The Effect of Alendronate on Osteoclastogenesis in Different Combinations of M-CSF and RANKL Growth Factors

. 2021 Mar 16 ; 11 (3) : . [epub] 20210316

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33809737

Bisphosphonates (BPs) are compounds resembling the pyrophosphate structure. BPs bind the mineral component of bones. During the bone resorption by osteoclasts, nitrogen-containing BPs are released and internalized, causing an inhibition of the mevalonate pathway. As a consequence, osteoclasts are unable to execute their function. Alendronate (ALN) is a bisphosphonate used to treat osteoporosis. Its administration could be associated with adverse effects. The purpose of this study is to evaluate four different ALN concentrations, ranging from 10-6 to 10-10 M, in the presence of different combinations of M-CSF and RANKL, to find out the effect of low ALN concentrations on osteoclastogenesis using rat and human peripheral blood mononuclear cells. The cytotoxic effect of ALN was evaluated based on metabolic activity and DNA concentration measurement. The alteration in osteoclastogenesis was assessed by the activity of carbonic anhydrase II (CA II), tartrate-resistant acid phosphatase staining, and actin ring formation. The ALN concentration of 10-6 M was cytotoxic. Low ALN concentrations of 10-8 and 10-10 M promoted proliferation, osteoclast-like cell formation, and CA II activity. The results indicated the induction of osteoclastogenesis with low ALN concentrations. However, when high doses of ALN were administered, their cytotoxic effect was demonstrated.

Zobrazit více v PubMed

Kim H.J., Kang W.Y., Seong S.J., Kim S.Y., Lim M.S., Yoon Y.R. Follistatin-like 1 promotes osteoclast formation via RANKL-mediated NF-κB activation and M-CSF-induced precursor proliferation. Cell. Signal. 2016;28:1137–1144. doi: 10.1016/j.cellsig.2016.05.018. PubMed DOI

Simonet W., Lacey D., Dunstan C., Kelley M., Chang M.-S., Lüthy R., Nguyen H., Wooden S., Bennett L., Boone T., et al. Osteoprotegerin: A Novel Secreted Protein Involved in the Regulation of Bone Density. Cell. 1997;89:309–319. doi: 10.1016/S0092-8674(00)80209-3. PubMed DOI

Silverman S.L., Kupperman E.S., Bukata S.V., Members of IOF Fracture Working Group Fracture healing: A consensus report from the Interna-tional Osteoporosis Foundation Fracture Working Group. Osteoporos. Int. 2016;27:2197–2206. doi: 10.1007/s00198-016-3513-y. PubMed DOI

Namkung-Matthai H., Appleyard R., Jansen J., Lin J.H., Maastricht S., Swain M., Mason R., Murrell G., Diwan A., Diamond T. Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone. 2001;28:80–86. doi: 10.1016/S8756-3282(00)00414-2. PubMed DOI

Nancollas G., Tang R., Phipps R., Henneman Z., Gulde S., Wu W., Mangood A., Russell R., Ebetino F. Novel insights into actions of bisphosphonates on bone: Differences in interactions with hydroxyapatite. Bone. 2006;38:617–627. doi: 10.1016/j.bone.2005.05.003. PubMed DOI

Thompson K., Rogers M.J., Coxon F.P., Crockett J.C. Cytosolic Entry of Bisphosphonate Drugs Requires Acidification of Vesicles after Fluid-Phase Endocytosis. Mol. Pharmacol. 2006;69:1624–1632. doi: 10.1124/mol.105.020776. PubMed DOI

Halasy-Nagy J., Rodan G., Reszka A. Inhibition of bone resorption by alendronate and risedronate does not require osteoclast apoptosis. Bone. 2001;29:553–559. doi: 10.1016/S8756-3282(01)00615-9. PubMed DOI

Dunford J.E., Kwaasi A.A., Rogers M.J., Barnett B.L., Ebetino F.H., Russell R.G.G., Oppermann U., Kavanagh K.L. Structure–Activity Relationships Among the Nitrogen Containing Bisphosphonates in Clinical Use and Other Analogues: Time-Dependent Inhibition of Human Farnesyl Pyrophosphate Synthase. J. Med. Chem. 2008;51:2187–2195. doi: 10.1021/jm7015733. PubMed DOI

Tsuboi K., Hasegawa T., Yamamoto T., Sasaki M., Hongo H., De Freitas P.H.L., Shimizu T., Takahata M., Oda K., Michigami T., et al. Effects of drug discontinuation after short-term daily alendronate administration on osteoblasts and osteocytes in mice. Histochem. Cell Biol. 2016;146:337–350. doi: 10.1007/s00418-016-1450-7. PubMed DOI

Frith J.C., Mönkkönen J., Blackburn G.M., Russell R.G.G., Rogers M.J. Clodronate and Liposome-Encapsulated Clodronate Are Metabolized to a Toxic ATP Analog, Adenosine 5′-(β,γ-Dichloromethylene) Triphosphate, by Mammalian Cells In Vitro. J. Bone Miner. Res. 1997;12:1358–1367. doi: 10.1359/jbmr.1997.12.9.1358. PubMed DOI

Hodge J.M., Collier F.M., Pavlos N.J., Kirkland M.A., Nicholson G.C. M-CSF Potently Augments RANKL-Induced Resorption Activation in Mature Human Osteoclasts. PLoS ONE. 2011;6:e21462. doi: 10.1371/journal.pone.0021462. PubMed DOI PMC

Bernhardt A., Koperski K., Schumacher M., Gelinsky M. Relevance of osteoclast-specific enzyme activities in cell-based in vitro resorption assays. Eur. Cells Mater. 2017;33:28–42. doi: 10.22203/eCM.v033a03. PubMed DOI

Van Houdt C.I.A., Gabbai-Armelin P.R., Lopez-Perez P.M., Ulrich D.J.O., Jansen J.A., Renno A.C.M., Van Den Beucken J.J.J.P. Alendronate release from calcium phosphate cement for bone regeneration in osteoporotic conditions. Sci. Rep. 2018;8:15398. doi: 10.1038/s41598-018-33692-5. PubMed DOI PMC

Toker H., Ozdemir H., Ozer H., Eren K. Alendronate enhances osseous healing in a rat calvarial defect model. Arch. Oral Biol. 2012;57:1545–1550. doi: 10.1016/j.archoralbio.2012.06.013. PubMed DOI

Buzgo M., Filova E., Staffa A.M., Rampichova M., Doupnik M., Vocetkova K., Lukasova V., Kolcun R., Lukas D., Necas A., et al. Needleless emulsion electrospinning for the regulated delivery of susceptible proteins. J. Tissue Eng. Regen. Med. 2018;12:583–597. doi: 10.1002/term.2474. PubMed DOI

Goimil L., Jaeger P., Ardao I., Gómez-Amoza J.L., Concheiro A., Alvarez-Lorenzo C., García-Gonzáles C.A. Preparation and stability of dexamethasone-loaded polymeric scaffolds for bone regen-eration processed by compressed CO2 foaming. J. CO2 Util. 2018;24:89–98. doi: 10.1016/j.jcou.2017.12.012. DOI

Farzin A., Etesami S.A., Goodarzi A., Ai J., Ai J. A facile way for development of three-dimensional localized drug delivery system for bone tissue engineering. Mater. Sci. Eng. C. 2019;105:110032. doi: 10.1016/j.msec.2019.110032. PubMed DOI

Breuil V., Cosman F., Stein L., Horbert W., Nieves J., Shen V., Lindsay R., Dempster D.W. Human Osteoclast Formation and Activity In Vitro: Effects of Alendronate. J. Bone Miner. Res. 1998;13:1721–1729. doi: 10.1359/jbmr.1998.13.11.1721. PubMed DOI

Martins C.A., Leyhausen G., Volk J., Geurtsen W. Effects of Alendronate on Osteoclast Formation and Activity In Vitro. J. Endod. 2015;41:45–49. doi: 10.1016/j.joen.2014.07.010. PubMed DOI

Correia V.D.F.P., Caldeira C.L., Marques M.M. Cytotoxicity evaluation of sodium alendronate on cultured human periodontal ligament fibroblasts. Dent. Traumatol. 2006;22:312–317. doi: 10.1111/j.1600-9657.2005.00434.x. PubMed DOI

Coxon F.P., Thompson K., Roelofs A.J., Ebetino F.H., Rogers M.J. Visualizing mineral binding and uptake of bisphosphonate by osteoclasts and non-resorbing cells. Bone. 2008;42:848–860. doi: 10.1016/j.bone.2007.12.225. PubMed DOI

Töyräs A., Ollikainen J., Taskinen M., Mönkkönen J. Inhibition of mevalonate pathway is involved in alendronate-induced cell growth inhibition, but not in cytokine secretion from macrophages in vitro. Eur. J. Pharm. Sci. 2003;19:223–230. doi: 10.1016/S0928-0987(03)00108-8. PubMed DOI

Mattson A.M., Begun D.L., Molstad D.H.H., Meyer M.A., Oursler M.J., Westendorf J.J., Bradley E.W. Deficiency in the phosphatase PHLPP1 suppresses osteoclast-mediated bone resorption and enhances bone formation in mice. J. Biol. Chem. 2019;294:11772–11784. doi: 10.1074/jbc.RA119.007660. PubMed DOI PMC

Sophocleous A., Idris A.I. Rodent models of osteoporosis. BoneKEy Rep. 2014;3:614. doi: 10.1038/bonekey.2014.109. PubMed DOI PMC

Adachi J.D., Saag K.G., Delmas P.D., Liberman U.A., Emkey R.D., Seeman E., Lane N.E., Kaufman J.-M., Poubelle P.E.E., Hawkins F., et al. Two-year effects of alendronate on bone mineral density and vertebral fracture in patients receiving glucocorticoids: A randomized, double-blind, placebo-controlled extension trial. Arthritis Rheum. 2001;44:202–211. doi: 10.1002/1529-0131(200101)44:1<202::AID-ANR27>3.0.CO;2-W. PubMed DOI

Lewiecki E.M. Bisphosphonates for the treatment of osteoporosis: Insights for clinicians. Ther. Adv. Chronic Dis. 2010;1:115–128. doi: 10.1177/2040622310374783. PubMed DOI PMC

Francis M.D., Graham R., Russell R.G., Fleisch H. Diphosphonates Inhibit Formation of Calcium Phosphate Crystals in vitro and Pathological Calcification in vivo. Science. 1969;165:1264–1266. doi: 10.1126/science.165.3899.1264. PubMed DOI

Price P.A., Faus S.A., Williamson M.K. Bisphosphonates Alendronate and Ibandronate Inhibit Artery Calcification at Doses Comparable to Those That Inhibit Bone Resorption. Arter. Thromb. Vasc. Biol. 2001;21:817–824. doi: 10.1161/01.ATV.21.5.817. PubMed DOI

Bernhardt A., Schumacher M., Gelinsky M. Formation of Osteoclasts on Calcium Phosphate Bone Cements and Polystyrene Depends on Monocyte Isolation Conditions. Tissue Eng. Part C Methods. 2015;21:160–170. doi: 10.1089/ten.tec.2014.0187. PubMed DOI

Kleinhans C., Schmid F., Kluger P. Comparison of osteoclastogenesis and resorption activity of human osteoclasts on tissue culture polystyrene and on natural extracellular bone matrix in 2D and 3D. J. Biotechnol. 2015;205:101–110. doi: 10.1016/j.jbiotec.2014.11.039. PubMed DOI

Penolazzi L., Lampronti I., Borgatti M., Khan M.T.H., Zennaro M., Piva R., Gambari R. Induction of apoptosis of human primary osteoclasts treated with extracts from the medicinal plant Emblica officinalis. BMC Complement. Altern. Med. 2008;8:59. doi: 10.1186/1472-6882-8-59. PubMed DOI PMC

Bharti A.C., Takada Y., Shishodia S., Aggarwal B.B. Evidence that receptor activator of nuclear factor (NF)-kappaB ligand can suppress cell proliferation and induce apoptosis through activation of a NF-kappaB-independent and TRAF6-dependent mechanism. J. Biol. Chem. 2004;279:6065–6076. doi: 10.1074/jbc.M308062200. PubMed DOI

Nakamura I., Lipfert L., Rodan G.A., Duong L.T. Convergence of αvβ3Integrin–And Macrophage Colony Stimulating Factor–Mediated Signals on Phospholipase Cγ in Prefusion Osteoclasts. J. Cell Biol. 2001;152:361–374. doi: 10.1083/jcb.152.2.361. PubMed DOI PMC

Kharbanda S., Saleem A., Yuan Z., Emoto Y., Prasad K.V., Kufe D. Stimulation of human monocytes with macrophage colony-stimulating factor induces a Grb2-mediated association of the focal adhesion kinase pp125FAK and dynamin. Proc. Natl. Acad. Sci. USA. 1995;92:6132–6136. doi: 10.1073/pnas.92.13.6132. PubMed DOI PMC

Thavornyutikarn B., Wright P.F., Feltis B., Kosorn W., Turney T.W. Bisphosphonate activation of crystallized bioglass scaffolds for enhanced bone formation. Mater. Sci. Eng. C. 2019;104:109937. doi: 10.1016/j.msec.2019.109937. PubMed DOI

Manzano-Moreno F.J., Ramos-Torrecillas J., De Luna-Bertos E., Illescas-Montes R., Arnett T.R., Ruiz C., García-Martínez O. Influence of pH on osteoclasts treated with zoledronate and alendronate. Clin. Oral Investig. 2019;23:813–820. doi: 10.1007/s00784-018-2505-z. PubMed DOI

Cecchini M.G., Felix R., Fleisch H., Cooper P.H. Effect of bisphosphonates on proliferation and viability of mouse bone marrow-derived macrophages. J. Bone Miner. Res. 2009;2:135–142. doi: 10.1002/jbmr.5650020209. PubMed DOI

Sun J., Song F., Zhang W., Sexton B.E., Windsor L.J. Effects of alendronate on human osteoblast-like MG63 cells and matrix metalloproteinases. Arch. Oral Biol. 2012;57:728–736. doi: 10.1016/j.archoralbio.2011.12.007. PubMed DOI

Sung C.-M., Kim R.J., Hah Y.-S., Gwark J.-Y., Bin Park H. In vitro effects of alendronate on fibroblasts of the human rotator cuff tendon. BMC Musculoskelet. Disord. 2020;21:1–11. doi: 10.1186/s12891-019-3014-1. PubMed DOI PMC

Pourgonabadi S., Ghorbani A., Najarn Z.T., Mousavi S.H. In vitro assessment of alendronate toxic and apoptotic effects on human dental pulp stem cells. Iran. J. Basic Med. Sci. 2018;21:905–910. PubMed PMC

Mathov I., Plotkin L.I., Sgarlata C.L., Leoni J., Bellido T. Extracellular Signal-Regulated Kinases and Calcium Channels Are Involved in the Proliferative Effect of Bisphosphonates on Osteoblastic Cells In Vitro. J. Bone Miner. Res. 2001;16:2050–2056. doi: 10.1359/jbmr.2001.16.11.2050. PubMed DOI

Zhang Q., Liu M., Zhou Y., Liu W., Shen J., Shen Y., Liu L. The effect of alendronate on the expression of important cell factors in osteoclasts. Mol. Med. Rep. 2013;8:1195–1203. doi: 10.3892/mmr.2013.1630. PubMed DOI

Owens J.M., Fuller K., Chambers T.J. Osteoclast activation: Potent inhibition by the bisphosphonate alendronate through a nonresorptive mechanism. J. Cell. Physiol. 1997;172:79–86. doi: 10.1002/(SICI)1097-4652(199707)172:1<79::AID-JCP9>3.0.CO;2-A. PubMed DOI

Carano A., Teitelbaum S.L., Konsek J.D., Schlesinger P.H., Blair H.C. Bisphosphonates directly inhibit the bone resorption activity of isolated avian osteoclasts in vitro. J. Clin. Investig. 1990;85:456–461. doi: 10.1172/JCI114459. PubMed DOI PMC

Guo S., Ni Y., Ben J., Xia Y., Zhou T., Wang D., Ni J., Bai H., Wang L., Ma J., et al. Class A Scavenger Receptor Exacerbates Osteoclastogenesis by an Interleukin-6-Mediated Mechanism through ERK and JNK Signaling Pathways. Int. J. Biol. Sci. 2016;12:1155–1167. doi: 10.7150/ijbs.14654. PubMed DOI PMC

Kudo O., Sabokbar A., Pocock A., Itonaga I., Fujikawa Y., Athanasou N. Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone. 2003;32:1–7. doi: 10.1016/S8756-3282(02)00915-8. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...