Perspective on Many-Body Methods for Molecular Polaritonic Systems

. 2025 Oct 28 ; 21 (20) : 10035-10067. [epub] 20251017

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid41105480

Recent advances in strong light-matter interactions have revealed a wealth of new physical phenomena in molecules embedded in optical cavities, including modified chemical reactivity, altered excitation spectra, and novel quantum correlations. To describe these effects from first-principles, the field of ab initio quantum electrodynamics (QED) has emerged as a compelling extension of quantum chemistry that treats electronic and photonic degrees of freedom on equal footing. In this Perspective, we review the growing landscape of many-body QED methods, including Hartree-Fock, density functional theory (QEDFT), time-dependent DFT (QED-TDDFT), configuration interaction (QED-CI), complete active space (QED-CASSCF), coupled cluster (QED-CC), quantum Monte Carlo (QED-QMC), and density matrix renormalization group (QED-DMRG), highlighting recent developments and implementations. We further explore real-time methods, gradient and Hessian formalisms, and the integration of nonadiabatic nuclear dynamics. Applications range from benchmark simulations of polaritonic chemistry to quantum simulations on emerging quantum hardware. We conclude by outlining future directions for theory development and interdisciplinary efforts at the interface of quantum chemistry, condensed matter, and quantum optics.

Advanced Computing Mathematics and Data Division Pacific Northwest National Laboratory Richland Washington 99354 United States

Center for Computational Quantum Physics Flatiron Institute New York New York 10010 United States

Department of Chemistry and Biochemistry Florida State University Tallahassee Florida 32306 4390 United States

Department of Chemistry and Physics New York University New York New York 10003 United States

Department of Chemistry Michigan State University East Lansing Michigan 48824 United States

Department of Chemistry University of North Carolina Charlotte Charlotte North Carolina 28223 United States

Department of Chemistry University of Washington Seattle Washington 98195 United States

Department of Physics City College of New York New York New York 10031 United States

Department of Physics Rutgers University Newark New Jersey 07102 United States

Department of Physics University of Washington Seattle Washington 98195 United States

Faculty of Mathematics and Physics Charles University 12116 Prague 2 Czech Republic

J Heyrovský Institute of Physical Chemistry Academy of Sciences of the Czech Republic v v i Dolejškova 3 18223 Prague 8 Czech Republic

Nanoscience Center and Department of Chemistry University of Jyvaskyla Jyvaskyla 40014 Finland

Physical Sciences Division Pacific Northwest National Laboratory Richland Washington 99352 United States

Simons Center for Computational Physical Chemistry New York University New York New York 10003 United States

Theoretical Division Los Alamos National Laboratory Los Alamos New Mexico 87544 United States

Zobrazit více v PubMed

Coles D. M., Somaschi N., Michetti P., Clark C., Lagoudakis P. G., Savvidis P. G., Lidzey D. G.. Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nat. Mater. 2014;13:712–719. doi: 10.1038/nmat3950. PubMed DOI

Lerario G., Ballarini D., Fieramosca A., Cannavale A., Genco A., Mangione F., Gambino S., Dominici L., Giorgi M. D., Gigli G., Sanvitto D.. High-speed flow of interacting organic polaritons. Light: Sci. Appl. 2017;6:e16212. doi: 10.1038/lsa.2016.212. PubMed DOI PMC

Rozenman G. G., Akulov K., Golombek A., Schwartz T.. Long-Range Transport of Organic Exciton-Polaritons Revealed by Ultrafast Microscopy. ACS Photonics. 2018;5:105–110. doi: 10.1021/acsphotonics.7b01332. DOI

Hou S., Khatoniar M., Ding K., Qu Y., Napolov A., Menon V. M., Forrest S. R.. Ultralong-Range Energy Transport in a Disordered Organic Semiconductor at Room Temperature Via Coherent Exciton-Polariton Propagation. Adv. Mater. 2020;32(28):2002127. doi: 10.1002/adma.202002127. PubMed DOI

Georgiou K., Jayaprakash R., Othonos A., Lidzey D. G.. Ultralong-Range Polariton-Assisted Energy Transfer in Organic Microcavities. Angew. Chem., Int. Ed. 2021;60:16661–16667. doi: 10.1002/anie.202105442. PubMed DOI PMC

Berghuis A. M., Tichauer R. H., de Jong L., Sokolovskii I., Bai P., Ramezani M., Murai S., Groenhof G., Rivas J. G.. Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays. ACS Photonics. 2022;9:123. doi: 10.1021/acsphotonics.2c00007. PubMed DOI PMC

Pandya R., Ashoka A., Georgiou K., Sung J., Jayaprakash R., Renken S., Gai L., Shen Z., Rao A., Musser A. J.. Tuning the Coherent Propagation of Organic Exciton-Polaritons through Dark State Delocalization. Adv. Sci. 2022;9:2105569. doi: 10.1002/advs.202105569. PubMed DOI PMC

Balasubrahmaniyam M., Simkhovich A., Golombek A., Sandik G., Ankonina G., Ankonina G., Schwartz T.. From enhanced diffusion to ultrafast ballistic motion of hybrid light-matter excitations. Nat. Mater. 2023;22:338–344. doi: 10.1038/s41563-022-01463-3. PubMed DOI

Orgiu E., George J., Hutchison J. A., Devaux E., Dayen J. F., Doudin B., Stellacci F., Genet C., Schachenmayer J., Genes C., Pupillo G., Samori P., Ebbesen T. W.. Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater. 2015;14:1123–1129. doi: 10.1038/nmat4392. PubMed DOI

Krainova N., Grede A. J., Tsokkou D., Banerji N., Giebink N. C.. Polaron photoconductivity in the weak and strong light-matter coupling regime. Phys. Rev. Lett. 2020;124:177401. doi: 10.1103/PhysRevLett.124.177401. PubMed DOI

Nagarajan K., George J., Thomas A., Devaux E., Chervy T., Azzini S., Joseph K., Jouaiti A., Hosseini M. W., Kumar A., Genet C., Bartolo N., Ciuti C., Ebbesen T. W.. Conductivity and Photoconductivity of a p-Type Organic Semiconductor under Ultrastrong Coupling. ACS Nano. 2020;14:10219–10225. doi: 10.1021/acsnano.0c03496. PubMed DOI

Bhatt P., Kaur K., George J.. Enhanced Charge Transport in Two-Dimensional Materials through Light-Matter Strong Coupling. ACS Nano. 2021;15:13616–13622. doi: 10.1021/acsnano.1c04544. PubMed DOI

Kéna-Cohen S., Forrest S. R.. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photonics. 2010;4:371–375. doi: 10.1038/nphoton.2010.86. DOI

Akselrod G. M., Young E. R., Bradley M. S., Bulović V.. Lasing through a strongly-coupled mode by intra-cavity pumping. Opt. Express. 2013;21:12122–12128. doi: 10.1364/OE.21.012122. PubMed DOI

Hakala T. K., Moilanen A. J., Väkeväinen A. I., Guo R., Martikainen J.-P., Daskalakis K. S., Rekola H. T., Julku A., Törmä P.. Bose–Einstein condensation in a plasmonic lattice. Nat. Phys. 2018;14:739. doi: 10.1038/s41567-018-0109-9. DOI

Hutchison J. A., Schwartz T., Genet C., Devaux E., Ebbesen T. W.. Modifying Chemical Landscapes by Coupling to Vacuum Fields. Angew. Chem., Int. Ed. 2012;51:1592–1596. doi: 10.1002/anie.201107033. PubMed DOI

Munkhbat B., Wersäll M., Baranov D. G., Antosiewicz T. J., Shegai T.. Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas. Sci. Adv. 2018;4:eaas9552. doi: 10.1126/sciadv.aas9552. PubMed DOI PMC

Stranius K., Herzog M., Börjesson K.. Selective manipulation of electronically excited states through strong light-matter interactions. Nat. Commun. 2018;9:2273. doi: 10.1038/s41467-018-04736-1. PubMed DOI PMC

Mony J., Climent C., Petersen A. U., Moth-Poulsen K., Feist J., Börjesson K.. Photoisomerization Efficiency of a Solar Thermal Fuel in the Strong Coupling Regime. Adv. Funct. Mater. 2021;31:2010737. doi: 10.1002/adfm.202010737. DOI

Yu Y., Mallick S., Wang M., Börjesson K.. Barrier-free reverse-intersystem crossing in organic molecules by strong light-matter coupling. Nat. Commun. 2021;12:3255. doi: 10.1038/s41467-021-23481-6. PubMed DOI PMC

Vahala K. J.. Optical Microcavities. Nature. 2003;424:839–846. doi: 10.1038/nature01939. PubMed DOI

Agranovich V., Benisty H., Weisbuch C.. Organic and Inorganic Quantum Wells in a Microcavity: Frenkel-Wannier-Mott Excitons Hybridization and Energy Transformation. Solid State Commun. 1997;102:631–636. doi: 10.1016/S0038-1098(96)00433-4. DOI

Lidzey D. G., Bradley D. D. C., Skolnick M. S., Virgili T., Walker S., Whittaker D. M.. Strong exciton-photon coupling in an organic semiconductor microcavity. Nature. 1998;395:53–55. doi: 10.1038/25692. DOI

Törmä P., Barnes W. L.. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 2015;78:013901. doi: 10.1088/0034-4885/78/1/013901. PubMed DOI

Rider M. S., Barnes W. L.. Something from nothing: linking molecules with virtual light. Contemp. Phys. 2021;62:217–232. doi: 10.1080/00107514.2022.2101749. DOI

Mandal A., Taylor M., Weight B., Koessler E., Li X., Huo P.. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem. Rev. 2023;123:9786–9879. doi: 10.1021/acs.chemrev.2c00855. PubMed DOI PMC

Gonzalez-Ballestero C., Feist J., Gonzalo Badía E., Moreno E., Garcia-Vidal F. J.. Uncoupled Dark States Can Inherit Polaritonic Properties. Phys. Rev. Lett. 2016;117:156402. doi: 10.1103/PhysRevLett.117.156402. PubMed DOI

DelPo C. A., Kudisch B., Park K. H., Khan S.-U.-Z., Fassioli F., Fausti D., Rand B. P., Scholes G. D.. Polariton Transitions in Femtosecond Transient Absorption Studies of Ultrastrong Light-Molecule Coupling. J. Phys. Chem. Lett. 2020;11:2667–2674. doi: 10.1021/acs.jpclett.0c00247. PubMed DOI PMC

Du M., Yuen-Zhou J.. Catalysis by Dark States in Vibropolaritonic Chemistry. Phys. Rev. Lett. 2022;128:096001. doi: 10.1103/PhysRevLett.128.096001. PubMed DOI

Xiang B., Ribeiro R. F., Chen L., Wang J., Du M., Yuen-Zhou J., Xiong W.. State-Selective Polariton to Dark State Relaxation Dynamics. J. Phys. Chem. A. 2019;123:5918–5927. doi: 10.1021/acs.jpca.9b04601. PubMed DOI

Campos-Gonzalez-Angulo J. A., Ribeiro R. F., Yuen-Zhou J.. Resonant catalysis of thermally activated chemical reactions with vibrational polaritons. Nat. Commun. 2019;10:4685. doi: 10.1038/s41467-019-12636-1. PubMed DOI PMC

Vurgaftman I., Simpkins B. S., Dunkelberger A. D., Owrutsky J. C.. Negligible Effect of Vibrational Polaritons on Chemical Reaction Rates via the Density of States Pathway. J. Phys. Chem. Lett. 2020;11:3557–3562. doi: 10.1021/acs.jpclett.0c00841. PubMed DOI

Renken S., Pandya R., Georgiou K., Jayaprakash R., Gai L., Shen Z., Lidzey D. G., Rao A., Musser A. J.. Untargeted effects in organic exciton-polariton transient spectroscopy: A cautionary tale. J. Chem. Phys. 2021;155:154701. doi: 10.1063/5.0063173. PubMed DOI

Sidler D., Schäfer C., Ruggenthaler M., Rubio A.. Polaritonic Chemistry: Collective Strong Coupling Implies Strong Local Modification of Chemical Properties. J. Phys. Chem. Lett. 2021;12:508–516. doi: 10.1021/acs.jpclett.0c03436. PubMed DOI PMC

Schütz S., Schachenmayer J., Hagenmüller D., Brennen G. K., Volz T., Sandoghdar V., Ebbesen T. W., Genes C., Pupillo G.. Ensemble-Induced Strong Light-Matter Coupling of a Single Quantum Emitter. Phys. Rev. Lett. 2020;124:113602. doi: 10.1103/PhysRevLett.124.113602. PubMed DOI

Dicke R. H.. Coherence in Spontaneous Radiation Processes. Phys. Rev. 1954;93:99–110. doi: 10.1103/PhysRev.93.99. DOI

Jaynes E., Cummings F.. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE. 1963;51:89–109. doi: 10.1109/PROC.1963.1664. DOI

Tavis M., Cummings F. W.. Exact Solution for an N-Molecule–Radiation-Field Hamiltonian. Phys. Rev. 1968;170:379–384. doi: 10.1103/PhysRev.170.379. DOI

Feist J., Fernández-Domínguez A. I., García-Vidal F. J.. Macroscopic QED for quantum nanophotonics: emitter-centered modes as a minimal basis for multiemitter problems. Nanophotonics. 2020;10:477–489. doi: 10.1515/nanoph-2020-0451. DOI

Fregoni J., Garcia-Vidal F. J., Feist J.. Theoretical Challenges in Polaritonic Chemistry. ACS Photonics. 2022;9:1096–1107. doi: 10.1021/acsphotonics.1c01749. PubMed DOI PMC

Scheel S., Buhmann S.. Macroscopic quantum electrodynamics - concepts and applications. Acta Phys. Slovaca. 2008;58(5):675–809. doi: 10.2478/v10155-010-0092-x. DOI

Dispersion Forces I; Buhmann, S. Y. , Ed.; Springer Tracts in Modern Physics; Springer: Berlin Heidelberg, 2012; Vol. 247.

Sidler D., Ruggenthaler M., Schäfer C., Ronca E., Rubio A.. A perspective on ab initio modeling of polaritonic chemistry: The role of non-equilibrium effects and quantum collectivity. J. Chem. Phys. 2022;156:230901. doi: 10.1063/5.0094956. PubMed DOI

Yuen-Zhou J., Xiong W., Shegai T.. Polariton chemistry: Molecules in cavities and plasmonic media. J. Chem. Phys. 2022;156:030401. doi: 10.1063/5.0080134. PubMed DOI

Herrera F., Spano F. C.. Theory of Nanoscale Organic Cavities: The Essential Role of Vibration-Photon Dressed States. ACS Photonics. 2018;5:65–79. doi: 10.1021/acsphotonics.7b00728. DOI

Barnes B., García Vidal F., Aizpurua J.. Special Issue on Strong Coupling of Molecules to Cavities. ACS Photonics. 2018;5:1. doi: 10.1021/acsphotonics.7b01609. DOI

Foley J. J., McTague J. F., DePrince A. E.. Ab initio methods for polariton chemistry. Chem. Phys. Rev. 2023;4:041301. doi: 10.1063/5.0167243. DOI

Ruggenthaler M., Sidler D., Rubio A.. Understanding Polaritonic Chemistry from Ab Initio Quantum Electrodynamics. Chem. Rev. 2023;123:11191–11229. doi: 10.1021/acs.chemrev.2c00788. PubMed DOI PMC

Haugland T. S., Ronca E., Kjønstad E. F., Rubio A., Koch H.. Coupled Cluster Theory for Molecular Polaritons: Changing Ground and Excited States. Phys. Rev. X. 2020;10:041043. doi: 10.1103/PhysRevX.10.041043. DOI

El Moutaoukal Y., Riso R. R., Castagnola M., Koch H.. Toward Polaritonic Molecular Orbitals for Large Molecular Systems. J. Chem. Theory Comput. 2024;20:8911–8920. doi: 10.1021/acs.jctc.4c00808. PubMed DOI PMC

Riso R. R., Haugland T. S., Ronca E., Koch H.. Molecular orbital theory in cavity QED environments. Nat. Commun. 2022;13:1368. doi: 10.1038/s41467-022-29003-2. PubMed DOI PMC

Li, X. ; Zhang, Y. . First-principles molecular quantum electrodynamics theory at all coupling strengths. 2023; https://arxiv.org/abs/2310.18228.

Ruggenthaler M., Flick J., Pellegrini C., Appel H., Tokatly I. V., Rubio A.. Quantum-electrodynamical density-functional theory: Bridging quantum optics and electronic-structure theory. Phys. Rev. A. 2014;90:012508. doi: 10.1103/PhysRevA.90.012508. DOI

Flick J., Ruggenthaler M., Appel H., Rubio A.. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proc. Natl. Acad. Sci. U.S.A. 2017;114:3026–3034. doi: 10.1073/pnas.1615509114. PubMed DOI PMC

Flick J., Scäfer C., Ruggenthaler M., Appel H., Rubio A.. Ab initio optimized effective potentials for real molecules in optical cavities: Photon contributions to the molecular ground state. ACS Photonics. 2018;5:992. doi: 10.1021/acsphotonics.7b01279. PubMed DOI PMC

Yang J., Ou Q., Pei Z., Wang H., Weng B., Shuai Z., Mullen K., Shao Y.. Quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. J. Chem. Phys. 2021;155:064107. doi: 10.1063/5.0057542. PubMed DOI PMC

Yang J., Pei Z., Leon E. C., Wickizer C., Weng B., Mao Y., Ou Q., Shao Y.. Cavity quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. II. Analytic energy gradient. J. Chem. Phys. 2022;156:124104. doi: 10.1063/5.0082386. PubMed DOI

McTague J., Foley J. J. IV. Non-Hermitian cavity quantum electrodynamics-configuration interaction singles approach for polaritonic structure with ab initio molecular Hamiltonians. J. Chem. Phys. 2022;156:154103. doi: 10.1063/5.0091953. PubMed DOI

Vu N., Mejia-Rodriguez D., Bauman N. P., Panyala A., Mutlu E., Govind N., Foley J. J. IV. Cavity quantum electrodynamics complete active space configuration interaction theory. J. Chem. Theory Comput. 2024;20:1214–1227. doi: 10.1021/acs.jctc.3c01207. PubMed DOI PMC

Vu N., Ampoh K., Matousek M., Veis L., Govind N., Foley J. J.. Modeling Strong Light-Matter Coupling in Correlated Systems: State-Averaged Cavity Quantum Electrodynamics Complete Active Space Self-Consistent Field Theory. J. Chem. Theory Comput. 2025;21:8812–8822. doi: 10.1021/acs.jctc.5c00927. PubMed DOI PMC

Alessandro, R. ; Koch, H. ; Ronca, E. . A Complete Active Space Self-Consistent Field (CASSCF) approach for molecules in QED environments. 2025; http://arxiv.org/abs/2503.16417, arXiv:2503.16417 [physics]. PubMed PMC

Mordovina U., Bungey C., Appel H., Knowles P. J., Rubio A., Manby F. R.. Polaritonic coupled-cluster theory. Phys. Rev. Res. 2020;2:023262. doi: 10.1103/PhysRevResearch.2.023262. DOI

DePrince A. E. III. Cavity-modulated ionization potentials and electron affinities from quantum electrodynamics coupled-cluster theory. J. Chem. Phys. 2021;154:094112. doi: 10.1063/5.0038748. PubMed DOI

Weight B. M., Tretiak S., Zhang Y.. Diffusion quantum Monte Carlo approach to the polaritonic ground state. Phys. Rev. A. 2024;109:032804. doi: 10.1103/PhysRevA.109.032804. DOI

Matoušek M., Vu N., Govind N., Foley J. J., Veis L.. Polaritonic chemistry using the density matrix renormalization group method. J. Chem. Theory Comput. 2024;20(21):9424–9434. doi: 10.1021/acs.jctc.4c00986. PubMed DOI PMC

Cui Z.-H., Mandal A., Reichman D. R.. Variational Lang-Firsov Approach Plus Møller-Plesset Perturbation Theory with Applications to Ab Initio Polariton Chemistry. J. Chem. Theory Comput. 2024;20:1143–1156. doi: 10.1021/acs.jctc.3c01166. PubMed DOI

El Moutaoukal Y., Riso R. R., Castagnola M., Ronca E., Koch H.. Strong Coupling Møller-Plesset Perturbation Theory. J. Chem. Theory Comput. 2025;21(8):3981–3992. doi: 10.1021/acs.jctc.5c00055. PubMed DOI PMC

Bauer M., Dreuw A.. Perturbation theoretical approaches to strong light-matter coupling in ground and excited electronic states for the description of molecular polaritons. J. Chem. Phys. 2023;158:124128. doi: 10.1063/5.0142403. PubMed DOI

Cohen-Tannoudji, C. ; Dupont-Roc, J. ; Grynberg, G. . Photons and Atoms; John Wiley & Sons, Ltd, 1997; Chapter 3, pp 169–252.

Tokatly I. V.. Time-Dependent Density Functional Theory for Many-Electron Systems Interacting with Cavity Photons. Phys. Rev. Lett. 2013;110:233001. doi: 10.1103/PhysRevLett.110.233001. PubMed DOI

Ruggenthaler M., Tancogne-Dejean N., Flick J., Appel H., Rubio A.. From a quantum-electrodynamical light-matter description to novel spectroscopies. Nat. Rev. Chem. 2018;2:0118. doi: 10.1038/s41570-018-0118. DOI

Ruggenthaler M., Sidler D., Rubio A.. Understanding polaritonic chemistry from ab initio quantum electrodynamics. Chem. Rev. 2023;123:11191–11229. doi: 10.1021/acs.chemrev.2c00788. PubMed DOI PMC

Welakuh D. M., Rokaj V., Ruggenthaler M., Rubio A.. Nonperturbative mass renormalization effects in nonrelativistic quantum electrodynamics. Phys. Rev. Res. 2025;7:013093. doi: 10.1103/PhysRevResearch.7.013093. DOI

Flick J., Appel H., Ruggenthaler M., Rubio A.. Cavity Born-Oppenheimer Approximation for Correlated Electron-Nuclear-Photon Systems. J. Chem. Theory Comput. 2017;13:1616–1625. doi: 10.1021/acs.jctc.6b01126. PubMed DOI PMC

Angelico S., Haugland T. S., Ronca E., Koch H.. Coupled cluster cavity Born-Oppenheimer approximation for electronic strong coupling. J. Chem. Phys. 2023;159:214112. doi: 10.1063/5.0172764. PubMed DOI

Fiechter M. R., Richardson J. O.. Understanding the cavity Born-Oppenheimer approximation. J. Chem. Phys. 2024;160:184107. doi: 10.1063/5.0197248. PubMed DOI

Bonini J., Ahmadabadi I., Flick J.. Cavity Born-Oppenheimer approximation for molecules and materials via electric field response. J. Chem. Phys. 2024;161:154104. doi: 10.1063/5.0230983. PubMed DOI

Schnappinger T., Sidler D., Ruggenthaler M., Rubio A., Kowalewski M.. Cavity Born-Oppenheimer Hartree-Fock Ansatz: Light-Matter Properties of Strongly Coupled Molecular Ensembles. J. Phys. Chem. Lett. 2023;14:8024–8033. doi: 10.1021/acs.jpclett.3c01842. PubMed DOI PMC

Huang X., Liang W.. Analytical derivative approaches for vibro-polaritonic structures and properties. I. Formalism and implementation. J. Chem. Phys. 2025;162:024115. doi: 10.1063/5.0228891. PubMed DOI

Schnappinger, T. ; Kowalewski, M. . Molecular Polarizability under Vibrational Strong Coupling. 2025; http://arxiv.org/abs/2503.17102, arXiv:2503.17102 [physics]. PubMed PMC

Sidler, D. ; Ruggenthaler, M. ; Rubio, A. . The connection of polaritonic chemistry with the physics of a spin glass. arXiv preprint 2024.

Haugland T. S., Ronca E., Kjønstad E. F., Rubio A., Koch H.. Coupled cluster theory for molecular polaritons: Changing ground and excited states. Phys. Rev. X. 2020;10:041043. doi: 10.1103/PhysRevX.10.041043. DOI

Trapper U., Fehske H., Deeg M., Büttner H.. Electron correlations and quantum lattice vibrations in strongly coupled electron-phonon systems: a variational slave boson approach. Z. Phys. B: Condens. Matter. 1994;93:465–478. doi: 10.1007/BF01314251. DOI

Feinberg D., Ciuchi S., de Pasquale F.. Squeezing Phenomena in Interacting Electron-Phonon Systems. Int. J. Mod. Phys. B. 1990;04:1317–1367. doi: 10.1142/S0217979290000656. DOI

Mazin, I. ; Zhang, Y. . Light-Matter Hybridization and Entanglement from the First-Principles. arXiv preprint 2024, arXiv:2411.15022.

Teale A. M., Helgaker T., Savin A.. et al. DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Phys. Chem. Chem. Phys. 2022;24:28700–28781. doi: 10.1039/D2CP02827A. PubMed DOI PMC

Hohenberg P., Kohn W.. Inhomogeneous Electron Gas. Phys. Rev. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI

Kohn W., Sham L. J.. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI

Mardirossian N., Head-Gordon M.. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 2017;115:2315–2372. doi: 10.1080/00268976.2017.1333644. DOI

Ruggenthaler, M. Ground-state quantum-electrodynamical density-functional theory. arXiv preprint arXiv:1509.01417 2015..

Penz M., Tellgren E. I., Csirik M. A., Ruggenthaler M., Laestadius A.. The structure of the density-potential mapping. Part II: Including magnetic fields. ACS Phys. Chem. Au. 2023;3:492–511. doi: 10.1021/acsphyschemau.3c00006. PubMed DOI PMC

Dimitrov T., Flick J., Ruggenthaler M., Rubio A.. Exact functionals for correlated electron–photon systems. New J. Phys. 2017;19:113036. doi: 10.1088/1367-2630/aa8f09. DOI

Vu N., McLeod G. M., Hanson K., DePrince A. E. III. Enhanced diastereocontrol via strong light-matter interactions in an optical cavity. J. Phys. Chem. A. 2022;126:9303–9312. doi: 10.1021/acs.jpca.2c07134. PubMed DOI

Pavošević F., Hammes-Schiffer S., Rubio A., Flick J.. Cavity-Modulated Proton Transfer Reactions. J. Am. Chem. Soc. 2022;144:4995–5002. doi: 10.1021/jacs.1c13201. PubMed DOI

Pellegrini C., Flick J., Tokatly I. V., Appel H., Rubio A.. Optimized Effective Potential for Quantum Electrodynamical Time-Dependent Density Functional Theory. Phys. Rev. Lett. 2015;115:093001. doi: 10.1103/PhysRevLett.115.093001. PubMed DOI

Flick J., Schäfer C., Ruggenthaler M., Appel H., Rubio A.. Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State. ACS Photonics. 2018;5:992–1005. doi: 10.1021/acsphotonics.7b01279. PubMed DOI PMC

Kudlis A., Iorsh I., Tokatly I. V.. Dissipation and spontaneous emission in quantum electrodynamical density functional theory based on optimized effective potential: A proof of concept study. Phys. Rev. B. 2022;105:054317. doi: 10.1103/PhysRevB.105.054317. DOI

Flick J., Ruggenthaler M., Appel H., Rubio A.. Kohn-Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space. Proc. Natl. Acad. Sci. U.S.A. 2015;112:15285–15290. doi: 10.1073/pnas.1518224112. PubMed DOI PMC

Flick J.. Simple Exchange-Correlation Energy Functionals for Strongly Coupled Light-Matter Systems Based on the Fluctuation-Dissipation Theorem. Phys. Rev. Lett. 2022;129:143201. doi: 10.1103/PhysRevLett.129.143201. PubMed DOI

Vydrov O. A., van Voorhis T.. Dispersion interactions from a local polarizability model. Phys. Rev. A. 2010;81:062708. doi: 10.1103/PhysRevA.81.062708. DOI

Perdew, J. P. ; Schmidt, K. . Jacob’s ladder of density functional approximations for the exchange–correlation energy. In AIP Conference Proceedings; AIP, 2001; Vol. 577, pp 1–20 10.1063/1.1390175. DOI

Gutle C., Savin A., Krieger J. B., Chen J.. Correlation energy contributions from low-lying states to density functionals based on an electron gas with a gap. Int. J. Quantum Chem. 1999;75(4-5):885–888. doi: 10.1002/(sici)1097-461x(1999)75:4/53.0.co;2-f. DOI

Krieger, J. B. ; Chen, J. ; Iafrate, G. J. ; Savin, A. . Electron correlations and material properties; Gonis, A. ; Kioussis, M. ; Ciftan, M. , Eds.; Springer: Boston, MA, 1999; pp 463–477.

Fabiano E., Trevisanutto P. E., Terentjevs A., Constantin L. A.. Generalized Gradient Approximation Correlation Energy Functionals Based on the Uniform Electron Gas with Gap Model. J. Chem. Theory Comput. 2014;10:2016. doi: 10.1021/ct500073b. PubMed DOI

Constantin L. A., Fabiano E., Śmiga S., Della Salla F.. Jellium-with-gap model applied to semilocal kinetic functionals. Phys. Rev. B. 2017;95:115153. doi: 10.1103/PhysRevB.95.115153. DOI

Mejia-Rodriguez, D. ; Govind, N. . Journal of Physical Chemistry Letters (under review).

Grimme S., Hansen A., Brandenburg J. G., Bannwarth C.. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 2016;116:5105–5154. doi: 10.1021/acs.chemrev.5b00533. PubMed DOI

Tasci C., Cunha L. A., Flick J.. Photon Many-Body Dispersion: Exchange-Correlation Functional for Strongly Coupled Light-Matter Systems. Phys. Rev. Lett. 2025;134:073002. doi: 10.1103/PhysRevLett.134.073002. PubMed DOI

Tkatchenko A., DiStasio R. A. Jr, Car R., Scheffler M.. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 2012;108:236402. doi: 10.1103/PhysRevLett.108.236402. PubMed DOI

Ambrosetti A., Reilly A. M., DiStasio R. A., Tkatchenko A.. Long-range correlation energy calculated from coupled atomic response functions. J. Chem. Phys. 2014;140:18A508. doi: 10.1063/1.4865104. PubMed DOI

Hirshfeld F. L.. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta. 1977;44:129–138. doi: 10.1007/BF00549096. DOI

Weber L., dos Anjos Cunha L., Morales M. A., Rubio A., Zhang S.. Phaseless Auxiliary-Field Quantum Monte Carlo Method for Cavity-QED Matter Systems. J. Chem. Theory Comput. 2025;21:2909–2917. doi: 10.1021/acs.jctc.4c01459. PubMed DOI

Vosko S. H., Wilk L., Nusair M.. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980;58:1200–1211. doi: 10.1139/p80-159. DOI

Perdew J. P., Wang Y.. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI

Ceperley D. M., Alder B. J.. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett. 1980;45:566–569. doi: 10.1103/PhysRevLett.45.566. DOI

Weber, L. ; Morales, M. A. ; Flick, J. ; Zhang, S. ; Rubio, A. . The light-matter correlation energy functional of the cavity-coupled two-dimensional electron gas via quantum Monte Carlo simulations. 2024; http://arxiv.org/abs/2412.19222, arXiv:2412.19222 [cond-mat]. PubMed

Tchenkoue M.-L. M., Penz M., Theophilou I., Ruggenthaler M., Rubio A.. Force balance approach for advanced approximations in density functional theories. J. Chem. Phys. 2019;151:154107. doi: 10.1063/1.5123608. PubMed DOI

Tancogne-Dejean N., Penz M., Ruggenthaler M., Rubio A.. Local-density correlation functional from the force-balance equation. J. Phys. Chem. A. 2025;129:3132–3140. doi: 10.1021/acs.jpca.4c07235. PubMed DOI PMC

Schäfer C., Ruggenthaler M., Rubio A.. Ab initio nonrelativistic quantum electrodynamics: Bridging quantum chemistry and quantum optics from weak to strong coupling. Phys. Rev. A. 2018;98:043801. doi: 10.1103/PhysRevA.98.043801. DOI

Schäfer C., Buchholz F., Penz M., Ruggenthaler M., Rubio A.. Making ab initio QED functional(s): Nonperturbative and photon-free effective frameworks for strong light-matter coupling. Proc. Natl. Acad. Sci. U.S.A. 2021;118:e2110464118. doi: 10.1073/pnas.2110464118. PubMed DOI PMC

Lu I.-T., Ruggenthaler M., Tancogne-Dejean N., Latini S., Penz M., Rubio A.. Electron-photon exchange–correlation approximation for quantum-electrodynamical density-functional theory. Phys. Rev. A. 2024;109:052823. doi: 10.1103/PhysRevA.109.052823. DOI

Flick J., Welakuh D. M., Ruggenthaler M., Appel H., Rubio A.. Light-Matter Response in Nonrelativistic Quantum Electrodynamics. ACS Photonics. 2019;6:2757–2778. doi: 10.1021/acsphotonics.9b00768. PubMed DOI PMC

Welakuh D. M., Flick J., Ruggenthaler M., Appel H., Rubio A.. Frequency-Dependent Sternheimer Linear-Response Formalism for Strongly Coupled Light-Matter Systems. J. Chem. Theory Comput. 2022;18:4354–4365. doi: 10.1021/acs.jctc.2c00076. PubMed DOI PMC

Schäfer, C. Dynamic of single molecules in collective light-matter states from first principles. arXiv preprint arXiv:2204.01602 2022.

Flick J., Narang P.. Cavity-Correlated Electron-Nuclear Dynamics from First Principles. Phys. Rev. Lett. 2018;121:113002. doi: 10.1103/PhysRevLett.121.113002. PubMed DOI

Liebenthal M. D., Vu N., DePrince A. E. I.. Assessing the Effects of Orbital Relaxation and the Coherent-State Transformation in Quantum Electrodynamics Density Functional and Coupled-Cluster Theories. J. Phys. Chem. A. 2023;127:5264–5275. doi: 10.1021/acs.jpca.3c01842. PubMed DOI

ROWE D. J.. Equations-of-Motion Method and the Extended Shell Model. Rev. Mod. Phys. 1968;40:153–166. doi: 10.1103/RevModPhys.40.153. DOI

Olsen J., Jørgensen P., Simons J.. Passing the one-billion limit in full configuration-interaction (FCI) calculations. Chem. Phys. Lett. 1990;169:463–472. doi: 10.1016/0009-2614(90)85633-N. DOI

Vogiatzis K. D., Ma D., Olsen J., Gagliardi L., de Jong W. A.. Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations. J. Chem. Phys. 2017;147:184111. doi: 10.1063/1.4989858. PubMed DOI

Werner H.-J., Meyer W.. A quadratically convergent multiconfiguration-self-consistent field method with simultaneous optimization of orbitals and CI coefficients. J. Chem. Phys. 1980;73:2342–2356. doi: 10.1063/1.440384. DOI

Werner H.-J., Knowles P. J.. A second order multiconfiguration SCF procedure with optimum convergence. J. Chem. Phys. 1985;82:5053–5063. doi: 10.1063/1.448627. DOI

Kreplin D. A., Knowles P. J., Werner H.-J.. Second-order MCSCF optimization revisited. I. Improved algorithms for fast and robust second-order CASSCF convergence. J. Chem. Phys. 2019;150:194106. doi: 10.1063/1.5094644. PubMed DOI

Alessandro R., Castagnola M., Koch H., Ronca E.. A Complete Active Space Self-Consistent Field approach for molecules in QED environments. J. Chem. Theory Comput. 2025;21:6862–6873. doi: 10.1021/acs.jctc.5c00519. PubMed DOI PMC

Bartlett R. J., Musiał M.. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 2007;79:291–352. doi: 10.1103/RevModPhys.79.291. DOI

Pavošević F., Flick J.. Polaritonic Unitary Coupled Cluster for Quantum Computations. J. Phys. Chem. Lett. 2021;12:9100–9107. doi: 10.1021/acs.jpclett.1c02659. PubMed DOI

Stanton J. F., Bartlett R. J.. The Equation of Motion Coupled-Cluster Method. A Systematic Biorthogonal Approach to Molecular Excitation Energies, Transition Probabilities, and Excited State Properties. J. Chem. Phys. 1993;98:7029–7039. doi: 10.1063/1.464746. DOI

Krylov A. I.. Equation-of-Motion Coupled-Cluster Methods for Open-Shell and Electronically Excited Species: The Hitchhiker’s Guide to Fock Space. Annu. Rev. Phys. Chem. 2008;59:433–462. doi: 10.1146/annurev.physchem.59.032607.093602. PubMed DOI

Bartlett R. J.. Coupled-cluster theory and its equation-of-motion extensions. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012;2:126–138. doi: 10.1002/wcms.76. DOI

Pavošević F., Smith R. L., Rubio A.. Computational study on the catalytic control of endo/exo Diels-Alder reactions by cavity quantum vacuum fluctuations. Nat. Commun. 2023;14:2766. doi: 10.1038/s41467-023-38474-w. PubMed DOI PMC

Liebenthal M. D., DePrince A. E. III. The orientation dependence of cavity-modified chemistry. J. Chem. Phys. 2024;161:064109. doi: 10.1063/5.0216993. PubMed DOI

Pavošević F., Smith R. L., Rubio A.. Cavity Click Chemistry: Cavity-Catalyzed Azide-Alkyne Cycloaddition. J. Phys. Chem. A. 2023;127:10184–10188. doi: 10.1021/acs.jpca.3c06285. PubMed DOI

Pavošević F., Rubio Á.. Wavefunction embedding for molecular polaritons. J. Chem. Phys. 2022;157:094101. doi: 10.1063/5.0095552. PubMed DOI

Haugland T. S., Schäfer C., Ronca E., Rubio A., Koch H.. Intermolecular interactions in optical cavities: An ab initio QED study. J. Chem. Phys. 2021;154:094113. doi: 10.1063/5.0039256. PubMed DOI

Philbin J. P., Haugland T. S., Ghosh T. K., Ronca E., Chen M., Narang P., Koch H.. Molecular van der Waals Fluids in Cavity Quantum Electrodynamics. J. Phys. Chem. Lett. 2023;14:8988–8993. doi: 10.1021/acs.jpclett.3c01790. PubMed DOI PMC

Castagnola M., Lexander M. T., Koch H.. Realistic Ab Initio Predictions of Excimer Behavior under Collective Light-Matter Strong Coupling. Physical Review X. 2025;15:021040. doi: 10.1103/PhysRevX.15.021040. DOI

Riso R. R., Grazioli L., Ronca E., Giovannini T., Koch H.. Strong Coupling in Chiral Cavities: Nonperturbative Framework for Enantiomer Discrimination. Phys. Rev. X. 2023;13:031002. doi: 10.1103/PhysRevX.13.031002. DOI

Riso R. R., Ronca E., Koch H.. Strong Coupling to Circularly Polarized Photons: Toward Cavity-Induced Enantioselectivity. J. Phys. Chem. Lett. 2024;15:8838–8844. doi: 10.1021/acs.jpclett.4c01701. PubMed DOI PMC

Flick J., Narang P.. Ab Initio Polaritonic Potential-Energy Surfaces for Excited-State Nanophotonics and Polaritonic Chemistry. J. Chem. Phys. 2020;153:094116. doi: 10.1063/5.0021033. PubMed DOI

Liebenthal M. D., Vu N., DePrince A. E. III. Equation-of-motion cavity quantum electrodynamics coupled-cluster theory for electron attachment. J. Chem. Phys. 2022;156:054105. doi: 10.1063/5.0078795. PubMed DOI

Riso R. R., Haugland T. S., Ronca E., Koch H.. On the characteristic features of ionization in QED environments. J. Chem. Phys. 2022;156:234103. doi: 10.1063/5.0091119. PubMed DOI

Riso R. R., Castagnola M., Ronca E., Koch H.. Chiral Polaritonics: Cavity-Mediated Enantioselective Excitation Condensation. Rep. Prog. Phys. 2025;88:027901. doi: 10.1088/1361-6633/ad9ed9. PubMed DOI

Fregoni J., Haugland T. S., Pipolo S., Giovannini T., Koch H., Corni S.. Strong Coupling between Localized Surface Plasmons and Molecules by Coupled Cluster Theory. Nano Lett. 2021;21:6664–6670. doi: 10.1021/acs.nanolett.1c02162. PubMed DOI PMC

Romanelli M., Riso R. R., Haugland T. S., Ronca E., Corni S., Koch H.. Effective Single-Mode Methodology for Strongly Coupled Multimode Molecular-Plasmon Nanosystems. Nano Lett. 2023;23:4938–4946. doi: 10.1021/acs.nanolett.3c00735. PubMed DOI PMC

Pathak, H. ; Bauman, N. P. ; Panyala, A. ; Kowalski, K. . Quantum Electrodynamics Coupled-Cluster Theory: Exploring Photon-Induced Electron Correlations. arXiv e prints 2024, arXiv:2409.06858.

Mutlu E., Panyala A., Gawande N., Bagusetty A., Brabec J., Nebgen B. P., Biswas D., Kowalski K., Krishnamoorthy S.. et al. TAMM: Tensor algebra for many-body methods. J. Chem. Phys. 2023;159:024801. doi: 10.1063/5.0142433. PubMed DOI

Castagnola M., Riso R. R., Barlini A., Ronca E., Koch H.. Polaritonic Response Theory for Exact and Approximate Wave Functions. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2024;14:e1684. doi: 10.1002/wcms.1684. DOI

Lexander M. T., Angelico S., Kønstad E. F., Koch H.. Analytical Evaluation of Ground State Gradients in Quantum Electrodynamics Coupled Cluster Theory. J. Chem. Theory Comput. 2024;20:8876–8885. doi: 10.1021/acs.jctc.4c00763. PubMed DOI PMC

Vidal M. L., Manby F. R., Knowles P. J.. Polaritonic effects in the vibronic spectrum of molecules in an optical cavity. J. Chem. Phys. 2022;156:204119. doi: 10.1063/5.0089412. PubMed DOI

Datta, S. N. Coupled cluster theory based on quantum electrodynamics: Physical aspects of closed shell and multi-reference open shell methods. arXiv e prints 2024; arXiv:2401.06392.

Thijssen, J. Computational Physics; Cambridge University Press, 2007.

Martin, R. ; Reining, L. ; Ceperley, D. . Interacting Electrons; Cambridge University Press, 2016.

Johansson J., Nation P., Nori F.. QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 2012;183:1760. doi: 10.1016/j.cpc.2012.02.021. DOI

Johansson J., Nation P., Nori F.. QuTiP 2: A Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 2013;184:1234. doi: 10.1016/j.cpc.2012.11.019. DOI

Micca Longo G., Coppola C., Giordano D., Longo S.. The unbiased diffusion Monte Carlo: a versatile tool for two-electron systems confined in different geometries. Eur. Phys. J. D. 2021;75:83. doi: 10.1140/epjd/s10053-021-00095-7. DOI

Umrigar C. J., Nightingale M. P., Runge K. J.. A diffusion Monte Carlo algorithm with very small time-step errors. J. Chem. Phys. 1993;99:2865–2890. doi: 10.1063/1.465195. DOI

Assaraf R., Caffarel M., Khelif A.. Diffusion Monte Carlo methods with a fixed number of walkers. Phys. Rev. E. 2000;61:4566. doi: 10.1103/PhysRevE.61.4566. PubMed DOI

Trotter H. F.. On the Product of Semi-Groups of Operators. Proc. Amer. Math. Soc. 1959;10:545–551. doi: 10.1090/S0002-9939-1959-0108732-6. DOI

Suzuki M.. Generalized Trotter’s Formula and systematic approximants of Exponential Operators and Inner Derivations with Applications to Many-Body Problems. Commun. Math. Phys. 1976;51:183–190. doi: 10.1007/BF01609348. DOI

Needs R. J., Towler M. D., Drummond N. D., López Ríos P.. Continuum variational and diffusion quantum Monte Carlo calculations. J. Phys.: Condens. Matter. 2010;22:023201. doi: 10.1088/0953-8984/22/2/023201. PubMed DOI

Kim J.. et al. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids. J. Phys.: Condens. Matter. 2018;30:195901. doi: 10.1088/1361-648X/aab9c3. PubMed DOI

Mitas L.. Structure of Fermion Nodes and Nodal Cells. Phys. Rev. Lett. 2006;96:240402. doi: 10.1103/PhysRevLett.96.240402. PubMed DOI

Foulkes W. M. C., Mitas L., Needs R. J., Rajagopal G.. Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 2001;73:33–83. doi: 10.1103/RevModPhys.73.33. DOI

Weight, B. M. ; Zhang, Y. . Auxiliary Field Quantum Monte Carlo for Electron-Photon Correlation. arXiv Preprint, arXiv:2025 2025.

Hubbard J.. Calculation of Partition Functions. Phys. Rev. Lett. 1959;3:77–78. doi: 10.1103/PhysRevLett.3.77. DOI

Shi H., Zhang S.. Some recent developments in auxiliary-field quantum Monte Carlo for real materials. J. Chem. Phys. 2021;154:024107. doi: 10.1063/5.0031024. PubMed DOI

Mallory J. D., DePrince A. E.. Reduced-density-matrix-based ab initio cavity quantum electrodynamics. Phys. Rev. A. 2022;106:053710. doi: 10.1103/PhysRevA.106.053710. DOI

Chan G. K.-L., Sharma S.. The Density Matrix Renormalization Group in Quantum Chemistry. Annu. Rev. Phys. Chem. 2011;62:465–481. doi: 10.1146/annurev-physchem-032210-103338. PubMed DOI

Szalay S., Pfeffer M., Murg V., Barcza G., Verstraete F., Schneider R., Legeza Ö.. Tensor product methods and entanglement optimization for ab initio quantum chemistry. Int. J. Quantum Chem. 2015;115:1342–1391. doi: 10.1002/qua.24898. DOI

Baiardi A., Reiher M.. The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. J. Chem. Phys. 2020;152:040903. doi: 10.1063/1.5129672. PubMed DOI

Matoušek M., Vu N., Govind N., Foley J. J. I., Veis L.. Polaritonic Chemistry Using the Density Matrix Renormalization Group Method. J. Chem. Theory Comput. 2024;20:9424–9434. doi: 10.1021/acs.jctc.4c00986. PubMed DOI PMC

Brabec J., Brandejs J., Kowalski K., Xantheas S., Legeza O., Veis L.. Massively parallel quantum chemical density matrix renormalization group method. J. Comput. Chem. 2021;42:534–544. doi: 10.1002/jcc.26476. PubMed DOI

Legeza Ö., Sólyom J.. Optimizing the density-matrix renormalization group method using quantum information entropy. Phys. Rev. B. 2003;68:195116. doi: 10.1103/PhysRevB.68.195116. DOI

Brandejs J., Veis L., Szalay S., Barcza G., Pittner J., Legeza Ö.. Quantum information-based analysis of electron-deficient bonds. J. Chem. Phys. 2019;150:204117. doi: 10.1063/1.5093497. PubMed DOI

Knecht S., Legeza Ö., Reiher M.. Communication: Four-component density matrix renormalization group. J. Chem. Phys. 2014;140:041101. doi: 10.1063/1.4862495. PubMed DOI

Battaglia S., Keller S., Knecht S.. Efficient Relativistic Density-Matrix Renormalization Group Implementation in a Matrix-Product Formulation. J. Chem. Theory Comput. 2018;14:2353–2369. doi: 10.1021/acs.jctc.7b01065. PubMed DOI

Schäfer C., Ruggenthaler M., Rubio A.. Ab Initio Nonrelativistic Quantum Electrodynamics: Bridging Quantum Chemistry and Quantum Optics from Weak to Strong Coupling. Phys. Rev. A. 2018;98:043801. doi: 10.1103/PhysRevA.98.043801. DOI

Villaseco Arribas E., Agostini F., Maitra N. T.. Exact Factorization Adventures: A Promising Approach for Non-Bound States. Molecules. 2022;27:4002. doi: 10.3390/molecules27134002. PubMed DOI PMC

Muolo A., Baiardi A., Feldmann R., Reiher M.. Nuclear-electronic all-particle density matrix renormalization group. J. Chem. Phys. 2020;152:204103. doi: 10.1063/5.0007166. PubMed DOI

Feldmann R., Muolo A., Baiardi A., Reiher M.. Quantum Proton Effects from Density Matrix Renormalization Group Calculations. J. Chem. Theory Comput. 2022;18:234–250. doi: 10.1021/acs.jctc.1c00913. PubMed DOI

Freitag L., Knecht S., Angeli C., Reiher M.. Multireference Perturbation Theory with Cholesky Decomposition for the Density Matrix Renormalization Group. J. Chem. Theory Comput. 2017;13:451–459. doi: 10.1021/acs.jctc.6b00778. PubMed DOI PMC

Sharma P., Bernales V., Knecht S., Truhlar D. G., Gagliardi L.. Density matrix renormalization group pair-density functional theory (DMRG-PDFT): singlet-triplet gaps in polyacenes and polyacetylenes. Chem. Sci. 2019;10:1716–1723. doi: 10.1039/C8SC03569E. PubMed DOI PMC

Beran P., Matoušek M., Hapka M., Pernal K., Veis L.. Density Matrix Renormalization Group with Dynamical Correlation via Adiabatic Connection. J. Chem. Theory Comput. 2021;17:7575–7585. doi: 10.1021/acs.jctc.1c00896. PubMed DOI

Pernal K.. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions. Phys. Rev. Lett. 2018;120:013001. doi: 10.1103/PhysRevLett.120.013001. PubMed DOI

Stein C. J., von Burg V., Reiher M.. The Delicate Balance of Static and Dynamic Electron Correlation. J. Chem. Theory Comput. 2016;12:3764–3773. doi: 10.1021/acs.jctc.6b00528. PubMed DOI

Hu D., Huo P.. Ab Initio Molecular Cavity Quantum Electrodynamics Simulations Using Machine Learning Models. J. Chem. Theory Comput. 2023;19:2353–2368. doi: 10.1021/acs.jctc.3c00137. PubMed DOI PMC

Mandal A., Taylor M. A., Weight B. M., Koessler E. R., Li X., Huo P.. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem. Rev. 2023;123:9786–9879. doi: 10.1021/acs.chemrev.2c00855. PubMed DOI PMC

Manderna R., Vu N., Foley J. J. IV. Comparing parameterized and self-consistent approaches to ab initio cavity quantum electrodynamics for electronic strong coupling. J. Chem. Phys. 2024;161:174105. doi: 10.1063/5.0230565. PubMed DOI

Weight B. M., Krauss T. D., Huo P.. Investigating molecular exciton polaritons using ab initio cavity quantum electrodynamics. J. Phys. Chem. Lett. 2023;14:5901–5913. doi: 10.1021/acs.jpclett.3c01294. PubMed DOI PMC

Vu N., Mejia-Rodriguez D., Bauman N. P., Panyala A., Mutlu E., Govind N., Foley J. J. I.. Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory. J. Chem. Theory Comput. 2024;20:1214–1227. doi: 10.1021/acs.jctc.3c01207. PubMed DOI PMC

Schnappinger T., Kowalewski M.. Do Molecular Geometries Change Under Vibrational Strong Coupling? J. Phys. Chem. Lett. 2024;15:7700–7707. doi: 10.1021/acs.jpclett.4c01810. PubMed DOI PMC

Barlini, A. ; Bianchi, A. ; Melka-Trabski, J. H. ; Bloino, J. ; Koch, H. . Cavity Field-Driven Symmetry Breaking and Modulation of Vibrational Properties: Insights from the Analytical QED-HF Hessian. 2025, arXiv:2504.20707 [physics]. PubMed PMC

Malave J., Ahrens A., Pitagora D., Covington C., Varga K.. Real-space, real-time approach to quantum-electrodynamical time-dependent density functional theory. J. Chem. Phys. 2022;157:194106. doi: 10.1063/5.0123909. PubMed DOI

Jestädt R., Ruggenthaler M., Oliveira M. J., Rubio A., Appel H.. Light-matter interactions within the Ehrenfest-Maxwell-Pauli-Kohn-Sham framework: fundamentals, implementation, and nano-optical applications. Adv. Phys. 2019;68:225–333. doi: 10.1080/00018732.2019.1695875. DOI

Bonafé F., Tuovinen R., Ruggenthaler M., Rubio A.. Quantum electrodynamics in real space and real time beyond the dipole approximation. Phys. Rev. B. 2025;111:085114

Weidman J. D., Dadgar M. S., Stewart Z. J., Peyton B. G., Ulusoy I. S., Wilson A. K.. Cavity-Modified Molecular Dipole Switching Dynamics. J. Chem. Phys. 2024;160:094111. doi: 10.1063/5.0188471. PubMed DOI

Peyton B. G., Weidman J. D., Wilson A. K.. Light-Induced Electron Dynamics of Molecules in Cavities: Comparison of Model Hamiltonians. J. Opt. Soc. Am. B. 2024;41:C74–C81. doi: 10.1364/JOSAB.523931. DOI

Peng W.-T., Fales B. S., Levine B. G.. Simulating Electron Dynamics of Complex Molecules with Time-Dependent Complete Active Space Configuration Interaction. J. Chem. Theory Comput. 2018;14:4129–4138. doi: 10.1021/acs.jctc.8b00381. PubMed DOI

Peyton B. G., Stewart Z. J., Weidman J. D., Wilson A. K.. Tailoring Light-Induced Charge Transfer and Intersystem Crossing in FeCO Using Time-Dependent Spin–Orbit Configuration Interaction. J. Chem. Phys. 2023;159:204108. doi: 10.1063/5.0173529. PubMed DOI

Manz, J. ; Wöste, L. . Femtosecond chemistry; VCH: Weinheim; New York; Basel; Cambridge; Tokyo, 1995.

Castagnola M., Lexander M. T., Ronca E., Koch H.. Strong coupling electron–photon dynamics: A real-time investigation of energy redistribution in molecular polaritons. Phys. Rev. Res. 2024;6:033283. doi: 10.1103/PhysRevResearch.6.033283. DOI

Folkestad S. D., Kjønstad E. F., Myhre R. H.. et al. eT 1.0: An open source electronic structure program with emphasis on coupled cluster and multilevel methods. J. Chem. Phys. 2020;152:184103. doi: 10.1063/5.0004713. PubMed DOI

Huber C., Klamroth T.. Explicitly time-dependent coupled cluster singles doubles calculations of laser-driven many-electron dynamics. J. Chem. Phys. 2011;134:54113. doi: 10.1063/1.3530807. PubMed DOI

Kvaal S.. Ab initio quantum dynamics using coupled-cluster. J. Chem. Phys. 2012;136:194109. doi: 10.1063/1.4718427. PubMed DOI

Nascimento D. R., Deprince A. E.. A general time-domain formulation of equation-of-motion coupled-cluster theory for linear spectroscopy. J. Chem. Phys. 2019;151:160901. doi: 10.1063/1.5125494. PubMed DOI

Pedersen T. B., Kvaal S.. Symplectic integration and physical interpretation of time-dependent coupled-cluster theory. J. Chem. Phys. 2019;150:144106. doi: 10.1063/1.5085390. PubMed DOI

Park Y. C., Perera A., Bartlett R. J.. Equation of motion coupled-cluster for core excitation spectra: Two complementary approaches. J. Chem. Phys. 2019;151:164117. doi: 10.1063/1.5117841. PubMed DOI

Skeidsvoll A. S., Balbi A., Koch H.. Time-dependent coupled-cluster theory for ultrafast transient-absorption spectroscopy. Phys. Rev. A. 2020;102:023115. doi: 10.1103/PhysRevA.102.023115. DOI

Wang Z., Peyton B. G., Crawford T. D.. Accelerating Real-Time Coupled Cluster Methods with Single-Precision Arithmetic and Adaptive Numerical Integration. J. Chem. Theory Comput. 2022;18:5479–5491. doi: 10.1021/acs.jctc.2c00490. PubMed DOI

Ofstad B. S., Aurbakken E., Schøyen O. S., Kristiansen H. E., Kvaal S., Pedersen T. B.. Time-dependent coupled-cluster theory. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2023;13(5):e1666. doi: 10.1002/wcms.1666. DOI

Butcher J. C.. A history of Runge-Kutta methods. Appl. Numer. Math. 1996;20:247–260. doi: 10.1016/0168-9274(95)00108-5. DOI

Kowalewski M., Bennett K., Mukamel S.. Cavity Femtochemistry: Manipulating Nonadiabatic Dynamics at Avoided Crossings. J. Phys. Chem. Lett. 2016;7:2050–2054. doi: 10.1021/acs.jpclett.6b00864. PubMed DOI

Davidsson E., Kowalewski M.. Simulating photodissociation reactions in bad cavities with the Lindblad equation. J. Chem. Phys. 2020;153:234304. doi: 10.1063/5.0033773. PubMed DOI PMC

Vendrell O.. Coherent dynamics in cavity femtochemistry: Application of the multi-configuration time-dependent Hartree method. Chem. Phys. 2018;509:55–65. doi: 10.1016/j.chemphys.2018.02.008. DOI

Vendrell O.. Collective Jahn-Teller Interactions through Light-Matter Coupling in a Cavity. Phys. Rev. Lett. 2018;121:253001. doi: 10.1103/PhysRevLett.121.253001. PubMed DOI

Ulusoy I. S., Vendrell O.. Dynamics and spectroscopy of molecular ensembles in a lossy microcavity. J. Chem. Phys. 2020;153:044108. doi: 10.1063/5.0011556. PubMed DOI

Lacombe L., Hoffmann N. M., Maitra N. T.. Exact Potential Energy Surface for Molecules in Cavities. Phys. Rev. Lett. 2019;123:083201. doi: 10.1103/PhysRevLett.123.083201. PubMed DOI

Sangiogo Gil E., Lauvergnat D., Agostini F.. Exact factorization of the photon-electron-nuclear wavefunction: Formulation and coupled-trajectory dynamics. J. Chem. Phys. 2024;161:084112. doi: 10.1063/5.0224779. PubMed DOI

Galego J., Garcia-Vidal F. J., Feist J.. Cavity-Induced Modifications of Molecular Structure in the Strong-Coupling Regime. Phys. Rev. X. 2015;5:041022. doi: 10.1103/PhysRevX.5.041022. DOI

Galego J., Garcia-Vidal F. J., Feist J.. Suppressing photochemical reactions with quantized light fields. Nat. Commun. 2016;7:13841. doi: 10.1038/ncomms13841. PubMed DOI PMC

Sánchez-Barquilla M., Silva R. E. F., Feist J.. Cumulant expansion for the treatment of light-matter interactions in arbitrary material structures. J. Chem. Phys. 2020;152:034108. doi: 10.1063/1.5138937. PubMed DOI

del Pino J., Schröder F. A. Y. N., Chin A. W., Feist J., Garcia-Vidal F. J.. Tensor Network Simulation of Non-Markovian Dynamics in Organic Polaritons. Phys. Rev. Lett. 2018;121:227401. doi: 10.1103/PhysRevLett.121.227401. PubMed DOI

Franke S., Hughes S., Dezfouli M. K., Kristensen P. T., Busch K., Knorr A., Richter M.. Quantization of Quasinormal Modes for Open Cavities and Plasmonic Cavity Quantum Electrodynamics. Phys. Rev. Lett. 2019;122:213901. doi: 10.1103/PhysRevLett.122.213901. PubMed DOI

Abedi A., Maitra N. T., Gross E. K. U.. Exact Factorization of the Time-Dependent Electron-Nuclear Wave Function. Phys. Rev. Lett. 2010;105:123002. doi: 10.1103/PhysRevLett.105.123002. PubMed DOI

Abedi A., Maitra N. T., Gross E. K. U.. Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction. J. Chem. Phys. 2012;137:22A530. doi: 10.1063/1.4745836. PubMed DOI

Abedi A., Khosravi E., Tokatly I. V.. Shedding light on correlated electron–photon states using the exact factorization. Eur. Phys. J. B. 2018;91:194. doi: 10.1140/epjb/e2018-90243-1. DOI

Hoffmann N. M., Appel H., Rubio A., Maitra N. T.. Light-matter interactions via the exact factorization approach. Eur. Phys. J. B. 2018;91:180. doi: 10.1140/epjb/e2018-90177-6. DOI

Luk H.-L., Feist J., Toppari J. J., Groenhof G.. Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry. J. Chem. Theory Comput. 2017;13:4324–4335. doi: 10.1021/acs.jctc.7b00388. PubMed DOI

Fregoni J., Granucci G., Coccia E., Persico M., Corni S.. Manipulating azobenzene photoisomerization through strong light-molecule coupling. Nat. Commun. 2018;9:4688. doi: 10.1038/s41467-018-06971-y. PubMed DOI PMC

Sokolovskii I., Groenhof G.. Non-Hermitian Molecular Dynamics Simulations of Exciton-Polaritons in Lossy Cavities. J. Chem. Phys. 2024;160:092501. doi: 10.1063/5.0188613. PubMed DOI

Cui B., Huo P.. Quantum Dynamics of Molecules in Optical Cavities: A Surface Hopping Perspective. J. Chem. Phys. 2021;155:244109.

Horak J., Sidler D., Schnappinger T., Huang W.-M., Ruggenthaler M., Rubio A.. Analytic model reveals local molecular polarizability changes induced by collective strong coupling in optical cavities. Phys. Rev. Res. 2025;7:013242. doi: 10.1103/PhysRevResearch.7.013242. DOI

Xu D., Mandal A., Baxter J. M., Cheng S.-W., Lee I., Su H., Liu S., Reichman D. R., Delor M.. Ultrafast imaging of coherent polariton propagation and interactions. Nat. Commun. 2023;14:3881. PubMed PMC

Tichauer R. H., Feist J., Groenhof G.. Multi-scale dynamics simulations of molecular polaritons: the effect of multiple cavity modes on polariton relaxation. J. Chem. Phys. 2021;154:104112. doi: 10.1063/5.0037868. PubMed DOI

Groenhof G., Toppari J. J.. Coherent Light Harvesting through Strong Coupling to Confined Light. J. Phys. Chem. Lett. 2018;9:4848–4851. doi: 10.1021/acs.jpclett.8b02032. PubMed DOI PMC

Sokolovskii I., Tichauer R. H., Dmitry Morozov J. F., Feist J., Groenhof G.. Multi-scale molecular dynamics simulations of enhanced energy transfer in organic molecules under strong coupling. Nat. Commun. 2023;14:6613. doi: 10.1038/s41467-023-42067-y. PubMed DOI PMC

Tichauer R. H., Sokolovskii I., Groenhof G.. Tuning the Coherent Propagation of Organic Exciton-Polaritons through the Cavity Q-factor. Adv. Sci. 2023;10:2302650. doi: 10.1002/advs.202302650. PubMed DOI PMC

Sokolovskii I., Luo Y., Groenhof G.. Disentangling Enhanced Diffusion and Ballistic Motion of Excitons Coupled to Bloch Surface Waves with Molecular Dynamics Simulations. J. Phys. Chem. Lett. 2025;16:6719–6727. doi: 10.1021/acs.jpclett.5c01391. PubMed DOI

Groenhof G., Climent C., Feist J., Morozov D., Toppari J. J.. Tracking Polariton Relaxation with Multiscale Molecular Dynamics Simulations. J. Phys. Chem. Lett. 2019;10:5476–5483. doi: 10.1021/acs.jpclett.9b02192. PubMed DOI PMC

Tichauer R. H., Morozov D., Sokolovskii I., Toppari J. J., Groenhof G.. Identifying Vibrations that Control Non-Adiabatic Relaxation of Polaritons in Strongly Coupled Molecule-Cavity Systems. J. Phys. Chem. Lett. 2022;13:6259–6267. doi: 10.1021/acs.jpclett.2c00826. PubMed DOI PMC

Sokolovskii I., Morozov D., Groenhof G.. One molecule to couple them all: Toward realistic numbers of molecules in multiscale molecular dynamics simulations of exciton-polaritons. J. Chem. Phys. 2024;161:134106. doi: 10.1063/5.0227515. PubMed DOI

Hoffmann N. M., Schäfer C., Rubio A., Kelly A., Appel H.. Capturing vacuum fluctuations and photon correlations in cavity quantum electrodynamics with multitrajectory Ehrenfest dynamics. Phys. Rev. A. 2019;99:063819. doi: 10.1103/PhysRevA.99.063819. DOI

Hoffmann N. M., Schäfer C., Säkkinen N., Rubio A., Appel H., Kelly A.. Benchmarking semiclassical and perturbative methods for real-time simulations of cavity-bound emission and interference. J. Chem. Phys. 2019;151:244113. doi: 10.1063/1.5128076. PubMed DOI

Ehrenfest P.. Remark on the Approximate Validity of Classical Mechanics within Quantum Mechanics. J. Phys. 1927;45:445–457. doi: 10.1007/bf01329203. DOI

McLachlan A. D.. A Variational Solution of the Time-Dependent Schrödinger Equation. Mol. Phys. 1964;8:39–44. doi: 10.1080/00268976400100041. DOI

Hoffmann N. M., Lacombe L., Rubio A., Maitra N. T.. Effect of many modes on self-polarization and photochemical suppression in cavities. J. Chem. Phys. 2020;153:104103. doi: 10.1063/5.0012723. PubMed DOI

Hsieh M.-H., Krotz A., Tempelaar R.. A mean-field treatment of vacuum fluctuations in strong light-matter coupling. J. Phys. Chem. Lett. 2023;14:1253–1258. doi: 10.1021/acs.jpclett.2c03724. PubMed DOI

Rosenzweig B., Hoffmann N. M., Lacombe L., Maitra N. T.. Analysis of the classical trajectory treatment of photon dynamics for polaritonic phenomena. J. Chem. Phys. 2022;156:054101. doi: 10.1063/5.0079379. PubMed DOI

Chen H.-T., Li T. E., Sukharev M., Nitzan A., Subotnik J. E.. Ehrenfest+R dynamics. I. A mixed quantum-classical electrodynamics simulation of spontaneous emission. J. Chem. Phys. 2019;150:044102. doi: 10.1063/1.5057365. PubMed DOI

Li T. E., Subotnik J. E., Nitzan A.. Cavity molecular dynamics simulations of liquid water under vibrational ultrastrong coupling. Proc. Natl. Acad. Sci. U.S.A. 2020;117:18324–18331. doi: 10.1073/pnas.2009272117. PubMed DOI PMC

Li T. E., Chen H.-T., Nitzan A., Subotnik J. E.. Quasiclassical modeling of cavity quantum electrodynamics. Phys. Rev. A. 2020;101:033831. doi: 10.1103/PhysRevA.101.033831. DOI

Li C., Requist R., Gross E. K. U.. Energy, Momentum, and Angular Momentum Transfer between Electrons and Nuclei. Phys. Rev. Lett. 2022;128:113001. doi: 10.1103/PhysRevLett.128.113001. PubMed DOI

Arribas E. V., Maitra N. T.. Electronic Coherences in Molecules: The Projected Nuclear Quantum Momentum as a Hidden Agent. Phys. Rev. Lett. 2024;133:233201. doi: 10.1103/PhysRevLett.133.233201. PubMed DOI

Min S. K., Agostini F., Gross E. K. U.. Coupled-Trajectory Quantum-Classical Approach to Electronic Decoherence in Nonadiabatic Processes. Phys. Rev. Lett. 2015;115:073001. doi: 10.1103/PhysRevLett.115.073001. PubMed DOI

Agostini F., Min S. K., Abedi A., Gross E. K. U.. Quantum-Classical Nonadiabatic Dynamics: Coupled- vs Independent-Trajectory Methods. J. Chem. Theory Comput. 2016;12:2127–2143. doi: 10.1021/acs.jctc.5b01180. PubMed DOI

Ha J.-K., Lee I. S., Min S. K.. Surface Hopping Dynamics beyond Nonadiabatic Couplings for Quantum Coherence. J. Phys. Chem. Lett. 2018;9:1097–1104. doi: 10.1021/acs.jpclett.8b00060. PubMed DOI

Kim T. I., Ha J.-K., Min S. K.. Coupled- and Independent-Trajectory Approaches Based on the Exact Factorization Using the PyUNIxMD Package. Top. Curr. Chem. 2022;380:8. doi: 10.1007/s41061-021-00361-7. PubMed DOI

Ibele L. M., Sangiogo Gil E., Villaseco Arribas E., Agostini F.. Simulations of photoinduced processes with the exact factorization: state of the art and perspectives. Phys. Chem. Chem. Phys. 2024;26:26693–26718. doi: 10.1039/D4CP02489C. PubMed DOI

Martinez P., Rosenzweig B., Hoffmann N. M., Lacombe L., Maitra N. T.. Case studies of the time-dependent potential energy surface for dynamics in cavities. J. Chem. Phys. 2021;154:014102. doi: 10.1063/5.0033386. PubMed DOI PMC

Villaseco Arribas E., Vindel-Zandbergen P., Roy S., Maitra N. T.. Different flavors of exact-factorization-based mixed quantum-classical methods for multistate dynamics. Phys. Chem. Chem. Phys. 2023;25:26380–26395. doi: 10.1039/D3CP03464J. PubMed DOI

Georgescu I. M., Ashhab S., Nori F.. Quantum simulation. Rev. Mod. Phys. 2014;86:153–185. doi: 10.1103/RevModPhys.86.153. DOI

Sheng, Y. ; Nguyen, L. B. ; Krovi, H. ; Karamlou, A. ; Meitei, O. N. ; Ma, H. ; Narang, P. . Quantum Computer Simulation of Molecules in an Optical Cavity. arXiv preprint 2025,.

Cerezo M., Arrasmith A., Babbush R., Benjamin S. C., Endo S., Fujii K., McClean J. R., Mitarai K., Yuan X., Cincio L., Coles P. J.. Variational quantum algorithms. Nat. Rev. Phys. 2021;3:625–644. doi: 10.1038/s42254-021-00348-9. DOI

Fedorov D. A., Peng B., Govind N., Alexeev Y.. VQE method: a short survey and recent developments. Mater. Theory. 2022;6:2. doi: 10.1186/s41313-021-00032-6. DOI

Hassan M., Pavošević F., Wang D. S., Flick J.. Simulating Polaritonic Ground States on Noisy Quantum Devices. J. Phys. Chem. Lett. 2024;15:1373–1381. doi: 10.1021/acs.jpclett.3c02875. PubMed DOI

Blais A., Grimsmo A. L., Girvin S. M., Wallraff A.. Circuit quantum electrodynamics. Rev. Mod. Phys. 2021;93:025005. doi: 10.1103/RevModPhys.93.025005. DOI

Fan L.-B., Shu C.-C., Dong D., He J., Henriksen N. E., Nori F.. Quantum Coherent Control of a Single Molecular-Polariton Rotation. Phys. Rev. Lett. 2023;130:043604. doi: 10.1103/PhysRevLett.130.043604. PubMed DOI

Endo S., Cai Z., Benjamin S. C., Yuan X.. Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation. J. Phys. Soc. Jpn. 2021;90:032001. doi: 10.7566/JPSJ.90.032001. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...