The Effect of Alendronate on Osteoclastogenesis in Different Combinations of M-CSF and RANKL Growth Factors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33809737
PubMed Central
PMC8035832
DOI
10.3390/biom11030438
PII: biom11030438
Knihovny.cz E-zdroje
- Klíčová slova
- M-CSF, RANKL, alendronate, osteoclastogenesis,
- MeSH
- aktiny metabolismus MeSH
- alendronát farmakologie MeSH
- barvení a značení MeSH
- DNA metabolismus MeSH
- faktor stimulující kolonie makrofágů farmakologie MeSH
- karboanhydrasa II metabolismus MeSH
- krysa rodu Rattus MeSH
- kyselá fosfatasa rezistentní k tartarátu metabolismus MeSH
- leukocyty mononukleární účinky léků metabolismus MeSH
- lidé MeSH
- ligand RANK farmakologie MeSH
- osteogeneze účinky léků MeSH
- osteoklasty účinky léků enzymologie metabolismus MeSH
- proliferace buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny MeSH
- alendronát MeSH
- DNA MeSH
- faktor stimulující kolonie makrofágů MeSH
- karboanhydrasa II MeSH
- kyselá fosfatasa rezistentní k tartarátu MeSH
- ligand RANK MeSH
Bisphosphonates (BPs) are compounds resembling the pyrophosphate structure. BPs bind the mineral component of bones. During the bone resorption by osteoclasts, nitrogen-containing BPs are released and internalized, causing an inhibition of the mevalonate pathway. As a consequence, osteoclasts are unable to execute their function. Alendronate (ALN) is a bisphosphonate used to treat osteoporosis. Its administration could be associated with adverse effects. The purpose of this study is to evaluate four different ALN concentrations, ranging from 10-6 to 10-10 M, in the presence of different combinations of M-CSF and RANKL, to find out the effect of low ALN concentrations on osteoclastogenesis using rat and human peripheral blood mononuclear cells. The cytotoxic effect of ALN was evaluated based on metabolic activity and DNA concentration measurement. The alteration in osteoclastogenesis was assessed by the activity of carbonic anhydrase II (CA II), tartrate-resistant acid phosphatase staining, and actin ring formation. The ALN concentration of 10-6 M was cytotoxic. Low ALN concentrations of 10-8 and 10-10 M promoted proliferation, osteoclast-like cell formation, and CA II activity. The results indicated the induction of osteoclastogenesis with low ALN concentrations. However, when high doses of ALN were administered, their cytotoxic effect was demonstrated.
Zobrazit více v PubMed
Kim H.J., Kang W.Y., Seong S.J., Kim S.Y., Lim M.S., Yoon Y.R. Follistatin-like 1 promotes osteoclast formation via RANKL-mediated NF-κB activation and M-CSF-induced precursor proliferation. Cell. Signal. 2016;28:1137–1144. doi: 10.1016/j.cellsig.2016.05.018. PubMed DOI
Simonet W., Lacey D., Dunstan C., Kelley M., Chang M.-S., Lüthy R., Nguyen H., Wooden S., Bennett L., Boone T., et al. Osteoprotegerin: A Novel Secreted Protein Involved in the Regulation of Bone Density. Cell. 1997;89:309–319. doi: 10.1016/S0092-8674(00)80209-3. PubMed DOI
Silverman S.L., Kupperman E.S., Bukata S.V., Members of IOF Fracture Working Group Fracture healing: A consensus report from the Interna-tional Osteoporosis Foundation Fracture Working Group. Osteoporos. Int. 2016;27:2197–2206. doi: 10.1007/s00198-016-3513-y. PubMed DOI
Namkung-Matthai H., Appleyard R., Jansen J., Lin J.H., Maastricht S., Swain M., Mason R., Murrell G., Diwan A., Diamond T. Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone. 2001;28:80–86. doi: 10.1016/S8756-3282(00)00414-2. PubMed DOI
Nancollas G., Tang R., Phipps R., Henneman Z., Gulde S., Wu W., Mangood A., Russell R., Ebetino F. Novel insights into actions of bisphosphonates on bone: Differences in interactions with hydroxyapatite. Bone. 2006;38:617–627. doi: 10.1016/j.bone.2005.05.003. PubMed DOI
Thompson K., Rogers M.J., Coxon F.P., Crockett J.C. Cytosolic Entry of Bisphosphonate Drugs Requires Acidification of Vesicles after Fluid-Phase Endocytosis. Mol. Pharmacol. 2006;69:1624–1632. doi: 10.1124/mol.105.020776. PubMed DOI
Halasy-Nagy J., Rodan G., Reszka A. Inhibition of bone resorption by alendronate and risedronate does not require osteoclast apoptosis. Bone. 2001;29:553–559. doi: 10.1016/S8756-3282(01)00615-9. PubMed DOI
Dunford J.E., Kwaasi A.A., Rogers M.J., Barnett B.L., Ebetino F.H., Russell R.G.G., Oppermann U., Kavanagh K.L. Structure–Activity Relationships Among the Nitrogen Containing Bisphosphonates in Clinical Use and Other Analogues: Time-Dependent Inhibition of Human Farnesyl Pyrophosphate Synthase. J. Med. Chem. 2008;51:2187–2195. doi: 10.1021/jm7015733. PubMed DOI
Tsuboi K., Hasegawa T., Yamamoto T., Sasaki M., Hongo H., De Freitas P.H.L., Shimizu T., Takahata M., Oda K., Michigami T., et al. Effects of drug discontinuation after short-term daily alendronate administration on osteoblasts and osteocytes in mice. Histochem. Cell Biol. 2016;146:337–350. doi: 10.1007/s00418-016-1450-7. PubMed DOI
Frith J.C., Mönkkönen J., Blackburn G.M., Russell R.G.G., Rogers M.J. Clodronate and Liposome-Encapsulated Clodronate Are Metabolized to a Toxic ATP Analog, Adenosine 5′-(β,γ-Dichloromethylene) Triphosphate, by Mammalian Cells In Vitro. J. Bone Miner. Res. 1997;12:1358–1367. doi: 10.1359/jbmr.1997.12.9.1358. PubMed DOI
Hodge J.M., Collier F.M., Pavlos N.J., Kirkland M.A., Nicholson G.C. M-CSF Potently Augments RANKL-Induced Resorption Activation in Mature Human Osteoclasts. PLoS ONE. 2011;6:e21462. doi: 10.1371/journal.pone.0021462. PubMed DOI PMC
Bernhardt A., Koperski K., Schumacher M., Gelinsky M. Relevance of osteoclast-specific enzyme activities in cell-based in vitro resorption assays. Eur. Cells Mater. 2017;33:28–42. doi: 10.22203/eCM.v033a03. PubMed DOI
Van Houdt C.I.A., Gabbai-Armelin P.R., Lopez-Perez P.M., Ulrich D.J.O., Jansen J.A., Renno A.C.M., Van Den Beucken J.J.J.P. Alendronate release from calcium phosphate cement for bone regeneration in osteoporotic conditions. Sci. Rep. 2018;8:15398. doi: 10.1038/s41598-018-33692-5. PubMed DOI PMC
Toker H., Ozdemir H., Ozer H., Eren K. Alendronate enhances osseous healing in a rat calvarial defect model. Arch. Oral Biol. 2012;57:1545–1550. doi: 10.1016/j.archoralbio.2012.06.013. PubMed DOI
Buzgo M., Filova E., Staffa A.M., Rampichova M., Doupnik M., Vocetkova K., Lukasova V., Kolcun R., Lukas D., Necas A., et al. Needleless emulsion electrospinning for the regulated delivery of susceptible proteins. J. Tissue Eng. Regen. Med. 2018;12:583–597. doi: 10.1002/term.2474. PubMed DOI
Goimil L., Jaeger P., Ardao I., Gómez-Amoza J.L., Concheiro A., Alvarez-Lorenzo C., García-Gonzáles C.A. Preparation and stability of dexamethasone-loaded polymeric scaffolds for bone regen-eration processed by compressed CO2 foaming. J. CO2 Util. 2018;24:89–98. doi: 10.1016/j.jcou.2017.12.012. DOI
Farzin A., Etesami S.A., Goodarzi A., Ai J., Ai J. A facile way for development of three-dimensional localized drug delivery system for bone tissue engineering. Mater. Sci. Eng. C. 2019;105:110032. doi: 10.1016/j.msec.2019.110032. PubMed DOI
Breuil V., Cosman F., Stein L., Horbert W., Nieves J., Shen V., Lindsay R., Dempster D.W. Human Osteoclast Formation and Activity In Vitro: Effects of Alendronate. J. Bone Miner. Res. 1998;13:1721–1729. doi: 10.1359/jbmr.1998.13.11.1721. PubMed DOI
Martins C.A., Leyhausen G., Volk J., Geurtsen W. Effects of Alendronate on Osteoclast Formation and Activity In Vitro. J. Endod. 2015;41:45–49. doi: 10.1016/j.joen.2014.07.010. PubMed DOI
Correia V.D.F.P., Caldeira C.L., Marques M.M. Cytotoxicity evaluation of sodium alendronate on cultured human periodontal ligament fibroblasts. Dent. Traumatol. 2006;22:312–317. doi: 10.1111/j.1600-9657.2005.00434.x. PubMed DOI
Coxon F.P., Thompson K., Roelofs A.J., Ebetino F.H., Rogers M.J. Visualizing mineral binding and uptake of bisphosphonate by osteoclasts and non-resorbing cells. Bone. 2008;42:848–860. doi: 10.1016/j.bone.2007.12.225. PubMed DOI
Töyräs A., Ollikainen J., Taskinen M., Mönkkönen J. Inhibition of mevalonate pathway is involved in alendronate-induced cell growth inhibition, but not in cytokine secretion from macrophages in vitro. Eur. J. Pharm. Sci. 2003;19:223–230. doi: 10.1016/S0928-0987(03)00108-8. PubMed DOI
Mattson A.M., Begun D.L., Molstad D.H.H., Meyer M.A., Oursler M.J., Westendorf J.J., Bradley E.W. Deficiency in the phosphatase PHLPP1 suppresses osteoclast-mediated bone resorption and enhances bone formation in mice. J. Biol. Chem. 2019;294:11772–11784. doi: 10.1074/jbc.RA119.007660. PubMed DOI PMC
Sophocleous A., Idris A.I. Rodent models of osteoporosis. BoneKEy Rep. 2014;3:614. doi: 10.1038/bonekey.2014.109. PubMed DOI PMC
Adachi J.D., Saag K.G., Delmas P.D., Liberman U.A., Emkey R.D., Seeman E., Lane N.E., Kaufman J.-M., Poubelle P.E.E., Hawkins F., et al. Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: A randomized, double-blind, placebo-controlled extension trial. Arthritis Rheum. 2001;44:202–211. doi: 10.1002/1529-0131(200101)44:1<202::AID-ANR27>3.0.CO;2-W. PubMed DOI
Lewiecki E.M. Bisphosphonates for the treatment of osteoporosis: Insights for clinicians. Ther. Adv. Chronic Dis. 2010;1:115–128. doi: 10.1177/2040622310374783. PubMed DOI PMC
Francis M.D., Graham R., Russell R.G., Fleisch H. Diphosphonates Inhibit Formation of Calcium Phosphate Crystals in vitro and Pathological Calcification in vivo. Science. 1969;165:1264–1266. doi: 10.1126/science.165.3899.1264. PubMed DOI
Price P.A., Faus S.A., Williamson M.K. Bisphosphonates Alendronate and Ibandronate Inhibit Artery Calcification at Doses Comparable to Those That Inhibit Bone Resorption. Arter. Thromb. Vasc. Biol. 2001;21:817–824. doi: 10.1161/01.ATV.21.5.817. PubMed DOI
Bernhardt A., Schumacher M., Gelinsky M. Formation of Osteoclasts on Calcium Phosphate Bone Cements and Polystyrene Depends on Monocyte Isolation Conditions. Tissue Eng. Part C Methods. 2015;21:160–170. doi: 10.1089/ten.tec.2014.0187. PubMed DOI
Kleinhans C., Schmid F., Kluger P. Comparison of osteoclastogenesis and resorption activity of human osteoclasts on tissue culture polystyrene and on natural extracellular bone matrix in 2D and 3D. J. Biotechnol. 2015;205:101–110. doi: 10.1016/j.jbiotec.2014.11.039. PubMed DOI
Penolazzi L., Lampronti I., Borgatti M., Khan M.T.H., Zennaro M., Piva R., Gambari R. Induction of apoptosis of human primary osteoclasts treated with extracts from the medicinal plant Emblica officinalis. BMC Complement. Altern. Med. 2008;8:59. doi: 10.1186/1472-6882-8-59. PubMed DOI PMC
Bharti A.C., Takada Y., Shishodia S., Aggarwal B.B. Evidence that receptor activator of nuclear factor (NF)-kappaB ligand can suppress cell proliferation and induce apoptosis through activation of a NF-kappaB-independent and TRAF6-dependent mechanism. J. Biol. Chem. 2004;279:6065–6076. doi: 10.1074/jbc.M308062200. PubMed DOI
Nakamura I., Lipfert L., Rodan G.A., Duong L.T. Convergence of αvβ3Integrin–And Macrophage Colony Stimulating Factor–Mediated Signals on Phospholipase Cγ in Prefusion Osteoclasts. J. Cell Biol. 2001;152:361–374. doi: 10.1083/jcb.152.2.361. PubMed DOI PMC
Kharbanda S., Saleem A., Yuan Z., Emoto Y., Prasad K.V., Kufe D. Stimulation of human monocytes with macrophage colony-stimulating factor induces a Grb2-mediated association of the focal adhesion kinase pp125FAK and dynamin. Proc. Natl. Acad. Sci. USA. 1995;92:6132–6136. doi: 10.1073/pnas.92.13.6132. PubMed DOI PMC
Thavornyutikarn B., Wright P.F., Feltis B., Kosorn W., Turney T.W. Bisphosphonate activation of crystallized bioglass scaffolds for enhanced bone formation. Mater. Sci. Eng. C. 2019;104:109937. doi: 10.1016/j.msec.2019.109937. PubMed DOI
Manzano-Moreno F.J., Ramos-Torrecillas J., De Luna-Bertos E., Illescas-Montes R., Arnett T.R., Ruiz C., García-Martínez O. Influence of pH on osteoclasts treated with zoledronate and alendronate. Clin. Oral Investig. 2019;23:813–820. doi: 10.1007/s00784-018-2505-z. PubMed DOI
Cecchini M.G., Felix R., Fleisch H., Cooper P.H. Effect of bisphosphonates on proliferation and viability of mouse bone marrow-derived macrophages. J. Bone Miner. Res. 2009;2:135–142. doi: 10.1002/jbmr.5650020209. PubMed DOI
Sun J., Song F., Zhang W., Sexton B.E., Windsor L.J. Effects of alendronate on human osteoblast-like MG63 cells and matrix metalloproteinases. Arch. Oral Biol. 2012;57:728–736. doi: 10.1016/j.archoralbio.2011.12.007. PubMed DOI
Sung C.-M., Kim R.J., Hah Y.-S., Gwark J.-Y., Bin Park H. In vitro effects of alendronate on fibroblasts of the human rotator cuff tendon. BMC Musculoskelet. Disord. 2020;21:1–11. doi: 10.1186/s12891-019-3014-1. PubMed DOI PMC
Pourgonabadi S., Ghorbani A., Najarn Z.T., Mousavi S.H. In vitro assessment of alendronate toxic and apoptotic effects on human dental pulp stem cells. Iran. J. Basic Med. Sci. 2018;21:905–910. PubMed PMC
Mathov I., Plotkin L.I., Sgarlata C.L., Leoni J., Bellido T. Extracellular Signal-Regulated Kinases and Calcium Channels Are Involved in the Proliferative Effect of Bisphosphonates on Osteoblastic Cells In Vitro. J. Bone Miner. Res. 2001;16:2050–2056. doi: 10.1359/jbmr.2001.16.11.2050. PubMed DOI
Zhang Q., Liu M., Zhou Y., Liu W., Shen J., Shen Y., Liu L. The effect of alendronate on the expression of important cell factors in osteoclasts. Mol. Med. Rep. 2013;8:1195–1203. doi: 10.3892/mmr.2013.1630. PubMed DOI
Owens J.M., Fuller K., Chambers T.J. Osteoclast activation: Potent inhibition by the bisphosphonate alendronate through a nonresorptive mechanism. J. Cell. Physiol. 1997;172:79–86. doi: 10.1002/(SICI)1097-4652(199707)172:1<79::AID-JCP9>3.0.CO;2-A. PubMed DOI
Carano A., Teitelbaum S.L., Konsek J.D., Schlesinger P.H., Blair H.C. Bisphosphonates directly inhibit the bone resorption activity of isolated avian osteoclasts in vitro. J. Clin. Investig. 1990;85:456–461. doi: 10.1172/JCI114459. PubMed DOI PMC
Guo S., Ni Y., Ben J., Xia Y., Zhou T., Wang D., Ni J., Bai H., Wang L., Ma J., et al. Class A Scavenger Receptor Exacerbates Osteoclastogenesis by an Interleukin-6-Mediated Mechanism through ERK and JNK Signaling Pathways. Int. J. Biol. Sci. 2016;12:1155–1167. doi: 10.7150/ijbs.14654. PubMed DOI PMC
Kudo O., Sabokbar A., Pocock A., Itonaga I., Fujikawa Y., Athanasou N. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone. 2003;32:1–7. doi: 10.1016/S8756-3282(02)00915-8. PubMed DOI