennel DI. 1965. . Aspergillus terreus group. the genus aspergillus. Baltimore (MD): The Williams & Wilkins Co.
Sahashi N, Akiba M, Takemoto S, Yokoi T, Ota Y, Kanzaki N. 2014. Phellinus noxius causes brown root rot on four important conifer species in japan. Eur J Plant Pathol. 140(4):869–873. doi:10.1007/s10658-014-0503-9. DOI
Schimel JP, Gulledge JM, Clein-Curley JS, Lindstrom JE, Braddock JF. 1999. Moisture effects on microbial activity and community structure in decomposing birch litter in the alaskan taiga. Soil Biol Biochem. 31(6):831–838. doi:10.1016/S0038-0717(98)00182-5. DOI
Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Consortium FB. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A. 109(16):6241–6246. doi:10.1073/pnas.1117018109. PubMed DOI PMC
Shapiro J, Pringle A. 2010. Anthropogenic influences on the diversity of fungi isolated from caves in kentucky and tennessee. Am Midl Nat. 163(1):76–87. doi:10.1674/0003-0031-163.1.76. DOI
Sharon E, Chet I, Viterbo A, Bary-Eyal M, Nagan H, Samuels GJ, Spiegel Y. 2007. Parasitism of trichoderma on meloidogyne javanica and role of the gelatinous matrix. Eur J Plant Pathol. 118(3):247–258. doi:10.1007/s10658-007-9140-x. DOI
Smrž J, Ľ K, Mikeš J, Šustr V. 2015. Food sources of selected terrestrial cave arthropods. 46:37–46. DOI:10.3897/subtbiol.16.8609. DOI
Sterflinger K, DeHoog GS, Haase G. 1999. Phylogeny and ecology of meristematic ascomycetes. Stud Mycol. 43:5–22.
Stošić S, Ristić D, Gašić K, Starović M, Ljaljević Grbić M, Vukojević J, Živković S. 2019. Talaromyces minioluteus–new postharvest fungal pathogen in Serbia. Plant Dis. PubMed
Šustr V, Elhottová D, Krištůfek V, Lukešová A, Nováková A, Tajovský K, Tříska J. 2005. Ecophysiology of the cave isopod mesoniscus graniger (frivaldszky, 1865) (crustacea: isopoda). Eur J Soil Biol. 41(3–4):69–75. doi:10.1016/j.ejsobi.2005.09.008. DOI
Taylor ELS, Ferreira RL, Cardoso PG, Stoianoff MAR. 2014. Cave entrance dependent spore dispersion of filamentous fungi isolated from various sediments of iron ore cave in brazil: a colloquy on human threats while caving. Ambient Sci. 1(1):16–28.
Thambugala KM, Camporesi E, Ariyawansa HA, Phookamsak R, Liu Z, Hyde KD. 2014. Phylogeny and morphology of phaeosphaeriopsis triseptata sp. nov., and phaeosphaeriopsis glaucopunctata. 176(1):238–250. 10.1111/cei.12275. DOI
Vanderwolf KJ, Malloch D, McAlpine DF. 2016. Ectomycota associated with arthropods from bat hibernacula in eastern canada, with particular reference to pseudogymnoascus destructans. Insects. 7(2):16. doi:10.3390/insects7020016. PubMed DOI PMC
Vanderwolf KJ, Malloch D, Mcalpine DF, Forbes GJ. 2013. A world review of fungi, yeasts, and slime molds in caves. Int J Speleol. 42(1):77–96. doi:10.5038/1827-806X.42.1.9. DOI
Vaughan MJ, Maier RM, Pryor BM. 2011. Fungal communities on speleothem surfaces in kartchner caverns, arizona, USA. Int J Speleol. 40(1):65–77. doi:10.5038/1827-806X.40.1.8. DOI
Wainwright M, Ali TA, Barakah F. 1993. A review of the role of oligotrophic micro-organisms in biodeterioration. Intern Biodeterior & Biodegrad. 31(1):1–13. doi:10.1016/0964-8305(93)90010-Y. DOI
Wakelin SA, Gupta VVSR, Harvey PR, Ryder MH. 2007. The effect of penicillium fungi on plant growth and phosphorus mobilization in neutral to alkaline soils from southern australia. Can J Microbiol. 53(1):106–115. doi:10.1139/W06-109. PubMed DOI
Wang W, Ma X, Ma Y, Mao L, Wu F, Ma X, Feng H. 2010. Seasonal dynamics of airborne fungi in different caves of the mogao grottoes, dunhuang, china. Intern Biodeterior & Biodegrad. 64(6):461–466. doi:10.1016/j.ibiod.2010.05.005. DOI
Watanabe S, Kumakura K, Kato H, Iyozumi H, Togawa M, Nagayama K. 2005. Identification of trichoderma SKT- 1, a biological control agent against seedborne pathogens of rice. J Gen Plant Pathol. 71(5):351–356. doi:10.1007/s10327-005-0217-0. DOI
White TJ, Burns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications. 18(1):315–322.
Wilford GE. 1961. The geology and mineral resources of brunei and adjacent parts of sarawak: with descriptions of seria and miri oilfields. geological survey department. Borneo Region, Malaysia, Memoir. 10:319.
Wiseschart A, Mhuantong W, Tangphatsornruang S, Chantasingh D, Pootanakit K. 2019. Shotgun metagenomic sequencing from manao-pee cave, thailand, reveals insight into the microbial community structure and its metabolic potential. BMC Microbiol. 19(1):144. doi:10.1186/s12866-019-1521-8. PubMed DOI PMC
Zhang Z, Zhao P, Cai L. 2018. Origin of cave fungi. Front Microbiol. 9:1407. doi:10.3389/fmicb.2018.01407 PubMed DOI PMC
Zhang ZF, Cai L. 2019. Substrate and spatial variables are major determinants of fungal community in karst caves in southwest china. J Biogeogr. 46(7):1504–1518.
Zhang ZF, Liu F, Zhou X, Liu XZ, Liu SJ, Cai L. 2017. Culturable mycobiota from karst caves in china, with descriptions of 20 new species. Pers - Mol Phylogeny and Evol Fungi. 39(1):1–31. doi:10.3767/persoonia.2017.39.01. PubMed DOI PMC
Zhang ZF, Zhou SY, Eurwilaichitr L, Ingsriswang S, Raza M, Chen Q, Zhao P, Liu F, Cai L. 2020. Culturable mycobiota from karst caves in china II, with descriptions of 33 new species. Fungal divers. p. 1–108. doi: 10.1007/s13225-020-00453-7. DOI