Modeling Strong Light-Matter Coupling in Correlated Systems: State-Averaged Cavity Quantum Electrodynamics Complete Active Space Self-Consistent Field Theory
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40884507
PubMed Central
PMC12461917
DOI
10.1021/acs.jctc.5c00927
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The description of strongly correlated systems interacting with quantized cavity modes poses significant theoretical challenges due to the combinatorial scaling of the electronic and photonic degrees of freedom. Recent advances addressing this complexity include cavity quantum electrodynamics (QED) generalizations of complete active space configuration interaction and density matrix renormalization group methods. In this work, we introduce a QED extension of state-averaged complete active space self-consistent field theory, which incorporates cavity-induced correlations through a second-order orbital optimization framework with robust convergence properties. The method is implemented using both photon number state and coherent state representations, with the latter showing robust origin invariance in the energies, regardless of the completeness of the photonic Fock space. The implementation enables symmetry-free orbital relaxations to account for photon-mediated symmetry breaking in polaritonic systems. Numerical validation on lithium hydride, hydroxide anion, and magnesium hydride cation demonstrates that this method achieves significantly improved accuracy in modeling ground-state and polariton potential energy surfaces compared with QED-CASCI in a fixed orbital basis. In these studies, we reach sub kcal/mol accuracy in potential energy surface in much smaller active spaces than are required for QED-CASCI. This advancement provides a more robust approach for studying cavity-altered chemical landscapes for ground and excited strongly coupled systems.
Zobrazit více v PubMed
Xiong W.. Molecular Vibrational Polariton Dynamics: What Can Polaritons Do? Acc. Chem. Res. 2023;56:776–786. doi: 10.1021/acs.accounts.2c00796. PubMed DOI PMC
Martínez-Martínez L. A., Ribeiro R. F., Campos-González-Angulo J., Yuen-Zhou J.. Can Ultrastrong Coupling Change Ground-State Chemical Reactions? ACS Photonics. 2018;5:167–176. doi: 10.1021/acsphotonics.7b00610. DOI
Hertzog M., Wang M., Mony J., Börjesson K.. Strong light-matter interactions: a new direction within chemistry. Chem. Soc. Rev. 2019;48:937. doi: 10.1039/C8CS00193F. PubMed DOI PMC
Davidsson E., Kowalewski M.. Simulating photodissociation reactions in bad cavities with the Lindblad equation. J. Chem. Phys. 2020;153:234304. doi: 10.1063/5.0033773. PubMed DOI PMC
Mandal A., Huo P.. Investigating New Reactivities Enabled by Polariton Photochemistry. J. Phys. Chem. Lett. 2019;10:5519–5529. doi: 10.1021/acs.jpclett.9b01599. PubMed DOI
Rana B., Hohenstein E. G., Martínez T. J.. Simulating the Excited-State Dynamics of Polaritons with Ab Initio Multiple Spawning. J. Phys. Chem. A. 2024;128:139–151. doi: 10.1021/acs.jpca.3c06607. PubMed DOI
Pavošević F., Smith R. L., Rubio A.. Computational study on the catalytic control of endo/exo Diels-Alder reactions by cavity quantum vacuum fluctuations. Nat. Commun. 2023;14:2766. doi: 10.1038/s41467-023-38474-w. PubMed DOI PMC
Weight B. M., Weix D. J., Tonzetich Z. J., Krauss T. D., Huo P.. Cavity Quantum Electrodynamics Enables para- and ortho-Selective Electrophilic Bromination of Nitrobenzene. J. Am. Chem. Soc. 2024;146:16184–16193. doi: 10.1021/jacs.4c04045. PubMed DOI PMC
Spano F. C.. Optical microcavities enhance the exciton coherence length and eliminate vibronic coupling in J-aggregates. J. Chem. Phys. 2015;142:184707. doi: 10.1063/1.4919348. PubMed DOI
Herrera F., Spano F. C.. Cavity-controlled chemistry in molecular ensembles. Phys. Rev. Lett. 2016;116:238301. doi: 10.1103/PhysRevLett.116.238301. PubMed DOI
Khazanov T., Gunasekaran S., George A., Lomlu R., Mukherjee S., Musser A. J.. Embrace the darkness: An experimental perspective on organic exciton–polaritons. Chem. Phys. Rev. 2023;4:041305. doi: 10.1063/5.0168948. DOI
Martínez-Martínez L. A., Du M., Ribeiro R. F., Kéna-Cohen S., Yuen-Zhou J.. Polariton-Assisted Singlet Fission in Acene Aggregates. J. Phys. Chem. Lett. 2018;9:1951–1957. doi: 10.1021/acs.jpclett.8b00008. PubMed DOI
Du M., Martínez-Martínez L. A., Ribeiro R. F., Hu Z., Menon V. M., Yuen-Zhou J.. Theory for polariton-assisted remote energy transfer. Chem. Sci. 2018;9:6659–6669. doi: 10.1039/C8SC00171E. PubMed DOI PMC
Xu D., Mandal A., Baxter J. M., Cheng S.-W., Lee I., Su H., Liu S., Reichman D. R., Delor M.. et al. Ultrafast imaging of polariton propagation and interactions. Nat. Commun. 2023;14:3881. doi: 10.1038/s41467-023-39550-x. PubMed DOI PMC
Lindoy L. P., Mandal A., Reichman D. R.. Investigating the collective nature of cavity-modified chemical kinetics under vibrational strong coupling. Nanophotonics. 2024;13:2617–2633. doi: 10.1515/nanoph-2024-0026. PubMed DOI PMC
Koessler E. R., Mandal A., Musser A. J., Krauss T. D., Huo P.. Polariton mediated electron transfer under the collective molecule–cavity coupling regime. Chem. Sci. 2025;16:11644. doi: 10.1039/D5SC01911G. PubMed DOI PMC
Raimond J. M., Brune M., Haroche S.. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 2001;73:565–582. doi: 10.1103/RevModPhys.73.565. DOI
Zhong X., Chervy T., Zhang L., Thomas A., George J., Genet C., Hutchison J. A., Ebbesen T. W.. Energy Transfer between Spatially Separated Entangled Molecules. Angew. Chem., Int. Ed. 2017;56:9034–9038. doi: 10.1002/anie.201703539. PubMed DOI PMC
Ribeiro R. F., Martínez-Martínez L. A., Du M., Campos-Gonzalez-Angulo J., Yuen-Zhou J.. Polariton chemistry: controlling molecular dynamics with optical cavities. Chem. Sci. 2018;9:6325–6339. doi: 10.1039/C8SC01043A. PubMed DOI PMC
Mandal A., Taylor M., Weight B., Koessler E., Li X., Huo P.. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem. Rev. 2023;123:9786–9879. doi: 10.1021/acs.chemrev.2c00855. PubMed DOI PMC
Fregoni J., Garcia-Vidal F. J., Feist J.. Theoretical challenges in polaritonic chemistry. ACS Photonics. 2022;9:1096–1107. doi: 10.1021/acsphotonics.1c01749. PubMed DOI PMC
Ruggenthaler M., Sidler D., Rubio A.. Understanding polaritonic chemistry from ab initio quantum electrodynamics. Chem. Rev. 2023;123:11191–11229. doi: 10.1021/acs.chemrev.2c00788. PubMed DOI PMC
Cheng C.-Y., Krainova N., Brigeman A. N., Khanna A., Shedge S., Isborn C., Yuen-Zhou J., Giebink N. C.. Molecular polariton electroabsorption. Nat. Commun. 2022;13:7937. doi: 10.1038/s41467-022-35589-4. PubMed DOI PMC
Foley J. J. IV, McTague J., DePrince A. E. III. Ab initio methods for polariton chemistry. Chem. Phys. Rev. 2023;4:041301. doi: 10.1063/5.0167243. DOI
Liu Z., Wang X.. Modulating molecular plasmons in naphthalene via intermolecular interactions and strong light–matter coupling. Phys. Chem. Chem. Phys. 2024;26:23646–23653. doi: 10.1039/D4CP01816H. PubMed DOI
Chikkaraddy R., de Nijs B., Benz F., Barrow S. J., Scherman O. A., Rosta E., Demetriadou A., Fox P., Hess O., Baumberg J. J.. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature. 2016;535:127–130. doi: 10.1038/nature17974. PubMed DOI PMC
Baumberg J. J.. Picocavities: a Primer. Nano Lett. 2022;22:5859–5865. doi: 10.1021/acs.nanolett.2c01695. PubMed DOI PMC
Paoletta A. L., Hoffmann N. M., Cheng D. W., York E., Xu D., Zhang B., Delor M., Berkelbach T. C., Venkataraman L.. Plasmon-Exciton Strong Coupling in Single-Molecule Junction Electroluminescence. J. Am. Chem. Soc. 2024;146:34394–34400. doi: 10.1021/jacs.4c09782. PubMed DOI
Haugland T. S., Ronca E., Kjønstad E. F., Rubio A., Koch H.. Coupled Cluster Theory for Molecular Polaritons: Changing Ground and Excited States. Phys. Rev. X. 2020;10:041043. doi: 10.1103/PhysRevX.10.041043. DOI
DePrince A. E.. Cavity-modulated ionization potentials and electron affinities from quantum electrodynamics coupled-cluster theory. J. Chem. Phys. 2021;154:094112. doi: 10.1063/5.0038748. PubMed DOI
Haugland T. S., Schäfer C., Ronca E., Rubio A., Koch H.. Intermolecular interactions in optical cavities: An ab initio QED study. J. Chem. Phys. 2021;154:094113. doi: 10.1063/5.0039256. PubMed DOI
Li T. E., Nitzan A., Subotnik J. E.. Cavity molecular dynamics simulations of vibrational polariton-enhanced molecular nonlinear absorption. J. Chem. Phys. 2021;154:094124. doi: 10.1063/5.0037623. PubMed DOI
Li T. E., Subotnik J. E., Nitzan A.. Cavity molecular dynamics simulations of liquid water under vibrational ultrastrong coupling. Proc. Natl. Acad. Sci. U.S.A. 2020;117:18324–18331. doi: 10.1073/pnas.2009272117. PubMed DOI PMC
Pérez-Sánchez J. B., Koner A., Stern N. P., Yuen-Zhou J.. Simulating molecular polaritons in the collective regime using few-molecule models. Proc. Natl. Acad. Sci. U. S. A. 2023;120:e2219223120. doi: 10.1073/pnas.2219223120. PubMed DOI PMC
Sharma S. K., Chen H.-T.. Unraveling abnormal collective effects via the non-monotonic number dependence of electron transfer in confined electromagnetic fields. J. Chem. Phys. 2024;161:104102. doi: 10.1063/5.0225434. PubMed DOI
Sun K., Ribeiro R.. Theoretical formulation of chemical equilibrium under vibrational strong coupling. Nat. Commun. 2024;15:2405. doi: 10.1038/s41467-024-46442-1. PubMed DOI PMC
Bradbury N. C., Ribeiro R. F., Caram J. R., Neuhauser D.. Stochastic methodology shows molecular interactions protect two-dimensional polaritons. Phys. Rev. B. 2024;109:L241303. doi: 10.1103/PhysRevB.109.L241303. DOI
Pérez-Sánchez J. B., Koner A., Raghavan-Chitra S., Yuen-Zhou J.. CUT-E as a 1/N expansion for multiscale molecular polariton dynamics. J. Chem. Phys. 2025;162:064101. doi: 10.1063/5.0244452. PubMed DOI
Schwennicke K., Koner A., Pérez-Sánchez J. B., Xiong W., Giebink N. C., Weichman M. L., Yuen-Zhou J.. When do molecular polaritons behave like optical filters? Chem. Soc. Rev. 2025;54:6482–6504. doi: 10.1039/D4CS01024H. PubMed DOI
Sidler D., Schnappinger T., Obzhirov A., Ruggenthaler M., Kowalewski M., Rubio A.. Unraveling a Cavity-Induced Molecular Polarization Mechanism from Collective Vibrational Strong Coupling. J. Phys. Chem. Lett. 2024;15:5208–5214. doi: 10.1021/acs.jpclett.4c00913. PubMed DOI PMC
Sidler, D. ; Ruggenthaler, M. ; Rubio, A. . The connection of polaritonic chemistry with the physics of a spin glass. arXiv Preprints 2024, arXiv:2409.08986v1, https://arxiv.org/html/2409.08986v1
Patrahau B., Piejko M., Mayer R. J., Antheaume C., Sangchai T., Ragazzon G., Jayachandran A., Devaux E., Genet C., Moran J., Ebbesen T. W.. Direct Observation of Polaritonic Chemistry by Nuclear Magnetic Resonance Spectroscopy. Angew. Chem., Int. Ed. 2024;63:e202401368. doi: 10.1002/anie.202401368. PubMed DOI
El Moutaoukal Y., Riso R. R., Castagnola M., Koch H.. Toward Polaritonic Molecular Orbitals for Large Molecular Systems. J. Chem. Theory Comput. 2024;20:8911–8920. doi: 10.1021/acs.jctc.4c00808. PubMed DOI PMC
Riso R. R., Haugland T. S., Ronca E., Koch H.. Molecular orbital theory in cavity QED environments. Nat. Commun. 2022;13:1368. doi: 10.1038/s41467-022-29003-2. PubMed DOI PMC
Weight B. M., Tretiak S., Zhang Y.. Diffusion quantum Monte Carlo approach to the polaritonic ground state. Phys. Rev. A. 2024;109:032804. doi: 10.1103/PhysRevA.109.032804. DOI
Ruggenthaler M., Mackenroth F., Bauer D.. Time-dependent Kohn-Sham approach to quantum electrodynamics. Phys. Rev. A. 2011;84:042107. doi: 10.1103/PhysRevA.84.042107. DOI
Ruggenthaler M., Flick J., Pellegrini C., Appel H., Tokatly I. V., Rubio A.. Quantum-electrodynamical density-functional theory: Bridging quantum optics and electronic-structure theory. Phys. Rev. A. 2014;90:012508. doi: 10.1103/PhysRevA.90.012508. DOI
Pellegrini C., Flick J., Tokatly I. V., Appel H., Rubio A.. Optimized Effective Potential for Quantum Electrodynamical Time-Dependent Density Functional Theory. Phys. Rev. Lett. 2015;115:093001. doi: 10.1103/PhysRevLett.115.093001. PubMed DOI
Flick J., Schäfer C., Ruggenthaler M., Appel H., Rubio A.. Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State. ACS Photonics. 2018;5:992–1005. doi: 10.1021/acsphotonics.7b01279. PubMed DOI PMC
Jestädt R., Ruggenthaler M., Oliveira M. J. T., Rubio A., Appel H.. Light-matter interactions within the Ehrenfest–Maxwell–Pauli–Kohn–Sham framework: fundamentals, implementation, and nano-optical applications. Adv. Phys. 2019;68:225–333. doi: 10.1080/00018732.2019.1695875. DOI
Flick J., Narang P.. Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry. J. Chem. Phys. 2020;153:094116. doi: 10.1063/5.0021033. PubMed DOI
Vu N., McLeod G. M., Hanson K., DePrince A. E. III.. Enhanced Diastereocontrol via Strong Light–Matter Interactions in an Optical Cavity. J. Phys. Chem. A. 2022;126:9303–9312. doi: 10.1021/acs.jpca.2c07134. PubMed DOI
Pavošević F., Rubio A.. Wavefunction embedding for molecular polaritons. J. Chem. Phys. 2022;157:094101. doi: 10.1063/5.0095552. PubMed DOI
Liebenthal M. D., Vu N., DePrince A. E. III. Assessing the Effects of Orbital Relaxation and the Coherent-State Transformation in Quantum Electrodynamics Density Functional and Coupled-Cluster Theories. J. Phys. Chem. A. 2023;127:5264–5275. doi: 10.1021/acs.jpca.3c01842. PubMed DOI
Liebenthal M. D., DePrince A. E. III. The orientation dependence of cavity-modified chemistry. J. Chem. Phys. 2024;161:064109. doi: 10.1063/5.0216993. PubMed DOI
Tokatly I. V.. Time-Dependent Density Functional Theory for Many-Electron Systems Interacting with Cavity Photons. Phys. Rev. Lett. 2013;110:233001. doi: 10.1103/PhysRevLett.110.233001. PubMed DOI
Flick J., Ruggenthaler M., Appel H., Rubio A.. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proc. Natl. Acad. Sci. U.S.A. 2017;114:3026–3034. doi: 10.1073/pnas.1615509114. PubMed DOI PMC
Tokatly I. V.. Conserving approximations in cavity quantum electrodynamics: Implications for density functional theory of electron-photon systems. Phys. Rev. B. 2018;98:235123. doi: 10.1103/PhysRevB.98.235123. DOI
Malave J., Ahrens A., Pitagora D., Covington C., Varga K.. Real-space, real-time approach to quantum-electrodynamical time-dependent density functional theory. J. Chem. Phys. 2022;157:194106. doi: 10.1063/5.0123909. PubMed DOI
Yang J., Ou Q., Pei Z., Wang H., Weng B., Shuai Z., Mullen K., Shao Y.. Quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. J. Chem. Phys. 2021;155:064107. doi: 10.1063/5.0057542. PubMed DOI PMC
Yang J., Pei Z., Leon E. C., Wickizer C., Weng B., Mao Y., Ou Q., Shao Y.. Cavity quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. II. Analytic energy gradient. J. Chem. Phys. 2022;156:124104. doi: 10.1063/5.0082386. PubMed DOI
McTague J., Foley J. J. IV. Non-Hermitian cavity quantum electrodynamics–configuration interaction singles approach for polaritonic structure with ab initio molecular Hamiltonians. J. Chem. Phys. 2022;156:154103. doi: 10.1063/5.0091953. PubMed DOI
Weidman J. D., Dadgar M. S., Stewart Z. J., Peyton B. G., Ulusoy I. S., Wilson A. K.. Cavity-Modified Molecular Dipole Switching Dynamics. J. Chem. Phys. 2024;160:094111. doi: 10.1063/5.0188471. PubMed DOI
Peyton B. G., Weidman J. D., Wilson A. K.. Light-Induced Electron Dynamics of Molecules in Cavities: Comparison of Model Hamiltonians. JOSA B. 2024;41:C74–C81. doi: 10.1364/JOSAB.523931. DOI
Bauer M., Dreuw A.. Perturbation theoretical approaches to strong light–matter coupling in ground and excited electronic states for the description of molecular polaritons. J. Chem. Phys. 2023;158:124128. doi: 10.1063/5.0142403. PubMed DOI
Cui Z.-H., Mandal A., Reichman D. R.. Variational Lang–Firsov Approach Plus Mo̷ller–Plesset Perturbation Theory with Applications to Ab Initio Polariton Chemistry. J. Chem. Theory Comput. 2024;20:1143–1156. doi: 10.1021/acs.jctc.3c01166. PubMed DOI
El Moutaoukal Y., Riso R. R., Castagnola M., Ronca E., Koch H.. Strong Coupling Mo̷ller–Plesset Perturbation Theory. J. Chem. Theory Comput. 2025;21:3981–3992. doi: 10.1021/acs.jctc.5c00055. PubMed DOI PMC
Mordovina U., Bungey C., Appel H., Knowles P. J., Rubio A., Manby F. R.. Polaritonic coupled-cluster theory. Phys. Rev. Res. 2020;2:023262. doi: 10.1103/PhysRevResearch.2.023262. DOI
Vidal M. L., Manby F. R., Knowles P. J.. Polaritonic effects in the vibronic spectrum of molecules in an optical cavity. J. Chem. Phys. 2022;156:204119. doi: 10.1063/5.0089412. PubMed DOI
Monzel L., Stopkowicz S.. Diagrams in Polaritonic Coupled Cluster Theory. J. Phys. Chem. A. 2024;128:9572–9586. doi: 10.1021/acs.jpca.4c04389. PubMed DOI
Lexander M. T., Angelico S., Kjønstad E. F., Koch H.. Analytical Evaluation of Ground State Gradients in Quantum Electrodynamics Coupled Cluster Theory. J. Chem. Theory Comput. 2024;20:8876–8885. doi: 10.1021/acs.jctc.4c00763. PubMed DOI PMC
Castagnola M., Lexander M. T., Ronca E., Koch H.. Strong coupling electron-photon dynamics: A real-time investigation of energy redistribution in molecular polaritons. Phys. Rev. Res. 2024;6:033283. doi: 10.1103/PhysRevResearch.6.033283. DOI
Castagnola M., Riso R. R., Barlini A., Ronca E., Koch H.. Polaritonic response theory for exact and approximate wave functions. WIREs Comput. Mol. Sci. 2024;14:e1684. doi: 10.1002/wcms.1684. DOI
Mallory J. D., DePrince A. E.. Reduced-density-matrix-based ab initio cavity quantum electrodynamics. Phys. Rev. A. 2022;106:053710. doi: 10.1103/PhysRevA.106.053710. DOI
Weight B. M., Tretiak S., Zhang Y.. Diffusion quantum Monte Carlo approach to the polaritonic ground state. Phys. Rev. A. 2024;109:032804. doi: 10.1103/PhysRevA.109.032804. DOI
Vu N., Mejia-Rodriguez D., Bauman N. P., Panyala A., Mutlu E., Govind N., Foley J. J. I.. Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory. J. Chem. Theory Comput. 2024;20:1214–1227. doi: 10.1021/acs.jctc.3c01207. PubMed DOI PMC
Matoušek M., Vu N., Govind N., Foley J. J. I., Veis L.. Polaritonic Chemistry Using the Density Matrix Renormalization Group Method. J. Chem. Theory Comput. 2024;20:9424–9434. doi: 10.1021/acs.jctc.4c00986. PubMed DOI PMC
Hu D., Ying W., Huo P.. Resonance Enhancement of Vibrational Polariton Chemistry Obtained from the Mixed Quantum-Classical Dynamics Simulations. J. Phys. Chem. Lett. 2023;14:11208–11216. doi: 10.1021/acs.jpclett.3c02985. PubMed DOI PMC
Manderna R., Vu N., Foley J. J.. Comparing parameterized and self-consistent approaches to ab initio cavity quantum electrodynamics for electronic strong coupling. J. Chem. Phys. 2024;161:174105. doi: 10.1063/5.0230565. PubMed DOI
Alessandro R., Castagnola M., Koch H., Ronca E.. A Complete Active Space Self-Consistent Field Approach for Molecules in QED Environments. J. Chem. Theory Comput. 2025;21:6862–6873. doi: 10.1021/acs.jctc.5c00519. PubMed DOI PMC
Werner H., Meyer W.. A quadratically convergent multiconfiguration–self-consistent field method with simultaneous optimization of orbitals and CI coefficients. J. Chem. Phys. 1980;73:2342–2356. doi: 10.1063/1.440384. DOI
Werner H., Knowles P. J.. A second order multiconfiguration SCF procedure with optimum convergence. J. Chem. Phys. 1985;82:5053–5063. doi: 10.1063/1.448627. DOI
Kreplin D. A., Knowles P. J., Werner H.-J.. Second-order MCSCF optimization revisited. I. Improved algorithms for fast and robust second-order CASSCF convergence. J. Chem. Phys. 2019;150:194106. doi: 10.1063/1.5094644. PubMed DOI
Kreplin, D. Multiconfiguration self-consistent field methods for large molecules. Ph.D. thesis, Institut für Theoretische Chemie der Universität Stuttgart, Stuttgart, Germany, 2020.
Rojas M., Santos S. A., Sorensen D. C.. A New Matrix-Free Algorithm for the Large-Scale Trust-Region Subproblem. SIAM J. Optim. 2001;11:611–646. doi: 10.1137/S105262349928887X. DOI
Sun Q., Berkelbach T. C., Blunt N. S., Booth G. H., Guo S., Li Z., Liu J., McClain J. D., Sayfutyarova E. R., Sharma S., Wouters S., Chan G. K.-L.. PySCF: the Python-based simulations of chemistry framework. WIREs Comput. Mol. Sci. 2018;8:e1340. doi: 10.1002/wcms.1340. DOI
Shiozaki T.. BAGEL: Brilliantly Advanced General Electronic-structure Library. WIREs Comput. Mol. Sci. 2018;8:e1331. doi: 10.1002/wcms.1331. DOI
Power E. A., Zienau S.. Coulomb gauge in non-relativistic quantum electro-dynamics and the shape of spectral lines. Philos. Trans. R. Soc. London, Ser. A, Math. Phys. Sci. 1959;251:427–454.
Woolley R. G.. Power-Zienau-Woolley representations of nonrelativistic QED for atoms and molecules. Phys. Rev. Res. 2020;2:013206. doi: 10.1103/PhysRevResearch.2.013206. DOI
Taylor M. A. D., Mandal A., Huo P.. Light–matter interaction Hamiltonians in cavity quantum electrodynamics. Chem. Phys. Rev. 2025;6:011305. doi: 10.1063/5.0225932. DOI
Manderna, R. ; Roden, P. ; Tolley, P. L. ; Vu, N. ; Foley, J. J., IV. . Computational Modeling of Polariton Chemistry; American Chemical Society: Washington, DC, 2025.
Flick J., Ruggenthaler M., Appel H., Rubio A.. Kohn–Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space. Proc. Natl. Acad. Sci. U.S.A. 2015;112:15285–15290. doi: 10.1073/pnas.1518224112. PubMed DOI PMC
Valeev E. F., Harrison R. J., Holmes A. A., Peterson C. C., Penchoff D. A.. Direct Determination of Optimal Real-Space Orbitals for Correlated Electronic Structure of Molecules. J. Chem. Theory Comput. 2023;19:7230–7241. doi: 10.1021/acs.jctc.3c00732. PubMed DOI
Myhre R. H., Wolf T. J. A., Cheng L., Nandi S., Coriani S., Gühr M., Koch H.. A theoretical and experimental benchmark study of core-excited states in nitrogen. J. Chem. Phys. 2018;148:064106. doi: 10.1063/1.5011148. PubMed DOI
Roden P., Foley J. J. IV.. Perturbative analysis of the coherent state transformation in ab initio cavity quantum electrodynamics. J. Chem. Phys. 2024;161:194103. doi: 10.1063/5.0233717. PubMed DOI
Werner H.-J., Knowles P. J., Knizia G., Manby F. R., Schütz M.. Molpro: a general-purpose quantum chemistry program package. WIREs Comput. Mol. Sci. 2012;2:242–253. doi: 10.1002/wcms.82. DOI
Foley, J. Modeling Strong Light-Matter Coupling in Correlated Systems: State-Averaged Cavity Quantum Electrodynamics Complete Active Space Self-Consistent Field Theory (1.0). Zenodo 2025, 10.5281/zenodo.15595754 (Data set). PubMed DOI PMC
Francl M. M., Pietro W. J., Hehre W. J., Binkley J. S., Gordon M. S., DeFrees D. J., Pople J. A.. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982;77:3654–3665. doi: 10.1063/1.444267. DOI
Glover W. J.. Communication: Smoothing out excited-state dynamics: Analytical gradients for dynamically weighted complete active space self-consistent field. J. Chem. Phys. 2014;141:171102. doi: 10.1063/1.4901328. PubMed DOI
Kendall R. A., Dunning T. H. Jr., Harrison R. J.. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992;96:6796–6806. doi: 10.1063/1.462569. DOI
Gordon M. S., Binkley J. S., Pople J. A., Pietro W. J., Hehre W. J.. Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J. Am. Chem. Soc. 1982;104:2797. doi: 10.1021/ja00374a017. DOI