The NME7 Gene Is Involved in the Kinetics of Glucose Processing

. 2025 Oct 09 ; 26 (19) : . [epub] 20251009

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41097086

Grantová podpora
NU20-01-00308 Ministry of Health of the Czech Republic
GA17-13491S Czech Science Foundation

Given that type 2 diabetes mellitus is common in several ciliopathies, the NME7 gene (non-metastatic cells 7), encoding a recognized member of the ciliome, was studied in connection with glucose metabolism. The aim was to find out whether the variability in the gene is associated with the response to administered glucose during the 3 h oral glucose tolerance test. The study included 1262 individuals with different levels of glucose tolerance. Glycemic curves were categorized according to their shape as monophasic, biphasic, triphasic, and more complex multiphasic. The analysis showed a significant association of five linked NME7 polymorphisms with the biphasic course of the glycemic curve, a shape that has been shown to be metabolically protective. Specifically, minor alleles of rs4656659 and rs2157597 in combination with wild-type alleles of rs10732287, rs4264046, and rs10800438 were more frequent within the biphasic category. Moreover, haplotype analysis confirmed higher insulin sensitivity in carriers of this specific haplotype. In conclusion, a cluster of five linked NME7 polymorphisms showed an association with a biphasic glycemic curve. Considering the health benefits of the biphasic curve in terms of glycoregulation and taking into account the demonstrated link of the NME7 haplotype with insulin sensitivity, variability in the NME7 gene represents another piece of the complex mosaic influencing healthy energy processing.

Zobrazit více v PubMed

The World Obesity Federation Website. [(accessed on 16 May 2024)]. Available online: https://www.worldobesity.org/

Institute of Health Information and Statistics of the Czech Republic. [(accessed on 25 August 2025)]. Available online: https://www.uzis.cz/

Kajantie E., Strang-Karlsson S., Hovi P., Wehkalampi K., Lahti J., Kaseva N., Järvenpää A.-L., Räikkönen K., Eriksson J.G., Andersson S. Insulin sensitivity and secretory response in adults born preterm: The Helsinki Study of Very Low Birth Weight Adults. J. Clin. Endocrinol. Metab. 2015;100:244–250. doi: 10.1210/jc.2014-3184. PubMed DOI

Palatianou M.E., Simos Y.V., Andronikou S.K., Kiortsis D.N. Long-term metabolic effects of high birth weight: A critical review of the literature. Horm. Metab. Res. 2014;46:911–920. doi: 10.1055/s-0034-1395561. PubMed DOI

Harder T., Rodekamp E., Schellong K., Dudenhausen J.W., Plageman A. Birth weight and subsequent risk of type 2 diabetes: A meta-analysis. Am. J. Epidemiol. 2007;165:849–857. doi: 10.1093/aje/kwk071. PubMed DOI

Vaag A., Brøns C., Gillberg L., Hansen N.S., Hjort L., Arora G.P., Thomas N., Broholm C., Ribel-Madsen R., Grunnet L.G. Genetic, nongenetic and epigenetic risk determinants in developmental programming of type 2 diabetes. Acta Obstet. Gynecol. Scand. 2014;93:1099–1108. doi: 10.1111/aogs.12494. PubMed DOI

Shojima N., Yamauchi T. Progress in genetics of type 2 diabetes and diabetic complications. J. Diabetes Investig. 2023;14:503–515. doi: 10.1111/jdi.13970. PubMed DOI PMC

Hu C., Jia W. Multi-omics profiling: The way towards precision medicine in metabolic diseases. J. Mol. Cell Biol. 2021;13:576–593. doi: 10.1093/jmcb/mjab051. PubMed DOI PMC

Stumvoll M., Mitrakou A., Pimenta W., Jenssen T., Yki-Järvinen H., Van Haeften T., Renn W., Gerich J. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care. 2000;23:295–301. doi: 10.2337/diacare.23.3.295. PubMed DOI

Chung S.T., Ha J., Onuzuruike A.U., Kasturi K., Galvan-De La Cruz M., Bingham B.A., Baker R.L., Utumatwishima J.N., Mabundo L.S., Ricks M., et al. Time to glucose peak during an oral glucose tolerance test identifies prediabetes risk. Clin. Endocrinol. 2017;87:484–491. doi: 10.1111/cen.13416. PubMed DOI PMC

Kim J.Y., Michaliszyn S.F., Nasr A., Lee S., Tfayli H., Hannon T., Hughan K.S., Bacha F., Arslanian S. The Shape of the Glucose Response Curve During an Oral Glucose Tolerance Test Heralds Biomarkers of Type 2 Diabetes Risk in Obese Youth. Diabetes Care. 2016;39:1431–1439. doi: 10.2337/dc16-0352. PubMed DOI PMC

Bervoets L., Mewis A., Massa G. The shape of the plasma glucose curve during an oral glucose tolerance test as an indicator of Beta cell function and insulin sensitivity in end-pubertal obese girls. Horm. Metab. Res. 2015;47:445–451. doi: 10.1055/s-0034-1395551. PubMed DOI

Tura A., Morbiducci U., Sbrignadello S., Winhofer Y., Pacini G., Kautzky-Willer A. Shape of glucose, insulin, C-peptide curves during a 3-h oral glucose tolerance test: Any relationship with the degree of glucose tolerance? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011;300:R941–R948. doi: 10.1152/ajpregu.00650.2010. PubMed DOI

Vejrazkova D., Vankova M., Lukasova P., Hill M., Vcelak J., Tura A., Chocholova D., Bendlova B. The Glycemic Curve during the Oral Glucose Tolerance Test: Is It Only Indicative of Glycoregulation? Biomedicines. 2023;11:1278. doi: 10.3390/biomedicines11051278. PubMed DOI PMC

Engle S.E., Bansal R., Antonellis P.J., Berbari N.F. Cilia signaling and obesity. Semin. Cell Dev. Biol. 2021;110:43–50. doi: 10.1016/j.semcdb.2020.05.006. PubMed DOI PMC

Mujahid S., Hunt K.F., Cheah Y.S., Forsythe E., Hazlehurst J.M., Sparks K., Mohammed S., Tomlinson J.W., Amiel S.A., Carroll P.V., et al. The Endocrine and Metabolic Characteristics of a Large Bardet-Biedl Syndrome Clinic Population. J. Clin. Endocrinol. Metab. 2018;103:1834–1841. doi: 10.1210/jc.2017-01459. PubMed DOI

Collin G.B., Marshall J.D., Ikeda A., So W.V., Russell-Eggitt I., Maffei P., Beck S., Boerkoel C.F., Sicolo N., Martin M., et al. Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alström syndrome. Nat. Genet. 2002;31:74–78. doi: 10.1038/ng867. PubMed DOI

Siljee J.E., Wang Y., Bernard A.A., Ersoy B.A., Zhang S., Marley A., Von Zastrow M., Reiter J.F., Vaisse C. Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat. Genet. 2018;50:180–185. doi: 10.1038/s41588-017-0020-9. PubMed DOI PMC

Lee E.Y., Hughes J.W. Rediscovering Primary Cilia in Pancreatic Islets. Diabetes Metab. J. 2023;47:454–469. doi: 10.4093/dmj.2022.0442. PubMed DOI PMC

Idevall-Hagren O., Nilsson C.I., Sanchez G. Keeping pace: The primary cilium as the conducting baton of the islet. Diabetologia. 2024;67:773–782. doi: 10.1007/s00125-024-06096-6. PubMed DOI PMC

Starks R.D., Beyer A.M., Guo D.F., Boland L., Zhang Q., Sheffield V.C., Rahmouni K. Regulation of Insulin Receptor Trafficking by Bardet Biedl Syndrome Proteins. PLoS Genet. 2015;11:e1005311. doi: 10.1371/journal.pgen.1005311. PubMed DOI PMC

Cho J.H., Li Z.A., Zhu L., Muegge B.D., Roseman H.F., Lee E.Y., Utterback T., Woodhams L.G., Bayly P.V., Hughes J.W. Islet primary cilia motility controls insulin secretion. Sci. Adv. 2022;8:eabq8486. doi: 10.1126/sciadv.abq8486. PubMed DOI PMC

Walker J.T., Saunders D.C., Rai V., Chen H.H., Orchard P., Dai C., Pettway Y.D., Hopkirk A.L., Reihsmann C.V., Tao Y., et al. Genetic risk converges on regulatory networks mediating early type 2 diabetes. Nature. 2023;624:621–629. doi: 10.1038/s41586-023-06693-2. PubMed DOI PMC

Šedová L., Buková I., Bažantová P., Petrezsélyová S., Prochazka J., Školníková E., Zudová D., Včelák J., Makovický P., Bendlová B., et al. Semi-Lethal Primary Ciliary Dyskinesia in Rats Lacking the Nme7 Gene. Int. J. Mol. Sci. 2021;22:3810. doi: 10.3390/ijms22083810. PubMed DOI PMC

Šedová L., Prochazka J., Zudová D., Bendlová B., Včelák J., Sedlacek R., Šeda O. Heterozygous Nme7 Mutation Affects Glucose Tolerance in Male Rats. Genes. 2021;12:1087. doi: 10.3390/genes12071087. PubMed DOI PMC

Ferrannini E., Škrha J., Eizirik D.L., Gale E., Jörgens V. PS4 Genome-wide association scans and bioinformatic tools for identifying candidate pathways. Abstracts of the 43rd European Association for the Study of Diabetes (EASD) annual meeting, 18–21 September 2007, Amsterdam, The Netherlands. Diabetologia. 2007;50:S128. doi: 10.1007/s00125-007-0809-7. DOI

Piccinini F., Dalla Man C., Vella A., Cobelli C. A Model for the Estimation of Hepatic Insulin Extraction After a Meal. IEEE Trans. Biomed. Eng. 2016;63:1925–1932. doi: 10.1109/TBME.2015.2505507. PubMed DOI PMC

Tura A., Chemello G., Szendroedi J., Göbl C., Færch K., Vrbíková J., Pacini G., Ferrannini E., Roden M. Prediction of clamp-derived insulin sensitivity from the oral glucose insulin sensitivity index. Diabetologia. 2018;61:1135–1141. doi: 10.1007/s00125-018-4568-4. PubMed DOI

Retnakaran R., Qi Y., Goran M.I., Hamilton J.K. Evaluation of proposed oral disposition index measures in relation to the actual disposition index. Diabet. Med. 2009;26:1198–1203. doi: 10.1111/j.1464-5491.2009.02841.x. PubMed DOI

Tura A., Kautzky-Willer A., Pacini G. Insulinogenic indices from insulin and C-peptide: Comparison of beta-cell function from OGTT and IVGTT. Diabetes Res. Clin. Pract. 2006;72:298–301. doi: 10.1016/j.diabres.2005.10.005. PubMed DOI

Pacini G., Mari A. Methods for clinical assessment of insulin sensitivity and beta-cell function. Best Pract. Res. Clin. Endocrinol. Metab. 2003;17:305–322. doi: 10.1016/S1521-690X(03)00042-3. PubMed DOI

Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III) JAMA. 2001;285:2486–2497. doi: 10.1001/jama.285.19.2486. PubMed DOI

Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004;81:19–25. doi: 10.1016/j.fertnstert.2003.10.004. PubMed DOI

Tura A., Ludvik B., Nolan J.J., Pacini G., Thomaseth K. Insulin and C-peptide secretion and kinetics in humans: Direct and model-based measurements during OGTT. Am. J. Physiol. Endocrinol. Metab. 2001;281:E966–E974. doi: 10.1152/ajpendo.2001.281.5.E966. PubMed DOI

Stephens M., Scheet P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am. J. Hum. Genet. 2005;76:449–462. doi: 10.1086/428594. PubMed DOI PMC

Stephens M., Donnelly P. A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 2003;73:1162–1169. doi: 10.1086/379378. PubMed DOI PMC

Stephens M., Smith N.J., Donnelly P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 2001;68:978–989. doi: 10.1086/319501. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...