Perspective on Many-Body Methods for Molecular Polaritonic Systems
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
41105480
PubMed Central
PMC12573759
DOI
10.1021/acs.jctc.5c00801
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Recent advances in strong light-matter interactions have revealed a wealth of new physical phenomena in molecules embedded in optical cavities, including modified chemical reactivity, altered excitation spectra, and novel quantum correlations. To describe these effects from first-principles, the field of ab initio quantum electrodynamics (QED) has emerged as a compelling extension of quantum chemistry that treats electronic and photonic degrees of freedom on equal footing. In this Perspective, we review the growing landscape of many-body QED methods, including Hartree-Fock, density functional theory (QEDFT), time-dependent DFT (QED-TDDFT), configuration interaction (QED-CI), complete active space (QED-CASSCF), coupled cluster (QED-CC), quantum Monte Carlo (QED-QMC), and density matrix renormalization group (QED-DMRG), highlighting recent developments and implementations. We further explore real-time methods, gradient and Hessian formalisms, and the integration of nonadiabatic nuclear dynamics. Applications range from benchmark simulations of polaritonic chemistry to quantum simulations on emerging quantum hardware. We conclude by outlining future directions for theory development and interdisciplinary efforts at the interface of quantum chemistry, condensed matter, and quantum optics.
Center for Computational Quantum Physics Flatiron Institute New York New York 10010 United States
Department of Chemistry and Physics New York University New York New York 10003 United States
Department of Chemistry Michigan State University East Lansing Michigan 48824 United States
Department of Chemistry University of Washington Seattle Washington 98195 United States
Department of Physics City College of New York New York New York 10031 United States
Department of Physics Rutgers University Newark New Jersey 07102 United States
Department of Physics University of Washington Seattle Washington 98195 United States
Faculty of Mathematics and Physics Charles University 12116 Prague 2 Czech Republic
Nanoscience Center and Department of Chemistry University of Jyvaskyla Jyvaskyla 40014 Finland
Theoretical Division Los Alamos National Laboratory Los Alamos New Mexico 87544 United States
Zobrazit více v PubMed
Coles D. M., Somaschi N., Michetti P., Clark C., Lagoudakis P. G., Savvidis P. G., Lidzey D. G.. Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nat. Mater. 2014;13:712–719. doi: 10.1038/nmat3950. PubMed DOI
Lerario G., Ballarini D., Fieramosca A., Cannavale A., Genco A., Mangione F., Gambino S., Dominici L., Giorgi M. D., Gigli G., Sanvitto D.. High-speed flow of interacting organic polaritons. Light: Sci. Appl. 2017;6:e16212. doi: 10.1038/lsa.2016.212. PubMed DOI PMC
Rozenman G. G., Akulov K., Golombek A., Schwartz T.. Long-Range Transport of Organic Exciton-Polaritons Revealed by Ultrafast Microscopy. ACS Photonics. 2018;5:105–110. doi: 10.1021/acsphotonics.7b01332. DOI
Hou S., Khatoniar M., Ding K., Qu Y., Napolov A., Menon V. M., Forrest S. R.. Ultralong-Range Energy Transport in a Disordered Organic Semiconductor at Room Temperature Via Coherent Exciton-Polariton Propagation. Adv. Mater. 2020;32(28):2002127. doi: 10.1002/adma.202002127. PubMed DOI
Georgiou K., Jayaprakash R., Othonos A., Lidzey D. G.. Ultralong-Range Polariton-Assisted Energy Transfer in Organic Microcavities. Angew. Chem., Int. Ed. 2021;60:16661–16667. doi: 10.1002/anie.202105442. PubMed DOI PMC
Berghuis A. M., Tichauer R. H., de Jong L., Sokolovskii I., Bai P., Ramezani M., Murai S., Groenhof G., Rivas J. G.. Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays. ACS Photonics. 2022;9:123. doi: 10.1021/acsphotonics.2c00007. PubMed DOI PMC
Pandya R., Ashoka A., Georgiou K., Sung J., Jayaprakash R., Renken S., Gai L., Shen Z., Rao A., Musser A. J.. Tuning the Coherent Propagation of Organic Exciton-Polaritons through Dark State Delocalization. Adv. Sci. 2022;9:2105569. doi: 10.1002/advs.202105569. PubMed DOI PMC
Balasubrahmaniyam M., Simkhovich A., Golombek A., Sandik G., Ankonina G., Ankonina G., Schwartz T.. From enhanced diffusion to ultrafast ballistic motion of hybrid light-matter excitations. Nat. Mater. 2023;22:338–344. doi: 10.1038/s41563-022-01463-3. PubMed DOI
Orgiu E., George J., Hutchison J. A., Devaux E., Dayen J. F., Doudin B., Stellacci F., Genet C., Schachenmayer J., Genes C., Pupillo G., Samori P., Ebbesen T. W.. Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater. 2015;14:1123–1129. doi: 10.1038/nmat4392. PubMed DOI
Krainova N., Grede A. J., Tsokkou D., Banerji N., Giebink N. C.. Polaron photoconductivity in the weak and strong light-matter coupling regime. Phys. Rev. Lett. 2020;124:177401. doi: 10.1103/PhysRevLett.124.177401. PubMed DOI
Nagarajan K., George J., Thomas A., Devaux E., Chervy T., Azzini S., Joseph K., Jouaiti A., Hosseini M. W., Kumar A., Genet C., Bartolo N., Ciuti C., Ebbesen T. W.. Conductivity and Photoconductivity of a p-Type Organic Semiconductor under Ultrastrong Coupling. ACS Nano. 2020;14:10219–10225. doi: 10.1021/acsnano.0c03496. PubMed DOI
Bhatt P., Kaur K., George J.. Enhanced Charge Transport in Two-Dimensional Materials through Light-Matter Strong Coupling. ACS Nano. 2021;15:13616–13622. doi: 10.1021/acsnano.1c04544. PubMed DOI
Kéna-Cohen S., Forrest S. R.. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photonics. 2010;4:371–375. doi: 10.1038/nphoton.2010.86. DOI
Akselrod G. M., Young E. R., Bradley M. S., Bulović V.. Lasing through a strongly-coupled mode by intra-cavity pumping. Opt. Express. 2013;21:12122–12128. doi: 10.1364/OE.21.012122. PubMed DOI
Hakala T. K., Moilanen A. J., Väkeväinen A. I., Guo R., Martikainen J.-P., Daskalakis K. S., Rekola H. T., Julku A., Törmä P.. Bose–Einstein condensation in a plasmonic lattice. Nat. Phys. 2018;14:739. doi: 10.1038/s41567-018-0109-9. DOI
Hutchison J. A., Schwartz T., Genet C., Devaux E., Ebbesen T. W.. Modifying Chemical Landscapes by Coupling to Vacuum Fields. Angew. Chem., Int. Ed. 2012;51:1592–1596. doi: 10.1002/anie.201107033. PubMed DOI
Munkhbat B., Wersäll M., Baranov D. G., Antosiewicz T. J., Shegai T.. Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas. Sci. Adv. 2018;4:eaas9552. doi: 10.1126/sciadv.aas9552. PubMed DOI PMC
Stranius K., Herzog M., Börjesson K.. Selective manipulation of electronically excited states through strong light-matter interactions. Nat. Commun. 2018;9:2273. doi: 10.1038/s41467-018-04736-1. PubMed DOI PMC
Mony J., Climent C., Petersen A. U., Moth-Poulsen K., Feist J., Börjesson K.. Photoisomerization Efficiency of a Solar Thermal Fuel in the Strong Coupling Regime. Adv. Funct. Mater. 2021;31:2010737. doi: 10.1002/adfm.202010737. DOI
Yu Y., Mallick S., Wang M., Börjesson K.. Barrier-free reverse-intersystem crossing in organic molecules by strong light-matter coupling. Nat. Commun. 2021;12:3255. doi: 10.1038/s41467-021-23481-6. PubMed DOI PMC
Vahala K. J.. Optical Microcavities. Nature. 2003;424:839–846. doi: 10.1038/nature01939. PubMed DOI
Agranovich V., Benisty H., Weisbuch C.. Organic and Inorganic Quantum Wells in a Microcavity: Frenkel-Wannier-Mott Excitons Hybridization and Energy Transformation. Solid State Commun. 1997;102:631–636. doi: 10.1016/S0038-1098(96)00433-4. DOI
Lidzey D. G., Bradley D. D. C., Skolnick M. S., Virgili T., Walker S., Whittaker D. M.. Strong exciton-photon coupling in an organic semiconductor microcavity. Nature. 1998;395:53–55. doi: 10.1038/25692. DOI
Törmä P., Barnes W. L.. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 2015;78:013901. doi: 10.1088/0034-4885/78/1/013901. PubMed DOI
Rider M. S., Barnes W. L.. Something from nothing: linking molecules with virtual light. Contemp. Phys. 2021;62:217–232. doi: 10.1080/00107514.2022.2101749. DOI
Mandal A., Taylor M., Weight B., Koessler E., Li X., Huo P.. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem. Rev. 2023;123:9786–9879. doi: 10.1021/acs.chemrev.2c00855. PubMed DOI PMC
Gonzalez-Ballestero C., Feist J., Gonzalo Badía E., Moreno E., Garcia-Vidal F. J.. Uncoupled Dark States Can Inherit Polaritonic Properties. Phys. Rev. Lett. 2016;117:156402. doi: 10.1103/PhysRevLett.117.156402. PubMed DOI
DelPo C. A., Kudisch B., Park K. H., Khan S.-U.-Z., Fassioli F., Fausti D., Rand B. P., Scholes G. D.. Polariton Transitions in Femtosecond Transient Absorption Studies of Ultrastrong Light-Molecule Coupling. J. Phys. Chem. Lett. 2020;11:2667–2674. doi: 10.1021/acs.jpclett.0c00247. PubMed DOI PMC
Du M., Yuen-Zhou J.. Catalysis by Dark States in Vibropolaritonic Chemistry. Phys. Rev. Lett. 2022;128:096001. doi: 10.1103/PhysRevLett.128.096001. PubMed DOI
Xiang B., Ribeiro R. F., Chen L., Wang J., Du M., Yuen-Zhou J., Xiong W.. State-Selective Polariton to Dark State Relaxation Dynamics. J. Phys. Chem. A. 2019;123:5918–5927. doi: 10.1021/acs.jpca.9b04601. PubMed DOI
Campos-Gonzalez-Angulo J. A., Ribeiro R. F., Yuen-Zhou J.. Resonant catalysis of thermally activated chemical reactions with vibrational polaritons. Nat. Commun. 2019;10:4685. doi: 10.1038/s41467-019-12636-1. PubMed DOI PMC
Vurgaftman I., Simpkins B. S., Dunkelberger A. D., Owrutsky J. C.. Negligible Effect of Vibrational Polaritons on Chemical Reaction Rates via the Density of States Pathway. J. Phys. Chem. Lett. 2020;11:3557–3562. doi: 10.1021/acs.jpclett.0c00841. PubMed DOI
Renken S., Pandya R., Georgiou K., Jayaprakash R., Gai L., Shen Z., Lidzey D. G., Rao A., Musser A. J.. Untargeted effects in organic exciton-polariton transient spectroscopy: A cautionary tale. J. Chem. Phys. 2021;155:154701. doi: 10.1063/5.0063173. PubMed DOI
Sidler D., Schäfer C., Ruggenthaler M., Rubio A.. Polaritonic Chemistry: Collective Strong Coupling Implies Strong Local Modification of Chemical Properties. J. Phys. Chem. Lett. 2021;12:508–516. doi: 10.1021/acs.jpclett.0c03436. PubMed DOI PMC
Schütz S., Schachenmayer J., Hagenmüller D., Brennen G. K., Volz T., Sandoghdar V., Ebbesen T. W., Genes C., Pupillo G.. Ensemble-Induced Strong Light-Matter Coupling of a Single Quantum Emitter. Phys. Rev. Lett. 2020;124:113602. doi: 10.1103/PhysRevLett.124.113602. PubMed DOI
Dicke R. H.. Coherence in Spontaneous Radiation Processes. Phys. Rev. 1954;93:99–110. doi: 10.1103/PhysRev.93.99. DOI
Jaynes E., Cummings F.. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE. 1963;51:89–109. doi: 10.1109/PROC.1963.1664. DOI
Tavis M., Cummings F. W.. Exact Solution for an N-Molecule–Radiation-Field Hamiltonian. Phys. Rev. 1968;170:379–384. doi: 10.1103/PhysRev.170.379. DOI
Feist J., Fernández-Domínguez A. I., García-Vidal F. J.. Macroscopic QED for quantum nanophotonics: emitter-centered modes as a minimal basis for multiemitter problems. Nanophotonics. 2020;10:477–489. doi: 10.1515/nanoph-2020-0451. DOI
Fregoni J., Garcia-Vidal F. J., Feist J.. Theoretical Challenges in Polaritonic Chemistry. ACS Photonics. 2022;9:1096–1107. doi: 10.1021/acsphotonics.1c01749. PubMed DOI PMC
Scheel S., Buhmann S.. Macroscopic quantum electrodynamics - concepts and applications. Acta Phys. Slovaca. 2008;58(5):675–809. doi: 10.2478/v10155-010-0092-x. DOI
Dispersion Forces I; Buhmann, S. Y. , Ed.; Springer Tracts in Modern Physics; Springer: Berlin Heidelberg, 2012; Vol. 247.
Sidler D., Ruggenthaler M., Schäfer C., Ronca E., Rubio A.. A perspective on ab initio modeling of polaritonic chemistry: The role of non-equilibrium effects and quantum collectivity. J. Chem. Phys. 2022;156:230901. doi: 10.1063/5.0094956. PubMed DOI
Yuen-Zhou J., Xiong W., Shegai T.. Polariton chemistry: Molecules in cavities and plasmonic media. J. Chem. Phys. 2022;156:030401. doi: 10.1063/5.0080134. PubMed DOI
Herrera F., Spano F. C.. Theory of Nanoscale Organic Cavities: The Essential Role of Vibration-Photon Dressed States. ACS Photonics. 2018;5:65–79. doi: 10.1021/acsphotonics.7b00728. DOI
Barnes B., García Vidal F., Aizpurua J.. Special Issue on Strong Coupling of Molecules to Cavities. ACS Photonics. 2018;5:1. doi: 10.1021/acsphotonics.7b01609. DOI
Foley J. J., McTague J. F., DePrince A. E.. Ab initio methods for polariton chemistry. Chem. Phys. Rev. 2023;4:041301. doi: 10.1063/5.0167243. DOI
Ruggenthaler M., Sidler D., Rubio A.. Understanding Polaritonic Chemistry from Ab Initio Quantum Electrodynamics. Chem. Rev. 2023;123:11191–11229. doi: 10.1021/acs.chemrev.2c00788. PubMed DOI PMC
Haugland T. S., Ronca E., Kjønstad E. F., Rubio A., Koch H.. Coupled Cluster Theory for Molecular Polaritons: Changing Ground and Excited States. Phys. Rev. X. 2020;10:041043. doi: 10.1103/PhysRevX.10.041043. DOI
El Moutaoukal Y., Riso R. R., Castagnola M., Koch H.. Toward Polaritonic Molecular Orbitals for Large Molecular Systems. J. Chem. Theory Comput. 2024;20:8911–8920. doi: 10.1021/acs.jctc.4c00808. PubMed DOI PMC
Riso R. R., Haugland T. S., Ronca E., Koch H.. Molecular orbital theory in cavity QED environments. Nat. Commun. 2022;13:1368. doi: 10.1038/s41467-022-29003-2. PubMed DOI PMC
Li, X. ; Zhang, Y. . First-principles molecular quantum electrodynamics theory at all coupling strengths. 2023; https://arxiv.org/abs/2310.18228.
Ruggenthaler M., Flick J., Pellegrini C., Appel H., Tokatly I. V., Rubio A.. Quantum-electrodynamical density-functional theory: Bridging quantum optics and electronic-structure theory. Phys. Rev. A. 2014;90:012508. doi: 10.1103/PhysRevA.90.012508. DOI
Flick J., Ruggenthaler M., Appel H., Rubio A.. Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proc. Natl. Acad. Sci. U.S.A. 2017;114:3026–3034. doi: 10.1073/pnas.1615509114. PubMed DOI PMC
Flick J., Scäfer C., Ruggenthaler M., Appel H., Rubio A.. Ab initio optimized effective potentials for real molecules in optical cavities: Photon contributions to the molecular ground state. ACS Photonics. 2018;5:992. doi: 10.1021/acsphotonics.7b01279. PubMed DOI PMC
Yang J., Ou Q., Pei Z., Wang H., Weng B., Shuai Z., Mullen K., Shao Y.. Quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. J. Chem. Phys. 2021;155:064107. doi: 10.1063/5.0057542. PubMed DOI PMC
Yang J., Pei Z., Leon E. C., Wickizer C., Weng B., Mao Y., Ou Q., Shao Y.. Cavity quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis. II. Analytic energy gradient. J. Chem. Phys. 2022;156:124104. doi: 10.1063/5.0082386. PubMed DOI
McTague J., Foley J. J. IV. Non-Hermitian cavity quantum electrodynamics-configuration interaction singles approach for polaritonic structure with ab initio molecular Hamiltonians. J. Chem. Phys. 2022;156:154103. doi: 10.1063/5.0091953. PubMed DOI
Vu N., Mejia-Rodriguez D., Bauman N. P., Panyala A., Mutlu E., Govind N., Foley J. J. IV. Cavity quantum electrodynamics complete active space configuration interaction theory. J. Chem. Theory Comput. 2024;20:1214–1227. doi: 10.1021/acs.jctc.3c01207. PubMed DOI PMC
Vu N., Ampoh K., Matousek M., Veis L., Govind N., Foley J. J.. Modeling Strong Light-Matter Coupling in Correlated Systems: State-Averaged Cavity Quantum Electrodynamics Complete Active Space Self-Consistent Field Theory. J. Chem. Theory Comput. 2025;21:8812–8822. doi: 10.1021/acs.jctc.5c00927. PubMed DOI PMC
Alessandro, R. ; Koch, H. ; Ronca, E. . A Complete Active Space Self-Consistent Field (CASSCF) approach for molecules in QED environments. 2025; http://arxiv.org/abs/2503.16417, arXiv:2503.16417 [physics]. PubMed PMC
Mordovina U., Bungey C., Appel H., Knowles P. J., Rubio A., Manby F. R.. Polaritonic coupled-cluster theory. Phys. Rev. Res. 2020;2:023262. doi: 10.1103/PhysRevResearch.2.023262. DOI
DePrince A. E. III. Cavity-modulated ionization potentials and electron affinities from quantum electrodynamics coupled-cluster theory. J. Chem. Phys. 2021;154:094112. doi: 10.1063/5.0038748. PubMed DOI
Weight B. M., Tretiak S., Zhang Y.. Diffusion quantum Monte Carlo approach to the polaritonic ground state. Phys. Rev. A. 2024;109:032804. doi: 10.1103/PhysRevA.109.032804. DOI
Matoušek M., Vu N., Govind N., Foley J. J., Veis L.. Polaritonic chemistry using the density matrix renormalization group method. J. Chem. Theory Comput. 2024;20(21):9424–9434. doi: 10.1021/acs.jctc.4c00986. PubMed DOI PMC
Cui Z.-H., Mandal A., Reichman D. R.. Variational Lang-Firsov Approach Plus Møller-Plesset Perturbation Theory with Applications to Ab Initio Polariton Chemistry. J. Chem. Theory Comput. 2024;20:1143–1156. doi: 10.1021/acs.jctc.3c01166. PubMed DOI
El Moutaoukal Y., Riso R. R., Castagnola M., Ronca E., Koch H.. Strong Coupling Møller-Plesset Perturbation Theory. J. Chem. Theory Comput. 2025;21(8):3981–3992. doi: 10.1021/acs.jctc.5c00055. PubMed DOI PMC
Bauer M., Dreuw A.. Perturbation theoretical approaches to strong light-matter coupling in ground and excited electronic states for the description of molecular polaritons. J. Chem. Phys. 2023;158:124128. doi: 10.1063/5.0142403. PubMed DOI
Cohen-Tannoudji, C. ; Dupont-Roc, J. ; Grynberg, G. . Photons and Atoms; John Wiley & Sons, Ltd, 1997; Chapter 3, pp 169–252.
Tokatly I. V.. Time-Dependent Density Functional Theory for Many-Electron Systems Interacting with Cavity Photons. Phys. Rev. Lett. 2013;110:233001. doi: 10.1103/PhysRevLett.110.233001. PubMed DOI
Ruggenthaler M., Tancogne-Dejean N., Flick J., Appel H., Rubio A.. From a quantum-electrodynamical light-matter description to novel spectroscopies. Nat. Rev. Chem. 2018;2:0118. doi: 10.1038/s41570-018-0118. DOI
Ruggenthaler M., Sidler D., Rubio A.. Understanding polaritonic chemistry from ab initio quantum electrodynamics. Chem. Rev. 2023;123:11191–11229. doi: 10.1021/acs.chemrev.2c00788. PubMed DOI PMC
Welakuh D. M., Rokaj V., Ruggenthaler M., Rubio A.. Nonperturbative mass renormalization effects in nonrelativistic quantum electrodynamics. Phys. Rev. Res. 2025;7:013093. doi: 10.1103/PhysRevResearch.7.013093. DOI
Flick J., Appel H., Ruggenthaler M., Rubio A.. Cavity Born-Oppenheimer Approximation for Correlated Electron-Nuclear-Photon Systems. J. Chem. Theory Comput. 2017;13:1616–1625. doi: 10.1021/acs.jctc.6b01126. PubMed DOI PMC
Angelico S., Haugland T. S., Ronca E., Koch H.. Coupled cluster cavity Born-Oppenheimer approximation for electronic strong coupling. J. Chem. Phys. 2023;159:214112. doi: 10.1063/5.0172764. PubMed DOI
Fiechter M. R., Richardson J. O.. Understanding the cavity Born-Oppenheimer approximation. J. Chem. Phys. 2024;160:184107. doi: 10.1063/5.0197248. PubMed DOI
Bonini J., Ahmadabadi I., Flick J.. Cavity Born-Oppenheimer approximation for molecules and materials via electric field response. J. Chem. Phys. 2024;161:154104. doi: 10.1063/5.0230983. PubMed DOI
Schnappinger T., Sidler D., Ruggenthaler M., Rubio A., Kowalewski M.. Cavity Born-Oppenheimer Hartree-Fock Ansatz: Light-Matter Properties of Strongly Coupled Molecular Ensembles. J. Phys. Chem. Lett. 2023;14:8024–8033. doi: 10.1021/acs.jpclett.3c01842. PubMed DOI PMC
Huang X., Liang W.. Analytical derivative approaches for vibro-polaritonic structures and properties. I. Formalism and implementation. J. Chem. Phys. 2025;162:024115. doi: 10.1063/5.0228891. PubMed DOI
Schnappinger, T. ; Kowalewski, M. . Molecular Polarizability under Vibrational Strong Coupling. 2025; http://arxiv.org/abs/2503.17102, arXiv:2503.17102 [physics]. PubMed PMC
Sidler, D. ; Ruggenthaler, M. ; Rubio, A. . The connection of polaritonic chemistry with the physics of a spin glass. arXiv preprint 2024.
Haugland T. S., Ronca E., Kjønstad E. F., Rubio A., Koch H.. Coupled cluster theory for molecular polaritons: Changing ground and excited states. Phys. Rev. X. 2020;10:041043. doi: 10.1103/PhysRevX.10.041043. DOI
Trapper U., Fehske H., Deeg M., Büttner H.. Electron correlations and quantum lattice vibrations in strongly coupled electron-phonon systems: a variational slave boson approach. Z. Phys. B: Condens. Matter. 1994;93:465–478. doi: 10.1007/BF01314251. DOI
Feinberg D., Ciuchi S., de Pasquale F.. Squeezing Phenomena in Interacting Electron-Phonon Systems. Int. J. Mod. Phys. B. 1990;04:1317–1367. doi: 10.1142/S0217979290000656. DOI
Mazin, I. ; Zhang, Y. . Light-Matter Hybridization and Entanglement from the First-Principles. arXiv preprint 2024, arXiv:2411.15022.
Teale A. M., Helgaker T., Savin A.. et al. DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Phys. Chem. Chem. Phys. 2022;24:28700–28781. doi: 10.1039/D2CP02827A. PubMed DOI PMC
Hohenberg P., Kohn W.. Inhomogeneous Electron Gas. Phys. Rev. 1964;136:B864–B871. doi: 10.1103/PhysRev.136.B864. DOI
Kohn W., Sham L. J.. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133. DOI
Mardirossian N., Head-Gordon M.. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 2017;115:2315–2372. doi: 10.1080/00268976.2017.1333644. DOI
Ruggenthaler, M. Ground-state quantum-electrodynamical density-functional theory. arXiv preprint arXiv:1509.01417 2015..
Penz M., Tellgren E. I., Csirik M. A., Ruggenthaler M., Laestadius A.. The structure of the density-potential mapping. Part II: Including magnetic fields. ACS Phys. Chem. Au. 2023;3:492–511. doi: 10.1021/acsphyschemau.3c00006. PubMed DOI PMC
Dimitrov T., Flick J., Ruggenthaler M., Rubio A.. Exact functionals for correlated electron–photon systems. New J. Phys. 2017;19:113036. doi: 10.1088/1367-2630/aa8f09. DOI
Vu N., McLeod G. M., Hanson K., DePrince A. E. III. Enhanced diastereocontrol via strong light-matter interactions in an optical cavity. J. Phys. Chem. A. 2022;126:9303–9312. doi: 10.1021/acs.jpca.2c07134. PubMed DOI
Pavošević F., Hammes-Schiffer S., Rubio A., Flick J.. Cavity-Modulated Proton Transfer Reactions. J. Am. Chem. Soc. 2022;144:4995–5002. doi: 10.1021/jacs.1c13201. PubMed DOI
Pellegrini C., Flick J., Tokatly I. V., Appel H., Rubio A.. Optimized Effective Potential for Quantum Electrodynamical Time-Dependent Density Functional Theory. Phys. Rev. Lett. 2015;115:093001. doi: 10.1103/PhysRevLett.115.093001. PubMed DOI
Flick J., Schäfer C., Ruggenthaler M., Appel H., Rubio A.. Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State. ACS Photonics. 2018;5:992–1005. doi: 10.1021/acsphotonics.7b01279. PubMed DOI PMC
Kudlis A., Iorsh I., Tokatly I. V.. Dissipation and spontaneous emission in quantum electrodynamical density functional theory based on optimized effective potential: A proof of concept study. Phys. Rev. B. 2022;105:054317. doi: 10.1103/PhysRevB.105.054317. DOI
Flick J., Ruggenthaler M., Appel H., Rubio A.. Kohn-Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space. Proc. Natl. Acad. Sci. U.S.A. 2015;112:15285–15290. doi: 10.1073/pnas.1518224112. PubMed DOI PMC
Flick J.. Simple Exchange-Correlation Energy Functionals for Strongly Coupled Light-Matter Systems Based on the Fluctuation-Dissipation Theorem. Phys. Rev. Lett. 2022;129:143201. doi: 10.1103/PhysRevLett.129.143201. PubMed DOI
Vydrov O. A., van Voorhis T.. Dispersion interactions from a local polarizability model. Phys. Rev. A. 2010;81:062708. doi: 10.1103/PhysRevA.81.062708. DOI
Perdew, J. P. ; Schmidt, K. . Jacob’s ladder of density functional approximations for the exchange–correlation energy. In AIP Conference Proceedings; AIP, 2001; Vol. 577, pp 1–20 10.1063/1.1390175. DOI
Gutle C., Savin A., Krieger J. B., Chen J.. Correlation energy contributions from low-lying states to density functionals based on an electron gas with a gap. Int. J. Quantum Chem. 1999;75(4-5):885–888. doi: 10.1002/(sici)1097-461x(1999)75:4/53.0.co;2-f. DOI
Krieger, J. B. ; Chen, J. ; Iafrate, G. J. ; Savin, A. . Electron correlations and material properties; Gonis, A. ; Kioussis, M. ; Ciftan, M. , Eds.; Springer: Boston, MA, 1999; pp 463–477.
Fabiano E., Trevisanutto P. E., Terentjevs A., Constantin L. A.. Generalized Gradient Approximation Correlation Energy Functionals Based on the Uniform Electron Gas with Gap Model. J. Chem. Theory Comput. 2014;10:2016. doi: 10.1021/ct500073b. PubMed DOI
Constantin L. A., Fabiano E., Śmiga S., Della Salla F.. Jellium-with-gap model applied to semilocal kinetic functionals. Phys. Rev. B. 2017;95:115153. doi: 10.1103/PhysRevB.95.115153. DOI
Mejia-Rodriguez, D. ; Govind, N. . Journal of Physical Chemistry Letters (under review).
Grimme S., Hansen A., Brandenburg J. G., Bannwarth C.. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 2016;116:5105–5154. doi: 10.1021/acs.chemrev.5b00533. PubMed DOI
Tasci C., Cunha L. A., Flick J.. Photon Many-Body Dispersion: Exchange-Correlation Functional for Strongly Coupled Light-Matter Systems. Phys. Rev. Lett. 2025;134:073002. doi: 10.1103/PhysRevLett.134.073002. PubMed DOI
Tkatchenko A., DiStasio R. A. Jr, Car R., Scheffler M.. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 2012;108:236402. doi: 10.1103/PhysRevLett.108.236402. PubMed DOI
Ambrosetti A., Reilly A. M., DiStasio R. A., Tkatchenko A.. Long-range correlation energy calculated from coupled atomic response functions. J. Chem. Phys. 2014;140:18A508. doi: 10.1063/1.4865104. PubMed DOI
Hirshfeld F. L.. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta. 1977;44:129–138. doi: 10.1007/BF00549096. DOI
Weber L., dos Anjos Cunha L., Morales M. A., Rubio A., Zhang S.. Phaseless Auxiliary-Field Quantum Monte Carlo Method for Cavity-QED Matter Systems. J. Chem. Theory Comput. 2025;21:2909–2917. doi: 10.1021/acs.jctc.4c01459. PubMed DOI
Vosko S. H., Wilk L., Nusair M.. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980;58:1200–1211. doi: 10.1139/p80-159. DOI
Perdew J. P., Wang Y.. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI
Ceperley D. M., Alder B. J.. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett. 1980;45:566–569. doi: 10.1103/PhysRevLett.45.566. DOI
Weber, L. ; Morales, M. A. ; Flick, J. ; Zhang, S. ; Rubio, A. . The light-matter correlation energy functional of the cavity-coupled two-dimensional electron gas via quantum Monte Carlo simulations. 2024; http://arxiv.org/abs/2412.19222, arXiv:2412.19222 [cond-mat]. PubMed
Tchenkoue M.-L. M., Penz M., Theophilou I., Ruggenthaler M., Rubio A.. Force balance approach for advanced approximations in density functional theories. J. Chem. Phys. 2019;151:154107. doi: 10.1063/1.5123608. PubMed DOI
Tancogne-Dejean N., Penz M., Ruggenthaler M., Rubio A.. Local-density correlation functional from the force-balance equation. J. Phys. Chem. A. 2025;129:3132–3140. doi: 10.1021/acs.jpca.4c07235. PubMed DOI PMC
Schäfer C., Ruggenthaler M., Rubio A.. Ab initio nonrelativistic quantum electrodynamics: Bridging quantum chemistry and quantum optics from weak to strong coupling. Phys. Rev. A. 2018;98:043801. doi: 10.1103/PhysRevA.98.043801. DOI
Schäfer C., Buchholz F., Penz M., Ruggenthaler M., Rubio A.. Making ab initio QED functional(s): Nonperturbative and photon-free effective frameworks for strong light-matter coupling. Proc. Natl. Acad. Sci. U.S.A. 2021;118:e2110464118. doi: 10.1073/pnas.2110464118. PubMed DOI PMC
Lu I.-T., Ruggenthaler M., Tancogne-Dejean N., Latini S., Penz M., Rubio A.. Electron-photon exchange–correlation approximation for quantum-electrodynamical density-functional theory. Phys. Rev. A. 2024;109:052823. doi: 10.1103/PhysRevA.109.052823. DOI
Flick J., Welakuh D. M., Ruggenthaler M., Appel H., Rubio A.. Light-Matter Response in Nonrelativistic Quantum Electrodynamics. ACS Photonics. 2019;6:2757–2778. doi: 10.1021/acsphotonics.9b00768. PubMed DOI PMC
Welakuh D. M., Flick J., Ruggenthaler M., Appel H., Rubio A.. Frequency-Dependent Sternheimer Linear-Response Formalism for Strongly Coupled Light-Matter Systems. J. Chem. Theory Comput. 2022;18:4354–4365. doi: 10.1021/acs.jctc.2c00076. PubMed DOI PMC
Schäfer, C. Dynamic of single molecules in collective light-matter states from first principles. arXiv preprint arXiv:2204.01602 2022.
Flick J., Narang P.. Cavity-Correlated Electron-Nuclear Dynamics from First Principles. Phys. Rev. Lett. 2018;121:113002. doi: 10.1103/PhysRevLett.121.113002. PubMed DOI
Liebenthal M. D., Vu N., DePrince A. E. I.. Assessing the Effects of Orbital Relaxation and the Coherent-State Transformation in Quantum Electrodynamics Density Functional and Coupled-Cluster Theories. J. Phys. Chem. A. 2023;127:5264–5275. doi: 10.1021/acs.jpca.3c01842. PubMed DOI
ROWE D. J.. Equations-of-Motion Method and the Extended Shell Model. Rev. Mod. Phys. 1968;40:153–166. doi: 10.1103/RevModPhys.40.153. DOI
Olsen J., Jørgensen P., Simons J.. Passing the one-billion limit in full configuration-interaction (FCI) calculations. Chem. Phys. Lett. 1990;169:463–472. doi: 10.1016/0009-2614(90)85633-N. DOI
Vogiatzis K. D., Ma D., Olsen J., Gagliardi L., de Jong W. A.. Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations. J. Chem. Phys. 2017;147:184111. doi: 10.1063/1.4989858. PubMed DOI
Werner H.-J., Meyer W.. A quadratically convergent multiconfiguration-self-consistent field method with simultaneous optimization of orbitals and CI coefficients. J. Chem. Phys. 1980;73:2342–2356. doi: 10.1063/1.440384. DOI
Werner H.-J., Knowles P. J.. A second order multiconfiguration SCF procedure with optimum convergence. J. Chem. Phys. 1985;82:5053–5063. doi: 10.1063/1.448627. DOI
Kreplin D. A., Knowles P. J., Werner H.-J.. Second-order MCSCF optimization revisited. I. Improved algorithms for fast and robust second-order CASSCF convergence. J. Chem. Phys. 2019;150:194106. doi: 10.1063/1.5094644. PubMed DOI
Alessandro R., Castagnola M., Koch H., Ronca E.. A Complete Active Space Self-Consistent Field approach for molecules in QED environments. J. Chem. Theory Comput. 2025;21:6862–6873. doi: 10.1021/acs.jctc.5c00519. PubMed DOI PMC
Bartlett R. J., Musiał M.. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 2007;79:291–352. doi: 10.1103/RevModPhys.79.291. DOI
Pavošević F., Flick J.. Polaritonic Unitary Coupled Cluster for Quantum Computations. J. Phys. Chem. Lett. 2021;12:9100–9107. doi: 10.1021/acs.jpclett.1c02659. PubMed DOI
Stanton J. F., Bartlett R. J.. The Equation of Motion Coupled-Cluster Method. A Systematic Biorthogonal Approach to Molecular Excitation Energies, Transition Probabilities, and Excited State Properties. J. Chem. Phys. 1993;98:7029–7039. doi: 10.1063/1.464746. DOI
Krylov A. I.. Equation-of-Motion Coupled-Cluster Methods for Open-Shell and Electronically Excited Species: The Hitchhiker’s Guide to Fock Space. Annu. Rev. Phys. Chem. 2008;59:433–462. doi: 10.1146/annurev.physchem.59.032607.093602. PubMed DOI
Bartlett R. J.. Coupled-cluster theory and its equation-of-motion extensions. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012;2:126–138. doi: 10.1002/wcms.76. DOI
Pavošević F., Smith R. L., Rubio A.. Computational study on the catalytic control of endo/exo Diels-Alder reactions by cavity quantum vacuum fluctuations. Nat. Commun. 2023;14:2766. doi: 10.1038/s41467-023-38474-w. PubMed DOI PMC
Liebenthal M. D., DePrince A. E. III. The orientation dependence of cavity-modified chemistry. J. Chem. Phys. 2024;161:064109. doi: 10.1063/5.0216993. PubMed DOI
Pavošević F., Smith R. L., Rubio A.. Cavity Click Chemistry: Cavity-Catalyzed Azide-Alkyne Cycloaddition. J. Phys. Chem. A. 2023;127:10184–10188. doi: 10.1021/acs.jpca.3c06285. PubMed DOI
Pavošević F., Rubio Á.. Wavefunction embedding for molecular polaritons. J. Chem. Phys. 2022;157:094101. doi: 10.1063/5.0095552. PubMed DOI
Haugland T. S., Schäfer C., Ronca E., Rubio A., Koch H.. Intermolecular interactions in optical cavities: An ab initio QED study. J. Chem. Phys. 2021;154:094113. doi: 10.1063/5.0039256. PubMed DOI
Philbin J. P., Haugland T. S., Ghosh T. K., Ronca E., Chen M., Narang P., Koch H.. Molecular van der Waals Fluids in Cavity Quantum Electrodynamics. J. Phys. Chem. Lett. 2023;14:8988–8993. doi: 10.1021/acs.jpclett.3c01790. PubMed DOI PMC
Castagnola M., Lexander M. T., Koch H.. Realistic Ab Initio Predictions of Excimer Behavior under Collective Light-Matter Strong Coupling. Physical Review X. 2025;15:021040. doi: 10.1103/PhysRevX.15.021040. DOI
Riso R. R., Grazioli L., Ronca E., Giovannini T., Koch H.. Strong Coupling in Chiral Cavities: Nonperturbative Framework for Enantiomer Discrimination. Phys. Rev. X. 2023;13:031002. doi: 10.1103/PhysRevX.13.031002. DOI
Riso R. R., Ronca E., Koch H.. Strong Coupling to Circularly Polarized Photons: Toward Cavity-Induced Enantioselectivity. J. Phys. Chem. Lett. 2024;15:8838–8844. doi: 10.1021/acs.jpclett.4c01701. PubMed DOI PMC
Flick J., Narang P.. Ab Initio Polaritonic Potential-Energy Surfaces for Excited-State Nanophotonics and Polaritonic Chemistry. J. Chem. Phys. 2020;153:094116. doi: 10.1063/5.0021033. PubMed DOI
Liebenthal M. D., Vu N., DePrince A. E. III. Equation-of-motion cavity quantum electrodynamics coupled-cluster theory for electron attachment. J. Chem. Phys. 2022;156:054105. doi: 10.1063/5.0078795. PubMed DOI
Riso R. R., Haugland T. S., Ronca E., Koch H.. On the characteristic features of ionization in QED environments. J. Chem. Phys. 2022;156:234103. doi: 10.1063/5.0091119. PubMed DOI
Riso R. R., Castagnola M., Ronca E., Koch H.. Chiral Polaritonics: Cavity-Mediated Enantioselective Excitation Condensation. Rep. Prog. Phys. 2025;88:027901. doi: 10.1088/1361-6633/ad9ed9. PubMed DOI
Fregoni J., Haugland T. S., Pipolo S., Giovannini T., Koch H., Corni S.. Strong Coupling between Localized Surface Plasmons and Molecules by Coupled Cluster Theory. Nano Lett. 2021;21:6664–6670. doi: 10.1021/acs.nanolett.1c02162. PubMed DOI PMC
Romanelli M., Riso R. R., Haugland T. S., Ronca E., Corni S., Koch H.. Effective Single-Mode Methodology for Strongly Coupled Multimode Molecular-Plasmon Nanosystems. Nano Lett. 2023;23:4938–4946. doi: 10.1021/acs.nanolett.3c00735. PubMed DOI PMC
Pathak, H. ; Bauman, N. P. ; Panyala, A. ; Kowalski, K. . Quantum Electrodynamics Coupled-Cluster Theory: Exploring Photon-Induced Electron Correlations. arXiv e prints 2024, arXiv:2409.06858.
Mutlu E., Panyala A., Gawande N., Bagusetty A., Brabec J., Nebgen B. P., Biswas D., Kowalski K., Krishnamoorthy S.. et al. TAMM: Tensor algebra for many-body methods. J. Chem. Phys. 2023;159:024801. doi: 10.1063/5.0142433. PubMed DOI
Castagnola M., Riso R. R., Barlini A., Ronca E., Koch H.. Polaritonic Response Theory for Exact and Approximate Wave Functions. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2024;14:e1684. doi: 10.1002/wcms.1684. DOI
Lexander M. T., Angelico S., Kønstad E. F., Koch H.. Analytical Evaluation of Ground State Gradients in Quantum Electrodynamics Coupled Cluster Theory. J. Chem. Theory Comput. 2024;20:8876–8885. doi: 10.1021/acs.jctc.4c00763. PubMed DOI PMC
Vidal M. L., Manby F. R., Knowles P. J.. Polaritonic effects in the vibronic spectrum of molecules in an optical cavity. J. Chem. Phys. 2022;156:204119. doi: 10.1063/5.0089412. PubMed DOI
Datta, S. N. Coupled cluster theory based on quantum electrodynamics: Physical aspects of closed shell and multi-reference open shell methods. arXiv e prints 2024; arXiv:2401.06392.
Thijssen, J. Computational Physics; Cambridge University Press, 2007.
Martin, R. ; Reining, L. ; Ceperley, D. . Interacting Electrons; Cambridge University Press, 2016.
Johansson J., Nation P., Nori F.. QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 2012;183:1760. doi: 10.1016/j.cpc.2012.02.021. DOI
Johansson J., Nation P., Nori F.. QuTiP 2: A Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 2013;184:1234. doi: 10.1016/j.cpc.2012.11.019. DOI
Micca Longo G., Coppola C., Giordano D., Longo S.. The unbiased diffusion Monte Carlo: a versatile tool for two-electron systems confined in different geometries. Eur. Phys. J. D. 2021;75:83. doi: 10.1140/epjd/s10053-021-00095-7. DOI
Umrigar C. J., Nightingale M. P., Runge K. J.. A diffusion Monte Carlo algorithm with very small time-step errors. J. Chem. Phys. 1993;99:2865–2890. doi: 10.1063/1.465195. DOI
Assaraf R., Caffarel M., Khelif A.. Diffusion Monte Carlo methods with a fixed number of walkers. Phys. Rev. E. 2000;61:4566. doi: 10.1103/PhysRevE.61.4566. PubMed DOI
Trotter H. F.. On the Product of Semi-Groups of Operators. Proc. Amer. Math. Soc. 1959;10:545–551. doi: 10.1090/S0002-9939-1959-0108732-6. DOI
Suzuki M.. Generalized Trotter’s Formula and systematic approximants of Exponential Operators and Inner Derivations with Applications to Many-Body Problems. Commun. Math. Phys. 1976;51:183–190. doi: 10.1007/BF01609348. DOI
Needs R. J., Towler M. D., Drummond N. D., López Ríos P.. Continuum variational and diffusion quantum Monte Carlo calculations. J. Phys.: Condens. Matter. 2010;22:023201. doi: 10.1088/0953-8984/22/2/023201. PubMed DOI
Kim J.. et al. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids. J. Phys.: Condens. Matter. 2018;30:195901. doi: 10.1088/1361-648X/aab9c3. PubMed DOI
Mitas L.. Structure of Fermion Nodes and Nodal Cells. Phys. Rev. Lett. 2006;96:240402. doi: 10.1103/PhysRevLett.96.240402. PubMed DOI
Foulkes W. M. C., Mitas L., Needs R. J., Rajagopal G.. Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 2001;73:33–83. doi: 10.1103/RevModPhys.73.33. DOI
Weight, B. M. ; Zhang, Y. . Auxiliary Field Quantum Monte Carlo for Electron-Photon Correlation. arXiv Preprint, arXiv:2025 2025.
Hubbard J.. Calculation of Partition Functions. Phys. Rev. Lett. 1959;3:77–78. doi: 10.1103/PhysRevLett.3.77. DOI
Shi H., Zhang S.. Some recent developments in auxiliary-field quantum Monte Carlo for real materials. J. Chem. Phys. 2021;154:024107. doi: 10.1063/5.0031024. PubMed DOI
Mallory J. D., DePrince A. E.. Reduced-density-matrix-based ab initio cavity quantum electrodynamics. Phys. Rev. A. 2022;106:053710. doi: 10.1103/PhysRevA.106.053710. DOI
Chan G. K.-L., Sharma S.. The Density Matrix Renormalization Group in Quantum Chemistry. Annu. Rev. Phys. Chem. 2011;62:465–481. doi: 10.1146/annurev-physchem-032210-103338. PubMed DOI
Szalay S., Pfeffer M., Murg V., Barcza G., Verstraete F., Schneider R., Legeza Ö.. Tensor product methods and entanglement optimization for ab initio quantum chemistry. Int. J. Quantum Chem. 2015;115:1342–1391. doi: 10.1002/qua.24898. DOI
Baiardi A., Reiher M.. The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. J. Chem. Phys. 2020;152:040903. doi: 10.1063/1.5129672. PubMed DOI
Matoušek M., Vu N., Govind N., Foley J. J. I., Veis L.. Polaritonic Chemistry Using the Density Matrix Renormalization Group Method. J. Chem. Theory Comput. 2024;20:9424–9434. doi: 10.1021/acs.jctc.4c00986. PubMed DOI PMC
Brabec J., Brandejs J., Kowalski K., Xantheas S., Legeza O., Veis L.. Massively parallel quantum chemical density matrix renormalization group method. J. Comput. Chem. 2021;42:534–544. doi: 10.1002/jcc.26476. PubMed DOI
Legeza Ö., Sólyom J.. Optimizing the density-matrix renormalization group method using quantum information entropy. Phys. Rev. B. 2003;68:195116. doi: 10.1103/PhysRevB.68.195116. DOI
Brandejs J., Veis L., Szalay S., Barcza G., Pittner J., Legeza Ö.. Quantum information-based analysis of electron-deficient bonds. J. Chem. Phys. 2019;150:204117. doi: 10.1063/1.5093497. PubMed DOI
Knecht S., Legeza Ö., Reiher M.. Communication: Four-component density matrix renormalization group. J. Chem. Phys. 2014;140:041101. doi: 10.1063/1.4862495. PubMed DOI
Battaglia S., Keller S., Knecht S.. Efficient Relativistic Density-Matrix Renormalization Group Implementation in a Matrix-Product Formulation. J. Chem. Theory Comput. 2018;14:2353–2369. doi: 10.1021/acs.jctc.7b01065. PubMed DOI
Schäfer C., Ruggenthaler M., Rubio A.. Ab Initio Nonrelativistic Quantum Electrodynamics: Bridging Quantum Chemistry and Quantum Optics from Weak to Strong Coupling. Phys. Rev. A. 2018;98:043801. doi: 10.1103/PhysRevA.98.043801. DOI
Villaseco Arribas E., Agostini F., Maitra N. T.. Exact Factorization Adventures: A Promising Approach for Non-Bound States. Molecules. 2022;27:4002. doi: 10.3390/molecules27134002. PubMed DOI PMC
Muolo A., Baiardi A., Feldmann R., Reiher M.. Nuclear-electronic all-particle density matrix renormalization group. J. Chem. Phys. 2020;152:204103. doi: 10.1063/5.0007166. PubMed DOI
Feldmann R., Muolo A., Baiardi A., Reiher M.. Quantum Proton Effects from Density Matrix Renormalization Group Calculations. J. Chem. Theory Comput. 2022;18:234–250. doi: 10.1021/acs.jctc.1c00913. PubMed DOI
Freitag L., Knecht S., Angeli C., Reiher M.. Multireference Perturbation Theory with Cholesky Decomposition for the Density Matrix Renormalization Group. J. Chem. Theory Comput. 2017;13:451–459. doi: 10.1021/acs.jctc.6b00778. PubMed DOI PMC
Sharma P., Bernales V., Knecht S., Truhlar D. G., Gagliardi L.. Density matrix renormalization group pair-density functional theory (DMRG-PDFT): singlet-triplet gaps in polyacenes and polyacetylenes. Chem. Sci. 2019;10:1716–1723. doi: 10.1039/C8SC03569E. PubMed DOI PMC
Beran P., Matoušek M., Hapka M., Pernal K., Veis L.. Density Matrix Renormalization Group with Dynamical Correlation via Adiabatic Connection. J. Chem. Theory Comput. 2021;17:7575–7585. doi: 10.1021/acs.jctc.1c00896. PubMed DOI
Pernal K.. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions. Phys. Rev. Lett. 2018;120:013001. doi: 10.1103/PhysRevLett.120.013001. PubMed DOI
Stein C. J., von Burg V., Reiher M.. The Delicate Balance of Static and Dynamic Electron Correlation. J. Chem. Theory Comput. 2016;12:3764–3773. doi: 10.1021/acs.jctc.6b00528. PubMed DOI
Hu D., Huo P.. Ab Initio Molecular Cavity Quantum Electrodynamics Simulations Using Machine Learning Models. J. Chem. Theory Comput. 2023;19:2353–2368. doi: 10.1021/acs.jctc.3c00137. PubMed DOI PMC
Mandal A., Taylor M. A., Weight B. M., Koessler E. R., Li X., Huo P.. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem. Rev. 2023;123:9786–9879. doi: 10.1021/acs.chemrev.2c00855. PubMed DOI PMC
Manderna R., Vu N., Foley J. J. IV. Comparing parameterized and self-consistent approaches to ab initio cavity quantum electrodynamics for electronic strong coupling. J. Chem. Phys. 2024;161:174105. doi: 10.1063/5.0230565. PubMed DOI
Weight B. M., Krauss T. D., Huo P.. Investigating molecular exciton polaritons using ab initio cavity quantum electrodynamics. J. Phys. Chem. Lett. 2023;14:5901–5913. doi: 10.1021/acs.jpclett.3c01294. PubMed DOI PMC
Vu N., Mejia-Rodriguez D., Bauman N. P., Panyala A., Mutlu E., Govind N., Foley J. J. I.. Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory. J. Chem. Theory Comput. 2024;20:1214–1227. doi: 10.1021/acs.jctc.3c01207. PubMed DOI PMC
Schnappinger T., Kowalewski M.. Do Molecular Geometries Change Under Vibrational Strong Coupling? J. Phys. Chem. Lett. 2024;15:7700–7707. doi: 10.1021/acs.jpclett.4c01810. PubMed DOI PMC
Barlini, A. ; Bianchi, A. ; Melka-Trabski, J. H. ; Bloino, J. ; Koch, H. . Cavity Field-Driven Symmetry Breaking and Modulation of Vibrational Properties: Insights from the Analytical QED-HF Hessian. 2025, arXiv:2504.20707 [physics]. PubMed PMC
Malave J., Ahrens A., Pitagora D., Covington C., Varga K.. Real-space, real-time approach to quantum-electrodynamical time-dependent density functional theory. J. Chem. Phys. 2022;157:194106. doi: 10.1063/5.0123909. PubMed DOI
Jestädt R., Ruggenthaler M., Oliveira M. J., Rubio A., Appel H.. Light-matter interactions within the Ehrenfest-Maxwell-Pauli-Kohn-Sham framework: fundamentals, implementation, and nano-optical applications. Adv. Phys. 2019;68:225–333. doi: 10.1080/00018732.2019.1695875. DOI
Bonafé F., Tuovinen R., Ruggenthaler M., Rubio A.. Quantum electrodynamics in real space and real time beyond the dipole approximation. Phys. Rev. B. 2025;111:085114
Weidman J. D., Dadgar M. S., Stewart Z. J., Peyton B. G., Ulusoy I. S., Wilson A. K.. Cavity-Modified Molecular Dipole Switching Dynamics. J. Chem. Phys. 2024;160:094111. doi: 10.1063/5.0188471. PubMed DOI
Peyton B. G., Weidman J. D., Wilson A. K.. Light-Induced Electron Dynamics of Molecules in Cavities: Comparison of Model Hamiltonians. J. Opt. Soc. Am. B. 2024;41:C74–C81. doi: 10.1364/JOSAB.523931. DOI
Peng W.-T., Fales B. S., Levine B. G.. Simulating Electron Dynamics of Complex Molecules with Time-Dependent Complete Active Space Configuration Interaction. J. Chem. Theory Comput. 2018;14:4129–4138. doi: 10.1021/acs.jctc.8b00381. PubMed DOI
Peyton B. G., Stewart Z. J., Weidman J. D., Wilson A. K.. Tailoring Light-Induced Charge Transfer and Intersystem Crossing in FeCO Using Time-Dependent Spin–Orbit Configuration Interaction. J. Chem. Phys. 2023;159:204108. doi: 10.1063/5.0173529. PubMed DOI
Manz, J. ; Wöste, L. . Femtosecond chemistry; VCH: Weinheim; New York; Basel; Cambridge; Tokyo, 1995.
Castagnola M., Lexander M. T., Ronca E., Koch H.. Strong coupling electron–photon dynamics: A real-time investigation of energy redistribution in molecular polaritons. Phys. Rev. Res. 2024;6:033283. doi: 10.1103/PhysRevResearch.6.033283. DOI
Folkestad S. D., Kjønstad E. F., Myhre R. H.. et al. eT 1.0: An open source electronic structure program with emphasis on coupled cluster and multilevel methods. J. Chem. Phys. 2020;152:184103. doi: 10.1063/5.0004713. PubMed DOI
Huber C., Klamroth T.. Explicitly time-dependent coupled cluster singles doubles calculations of laser-driven many-electron dynamics. J. Chem. Phys. 2011;134:54113. doi: 10.1063/1.3530807. PubMed DOI
Kvaal S.. Ab initio quantum dynamics using coupled-cluster. J. Chem. Phys. 2012;136:194109. doi: 10.1063/1.4718427. PubMed DOI
Nascimento D. R., Deprince A. E.. A general time-domain formulation of equation-of-motion coupled-cluster theory for linear spectroscopy. J. Chem. Phys. 2019;151:160901. doi: 10.1063/1.5125494. PubMed DOI
Pedersen T. B., Kvaal S.. Symplectic integration and physical interpretation of time-dependent coupled-cluster theory. J. Chem. Phys. 2019;150:144106. doi: 10.1063/1.5085390. PubMed DOI
Park Y. C., Perera A., Bartlett R. J.. Equation of motion coupled-cluster for core excitation spectra: Two complementary approaches. J. Chem. Phys. 2019;151:164117. doi: 10.1063/1.5117841. PubMed DOI
Skeidsvoll A. S., Balbi A., Koch H.. Time-dependent coupled-cluster theory for ultrafast transient-absorption spectroscopy. Phys. Rev. A. 2020;102:023115. doi: 10.1103/PhysRevA.102.023115. DOI
Wang Z., Peyton B. G., Crawford T. D.. Accelerating Real-Time Coupled Cluster Methods with Single-Precision Arithmetic and Adaptive Numerical Integration. J. Chem. Theory Comput. 2022;18:5479–5491. doi: 10.1021/acs.jctc.2c00490. PubMed DOI
Ofstad B. S., Aurbakken E., Schøyen O. S., Kristiansen H. E., Kvaal S., Pedersen T. B.. Time-dependent coupled-cluster theory. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2023;13(5):e1666. doi: 10.1002/wcms.1666. DOI
Butcher J. C.. A history of Runge-Kutta methods. Appl. Numer. Math. 1996;20:247–260. doi: 10.1016/0168-9274(95)00108-5. DOI
Kowalewski M., Bennett K., Mukamel S.. Cavity Femtochemistry: Manipulating Nonadiabatic Dynamics at Avoided Crossings. J. Phys. Chem. Lett. 2016;7:2050–2054. doi: 10.1021/acs.jpclett.6b00864. PubMed DOI
Davidsson E., Kowalewski M.. Simulating photodissociation reactions in bad cavities with the Lindblad equation. J. Chem. Phys. 2020;153:234304. doi: 10.1063/5.0033773. PubMed DOI PMC
Vendrell O.. Coherent dynamics in cavity femtochemistry: Application of the multi-configuration time-dependent Hartree method. Chem. Phys. 2018;509:55–65. doi: 10.1016/j.chemphys.2018.02.008. DOI
Vendrell O.. Collective Jahn-Teller Interactions through Light-Matter Coupling in a Cavity. Phys. Rev. Lett. 2018;121:253001. doi: 10.1103/PhysRevLett.121.253001. PubMed DOI
Ulusoy I. S., Vendrell O.. Dynamics and spectroscopy of molecular ensembles in a lossy microcavity. J. Chem. Phys. 2020;153:044108. doi: 10.1063/5.0011556. PubMed DOI
Lacombe L., Hoffmann N. M., Maitra N. T.. Exact Potential Energy Surface for Molecules in Cavities. Phys. Rev. Lett. 2019;123:083201. doi: 10.1103/PhysRevLett.123.083201. PubMed DOI
Sangiogo Gil E., Lauvergnat D., Agostini F.. Exact factorization of the photon-electron-nuclear wavefunction: Formulation and coupled-trajectory dynamics. J. Chem. Phys. 2024;161:084112. doi: 10.1063/5.0224779. PubMed DOI
Galego J., Garcia-Vidal F. J., Feist J.. Cavity-Induced Modifications of Molecular Structure in the Strong-Coupling Regime. Phys. Rev. X. 2015;5:041022. doi: 10.1103/PhysRevX.5.041022. DOI
Galego J., Garcia-Vidal F. J., Feist J.. Suppressing photochemical reactions with quantized light fields. Nat. Commun. 2016;7:13841. doi: 10.1038/ncomms13841. PubMed DOI PMC
Sánchez-Barquilla M., Silva R. E. F., Feist J.. Cumulant expansion for the treatment of light-matter interactions in arbitrary material structures. J. Chem. Phys. 2020;152:034108. doi: 10.1063/1.5138937. PubMed DOI
del Pino J., Schröder F. A. Y. N., Chin A. W., Feist J., Garcia-Vidal F. J.. Tensor Network Simulation of Non-Markovian Dynamics in Organic Polaritons. Phys. Rev. Lett. 2018;121:227401. doi: 10.1103/PhysRevLett.121.227401. PubMed DOI
Franke S., Hughes S., Dezfouli M. K., Kristensen P. T., Busch K., Knorr A., Richter M.. Quantization of Quasinormal Modes for Open Cavities and Plasmonic Cavity Quantum Electrodynamics. Phys. Rev. Lett. 2019;122:213901. doi: 10.1103/PhysRevLett.122.213901. PubMed DOI
Abedi A., Maitra N. T., Gross E. K. U.. Exact Factorization of the Time-Dependent Electron-Nuclear Wave Function. Phys. Rev. Lett. 2010;105:123002. doi: 10.1103/PhysRevLett.105.123002. PubMed DOI
Abedi A., Maitra N. T., Gross E. K. U.. Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction. J. Chem. Phys. 2012;137:22A530. doi: 10.1063/1.4745836. PubMed DOI
Abedi A., Khosravi E., Tokatly I. V.. Shedding light on correlated electron–photon states using the exact factorization. Eur. Phys. J. B. 2018;91:194. doi: 10.1140/epjb/e2018-90243-1. DOI
Hoffmann N. M., Appel H., Rubio A., Maitra N. T.. Light-matter interactions via the exact factorization approach. Eur. Phys. J. B. 2018;91:180. doi: 10.1140/epjb/e2018-90177-6. DOI
Luk H.-L., Feist J., Toppari J. J., Groenhof G.. Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry. J. Chem. Theory Comput. 2017;13:4324–4335. doi: 10.1021/acs.jctc.7b00388. PubMed DOI
Fregoni J., Granucci G., Coccia E., Persico M., Corni S.. Manipulating azobenzene photoisomerization through strong light-molecule coupling. Nat. Commun. 2018;9:4688. doi: 10.1038/s41467-018-06971-y. PubMed DOI PMC
Sokolovskii I., Groenhof G.. Non-Hermitian Molecular Dynamics Simulations of Exciton-Polaritons in Lossy Cavities. J. Chem. Phys. 2024;160:092501. doi: 10.1063/5.0188613. PubMed DOI
Cui B., Huo P.. Quantum Dynamics of Molecules in Optical Cavities: A Surface Hopping Perspective. J. Chem. Phys. 2021;155:244109.
Horak J., Sidler D., Schnappinger T., Huang W.-M., Ruggenthaler M., Rubio A.. Analytic model reveals local molecular polarizability changes induced by collective strong coupling in optical cavities. Phys. Rev. Res. 2025;7:013242. doi: 10.1103/PhysRevResearch.7.013242. DOI
Xu D., Mandal A., Baxter J. M., Cheng S.-W., Lee I., Su H., Liu S., Reichman D. R., Delor M.. Ultrafast imaging of coherent polariton propagation and interactions. Nat. Commun. 2023;14:3881. PubMed PMC
Tichauer R. H., Feist J., Groenhof G.. Multi-scale dynamics simulations of molecular polaritons: the effect of multiple cavity modes on polariton relaxation. J. Chem. Phys. 2021;154:104112. doi: 10.1063/5.0037868. PubMed DOI
Groenhof G., Toppari J. J.. Coherent Light Harvesting through Strong Coupling to Confined Light. J. Phys. Chem. Lett. 2018;9:4848–4851. doi: 10.1021/acs.jpclett.8b02032. PubMed DOI PMC
Sokolovskii I., Tichauer R. H., Dmitry Morozov J. F., Feist J., Groenhof G.. Multi-scale molecular dynamics simulations of enhanced energy transfer in organic molecules under strong coupling. Nat. Commun. 2023;14:6613. doi: 10.1038/s41467-023-42067-y. PubMed DOI PMC
Tichauer R. H., Sokolovskii I., Groenhof G.. Tuning the Coherent Propagation of Organic Exciton-Polaritons through the Cavity Q-factor. Adv. Sci. 2023;10:2302650. doi: 10.1002/advs.202302650. PubMed DOI PMC
Sokolovskii I., Luo Y., Groenhof G.. Disentangling Enhanced Diffusion and Ballistic Motion of Excitons Coupled to Bloch Surface Waves with Molecular Dynamics Simulations. J. Phys. Chem. Lett. 2025;16:6719–6727. doi: 10.1021/acs.jpclett.5c01391. PubMed DOI
Groenhof G., Climent C., Feist J., Morozov D., Toppari J. J.. Tracking Polariton Relaxation with Multiscale Molecular Dynamics Simulations. J. Phys. Chem. Lett. 2019;10:5476–5483. doi: 10.1021/acs.jpclett.9b02192. PubMed DOI PMC
Tichauer R. H., Morozov D., Sokolovskii I., Toppari J. J., Groenhof G.. Identifying Vibrations that Control Non-Adiabatic Relaxation of Polaritons in Strongly Coupled Molecule-Cavity Systems. J. Phys. Chem. Lett. 2022;13:6259–6267. doi: 10.1021/acs.jpclett.2c00826. PubMed DOI PMC
Sokolovskii I., Morozov D., Groenhof G.. One molecule to couple them all: Toward realistic numbers of molecules in multiscale molecular dynamics simulations of exciton-polaritons. J. Chem. Phys. 2024;161:134106. doi: 10.1063/5.0227515. PubMed DOI
Hoffmann N. M., Schäfer C., Rubio A., Kelly A., Appel H.. Capturing vacuum fluctuations and photon correlations in cavity quantum electrodynamics with multitrajectory Ehrenfest dynamics. Phys. Rev. A. 2019;99:063819. doi: 10.1103/PhysRevA.99.063819. DOI
Hoffmann N. M., Schäfer C., Säkkinen N., Rubio A., Appel H., Kelly A.. Benchmarking semiclassical and perturbative methods for real-time simulations of cavity-bound emission and interference. J. Chem. Phys. 2019;151:244113. doi: 10.1063/1.5128076. PubMed DOI
Ehrenfest P.. Remark on the Approximate Validity of Classical Mechanics within Quantum Mechanics. J. Phys. 1927;45:445–457. doi: 10.1007/bf01329203. DOI
McLachlan A. D.. A Variational Solution of the Time-Dependent Schrödinger Equation. Mol. Phys. 1964;8:39–44. doi: 10.1080/00268976400100041. DOI
Hoffmann N. M., Lacombe L., Rubio A., Maitra N. T.. Effect of many modes on self-polarization and photochemical suppression in cavities. J. Chem. Phys. 2020;153:104103. doi: 10.1063/5.0012723. PubMed DOI
Hsieh M.-H., Krotz A., Tempelaar R.. A mean-field treatment of vacuum fluctuations in strong light-matter coupling. J. Phys. Chem. Lett. 2023;14:1253–1258. doi: 10.1021/acs.jpclett.2c03724. PubMed DOI
Rosenzweig B., Hoffmann N. M., Lacombe L., Maitra N. T.. Analysis of the classical trajectory treatment of photon dynamics for polaritonic phenomena. J. Chem. Phys. 2022;156:054101. doi: 10.1063/5.0079379. PubMed DOI
Chen H.-T., Li T. E., Sukharev M., Nitzan A., Subotnik J. E.. Ehrenfest+R dynamics. I. A mixed quantum-classical electrodynamics simulation of spontaneous emission. J. Chem. Phys. 2019;150:044102. doi: 10.1063/1.5057365. PubMed DOI
Li T. E., Subotnik J. E., Nitzan A.. Cavity molecular dynamics simulations of liquid water under vibrational ultrastrong coupling. Proc. Natl. Acad. Sci. U.S.A. 2020;117:18324–18331. doi: 10.1073/pnas.2009272117. PubMed DOI PMC
Li T. E., Chen H.-T., Nitzan A., Subotnik J. E.. Quasiclassical modeling of cavity quantum electrodynamics. Phys. Rev. A. 2020;101:033831. doi: 10.1103/PhysRevA.101.033831. DOI
Li C., Requist R., Gross E. K. U.. Energy, Momentum, and Angular Momentum Transfer between Electrons and Nuclei. Phys. Rev. Lett. 2022;128:113001. doi: 10.1103/PhysRevLett.128.113001. PubMed DOI
Arribas E. V., Maitra N. T.. Electronic Coherences in Molecules: The Projected Nuclear Quantum Momentum as a Hidden Agent. Phys. Rev. Lett. 2024;133:233201. doi: 10.1103/PhysRevLett.133.233201. PubMed DOI
Min S. K., Agostini F., Gross E. K. U.. Coupled-Trajectory Quantum-Classical Approach to Electronic Decoherence in Nonadiabatic Processes. Phys. Rev. Lett. 2015;115:073001. doi: 10.1103/PhysRevLett.115.073001. PubMed DOI
Agostini F., Min S. K., Abedi A., Gross E. K. U.. Quantum-Classical Nonadiabatic Dynamics: Coupled- vs Independent-Trajectory Methods. J. Chem. Theory Comput. 2016;12:2127–2143. doi: 10.1021/acs.jctc.5b01180. PubMed DOI
Ha J.-K., Lee I. S., Min S. K.. Surface Hopping Dynamics beyond Nonadiabatic Couplings for Quantum Coherence. J. Phys. Chem. Lett. 2018;9:1097–1104. doi: 10.1021/acs.jpclett.8b00060. PubMed DOI
Kim T. I., Ha J.-K., Min S. K.. Coupled- and Independent-Trajectory Approaches Based on the Exact Factorization Using the PyUNIxMD Package. Top. Curr. Chem. 2022;380:8. doi: 10.1007/s41061-021-00361-7. PubMed DOI
Ibele L. M., Sangiogo Gil E., Villaseco Arribas E., Agostini F.. Simulations of photoinduced processes with the exact factorization: state of the art and perspectives. Phys. Chem. Chem. Phys. 2024;26:26693–26718. doi: 10.1039/D4CP02489C. PubMed DOI
Martinez P., Rosenzweig B., Hoffmann N. M., Lacombe L., Maitra N. T.. Case studies of the time-dependent potential energy surface for dynamics in cavities. J. Chem. Phys. 2021;154:014102. doi: 10.1063/5.0033386. PubMed DOI PMC
Villaseco Arribas E., Vindel-Zandbergen P., Roy S., Maitra N. T.. Different flavors of exact-factorization-based mixed quantum-classical methods for multistate dynamics. Phys. Chem. Chem. Phys. 2023;25:26380–26395. doi: 10.1039/D3CP03464J. PubMed DOI
Georgescu I. M., Ashhab S., Nori F.. Quantum simulation. Rev. Mod. Phys. 2014;86:153–185. doi: 10.1103/RevModPhys.86.153. DOI
Sheng, Y. ; Nguyen, L. B. ; Krovi, H. ; Karamlou, A. ; Meitei, O. N. ; Ma, H. ; Narang, P. . Quantum Computer Simulation of Molecules in an Optical Cavity. arXiv preprint 2025,.
Cerezo M., Arrasmith A., Babbush R., Benjamin S. C., Endo S., Fujii K., McClean J. R., Mitarai K., Yuan X., Cincio L., Coles P. J.. Variational quantum algorithms. Nat. Rev. Phys. 2021;3:625–644. doi: 10.1038/s42254-021-00348-9. DOI
Fedorov D. A., Peng B., Govind N., Alexeev Y.. VQE method: a short survey and recent developments. Mater. Theory. 2022;6:2. doi: 10.1186/s41313-021-00032-6. DOI
Hassan M., Pavošević F., Wang D. S., Flick J.. Simulating Polaritonic Ground States on Noisy Quantum Devices. J. Phys. Chem. Lett. 2024;15:1373–1381. doi: 10.1021/acs.jpclett.3c02875. PubMed DOI
Blais A., Grimsmo A. L., Girvin S. M., Wallraff A.. Circuit quantum electrodynamics. Rev. Mod. Phys. 2021;93:025005. doi: 10.1103/RevModPhys.93.025005. DOI
Fan L.-B., Shu C.-C., Dong D., He J., Henriksen N. E., Nori F.. Quantum Coherent Control of a Single Molecular-Polariton Rotation. Phys. Rev. Lett. 2023;130:043604. doi: 10.1103/PhysRevLett.130.043604. PubMed DOI
Endo S., Cai Z., Benjamin S. C., Yuan X.. Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation. J. Phys. Soc. Jpn. 2021;90:032001. doi: 10.7566/JPSJ.90.032001. DOI