Heterozygous Nme7 Mutation Affects Glucose Tolerance in Male Rats

. 2021 Jul 18 ; 12 (7) : . [epub] 20210718

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34356103

Complex metabolic conditions such as type 2 diabetes and obesity result from the interaction of numerous genetic and environmental factors. While the family of Nme proteins has been connected so far mostly to development, proliferation, or ciliary functions, several lines of evidence from human and experimental studies point to the potential involvement of one of its members, NME7 (non-metastatic cells 7, nucleoside diphosphate kinase 7) in carbohydrate and lipid metabolism. As a complete lack of Nme7 is semilethal in rats, we compared morphometric, metabolic, and transcriptomic profiles of standard diet-fed heterozygous Nme7+/- on male rats vs. their wild-type Nme7+/+ controls. Nme7+/- animals showed increased body weight, adiposity, higher insulin levels together with decreased glucose tolerance. Moreover, they displayed pancreatic islet fibrosis and kidney tubular damage. Despite no signs of overt liver steatosis or dyslipidemia, we found significant changes in the hepatic transcriptome of Nme7+/- male rats with a concerted increase of expression of lipogenic enzymes including Scd1, Fads1, Dhcr7 and a decrease of Cyp7b1 and Nme7. Network analyses suggested possible links between Nme7 and the activation of Srebf1 and Srebf2 upstream regulators. These results further support the implication of NME7 in the pathogenesis of glucose intolerance and adiposity.

Zobrazit více v PubMed

Blüher M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019;15:288–298. doi: 10.1038/s41574-019-0176-8. PubMed DOI

Seda O., Liška F., Křenová A., Kazdová L., Šedová L., Zima T., Peng J., Pelinkova K., Tremblay J., Hamet P., et al. Dynamic genetic architecture of metabolic syndrome attributes in the rat. Physiol. Genom. 2005;21:243–252. doi: 10.1152/physiolgenomics.00230.2004. PubMed DOI

Kumar S. U., Rajan B., Kumar D. T., Preethi V. A., Abunada T., Younes S., Okashah S., Ethiraj S., Priya Doss C. G., Zayed H. Involvement of Essential Signaling Cascades and Analysis of Gene Networks in Diabesity. Genes. 2020;11:1256. doi: 10.3390/genes11111256. PubMed DOI PMC

Nikpay M., Turner A.W., McPherson R. Partitioning the Pleiotropy Between Coronary Artery Disease and Body Mass Index Reveals the Importance of Low Frequency Variants and Central Nervous System–Specific Functional Elements. Circ. Genom. Precis. Med. 2018;11:e002050. doi: 10.1161/CIRCGEN.117.002050. PubMed DOI

Zhao W., Rasheed A., Tikkanen E., Lee J.-J., Butterworth A.S., Howson J.M.M., Assimes T.L., Chowdhury R., Orho-Melander M., Damrauer S., et al. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat. Genet. 2017;49:1450–1457. doi: 10.1038/ng.3943. PubMed DOI PMC

Zeng Y., He H., Zhang L., Zhu W., Shen H., Yan Y.-J., Deng H.-W. GWA-based pleiotropic analysis identified potential SNPs and genes related to type 2 diabetes and obesity. J. Hum. Genet. 2021;66:297–306. doi: 10.1038/s10038-020-00843-4. PubMed DOI PMC

Birling M.-C., International Mouse Phenotyping Consortium (IMPC) Yoshiki A., Adams D.J., Ayabe S., Beaudet A.L., Bottomley J., Bradley A., Brown S.D.M., Bürger A., et al. A resource of targeted mutant mouse lines for 5061 genes. Nat. Genet. 2021;53:416–419. doi: 10.1038/s41588-021-00825-y. PubMed DOI PMC

Vcelak J., Seda O., Vankova M., Lukasova P., Vrbikova J., Tremblay J., Bendlova B., Hamet P. Common variant on 1q24.2 (187cM) affects insulin secretion of beta cells and lipid spectrum in French-Canadian and Czech populations. Diabetologia. 2009;52:S230–S231.

Hodulova M., Sedova L., Křenová D., Liška F., Krupkova M., Kazdová L., Tremblay J., Hamet P., Kren V., Šeda O. Genomic Determinants of Triglyceride and Cholesterol Distribution into Lipoprotein Fractions in the Rat. PLoS ONE. 2014;9:e109983. doi: 10.1371/journal.pone.0109983. PubMed DOI PMC

Šedová L., Školníková E., Hodúlová M., Včelák J., Šeda O., Bendlová B. Expression Profiling of Nme7 Interactome in Experimental Models of Metabolic Syndrome. Physiol. Res. 2018;67:S543–S550. doi: 10.33549/physiolres.934021. PubMed DOI

Ostrowski L.E., Blackburn K., Radde K.M., Moyer M.B., Schlatzer D.M., Moseley A., Boucher R.C. A proteomic analysis of human cilia: Identification of novel components. Mol. Cell Proteom. 2002;1:451–465. doi: 10.1074/mcp.M200037-MCP200. PubMed DOI

Lai C.K., Gupta N., Wen X., Rangell L., Chih B., Peterson A.S., Bazan J.F., Li L., Scales S.J. Functional characterization of putative cilia genes by high-content analysis. Mol. Biol. Cell. 2011;22:1104–1119. doi: 10.1091/mbc.e10-07-0596. PubMed DOI PMC

Liu P., Choi Y.K., Qi R.Z. NME7 is a functional component of the gamma-tubulin ring complex. Mol. Biol. Cell. 2014;25:2017–2025. doi: 10.1091/mbc.e13-06-0339. PubMed DOI PMC

Reish O., Aspit L., Zouella A., Roth Y., Polak-Charcon S., Baboushkin T., Benyamini L., Scheetz T., Mussaffi H., Sheffield V., et al. A Homozygous Nme7 Mutation Is Associated withSitus Inversus Totalis. Hum. Mutat. 2016;37:727–731. doi: 10.1002/humu.22998. PubMed DOI PMC

Vogel P., Read R., Hansen G.M., Freay L.C., Zambrowicz B.P., Sands A.T. Situs inversus in Dpcd/Poll-/-, Nme7-/-, and Pkd1l1-/- mice. Vet. Pathol. 2010;47:120–131. doi: 10.1177/0300985809353553. PubMed DOI

Vogel P., Read R.W., Hansen G.M., Payne B.J., Small D., Sands A.T., Zambrowicz B.P. Congenital Hydrocephalus in Genetically Engineered Mice. Vet. Pathol. 2011;49:166–181. doi: 10.1177/0300985811415708. PubMed DOI

Šedová L., Buková I., Bažantová P., Petrezsélyová S., Prochazka J., Školníková E., Zudová D., Včelák J., Makovický P., Bendlová B., et al. Semi-Lethal Primary Ciliary Dyskinesia in Rats Lacking the Nme7 Gene. Int. J. Mol. Sci. 2021;22:3810. doi: 10.3390/ijms22083810. PubMed DOI PMC

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Benjamini Y., Hochberg Y. Controlling The False Discovery Rate—A Practical And Powerful Approach To Multiple Testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Kramer A., Green J., Pollard J., Jr., Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30:523–530. doi: 10.1093/bioinformatics/btt703. PubMed DOI PMC

Boissan M., Schlattner U., Lacombe M.-L. The NDPK/NME superfamily: State of the art. Lab. Investig. 2018;98:164–174. doi: 10.1038/labinvest.2017.137. PubMed DOI

Vujkovic M., Keaton J.M., Lynch J.A., Miller D.R., Zhou J., Tcheandjieu C., Huffman J.E., Assimes T.L., Lorenz K., Zhu X., et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat. Genet. 2020;52:680–691. doi: 10.1038/s41588-020-0637-y. PubMed DOI PMC

Veluthakal R., Kaetzel D., Kowluru A. Nm23-H1 regulates glucose-stimulated insulin secretion in pancreatic beta-cells via Arf6-Rac1 signaling axis. Cell Physiol. Biochem. 2013;32:533–541. doi: 10.1159/000354457. PubMed DOI PMC

Hoffmann T.J., Ehret G.B., Nandakumar P., Ranatunga D., Schaefer C., Kwok P.-Y., Iribarren C., Chakravarti G.B.E.P.N.A., Risch D.R.C.S.C.I.N. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat. Genet. 2017;49:54–64. doi: 10.1038/ng.3715. PubMed DOI PMC

Van Setten J., Verweij N., Mbarek H., Niemeijer M.N., Trompet S., Arking D.E., Brody J.A., Gandin I., Grarup N., Hall L.M., et al. Genome-wide association meta-analysis of 30,000 samples identifies seven novel loci for quantitative ECG traits. Eur. J. Hum. Genet. 2019;27:952–962. doi: 10.1038/s41431-018-0295-z. PubMed DOI PMC

Heit J.A., Armasu S.M., Asmann Y.W., Cunningham J.M., Matsumoto M.E., Petterson T.M., De Andrade M. A genome-wide association study of venous thromboembolism identifies risk variants in chromosomes 1q24.2 and 9q. J. Thromb. Haemost. 2012;10:1521–1531. doi: 10.1111/j.1538-7836.2012.04810.x. PubMed DOI PMC

Herrera-Rivero M., Stoll M., Hegenbarth J.-C., Rühle F., Limperger V., Junker R., Franke A., Hoffmann P., Shneyder M., Stach M., et al. Single- and Multimarker Genome-Wide Scans Evidence Novel Genetic Risk Modifiers for Venous Thromboembolism. Thromb. Haemost. 2021 doi: 10.1055/s-0041-1723988. PubMed DOI

Hajdu A., Róna G. Morphological Observations on Spontaneous Pancreatic Islet Changes in Rats. Diabetes. 1967;16:108–110. doi: 10.2337/diab.16.2.108. PubMed DOI

Hajdu A., Herr F., Rona G. The functional significance of a spontaneous pancreatic islet change in aged rats. Diabetologia. 1968;4:44–47. doi: 10.1007/BF01241032. PubMed DOI

Imaoka M., Jindo T., Takasaki W. The Process and Development Mechanism of Age-related Fibrosis in the Pancreatic Islets of Sprague-Dawley Rats: Immunohistochemical Detection of Myofibroblasts and Suppression Effect by Estrogen Treatment. J. Toxicol. Pathol. 2013;26:1–10. doi: 10.1293/tox.26.1. PubMed DOI PMC

Movassat J., Saulnier C., Serradas P., Portha B. Impaired development of pancreatic beta-cell mass is a primary event during the progression to diabetes in the GK rat. Diabetologia. 1997;40:916–925. doi: 10.1007/s001250050768. PubMed DOI

Ko S.H., Kwon H.S., Kim S.R., Moon S.D., Ahn Y.B., Song K.H., Son H.S., Cha B.Y., Lee K.W., Son H.Y., et al. Ramipril treatment suppresses islet fibrosis in Otsuka Long-Evans Tokushima fatty rats. Biochem. Biophys. Res. Commun. 2004;316:114–122. doi: 10.1016/j.bbrc.2004.02.023. PubMed DOI

Clark A., Nilsson M.R. Islet amyloid: A complication of islet dysfunction or an aetiological factor in Type 2 diabetes? Diabetologia. 2004;47:157–169. doi: 10.1007/s00125-003-1304-4. PubMed DOI

Kusaba T., Lalli M., Kramann R., Kobayashi A., Humphreys B.D. Differentiated kidney epithelial cells repair injured proximal tubule. Proc. Natl. Acad. Sci. USA. 2014;111:1527–1532. doi: 10.1073/pnas.1310653110. PubMed DOI PMC

Maeshima A., Yamashita S., Nojima Y. Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J. Am. Soc. Nephrol. 2003;14:3138–3146. doi: 10.1097/01.ASN.0000098685.43700.28. PubMed DOI

Montserrat N., Ramirez-Bajo M.J., Xia Y., Sancho-Martinez I., Rull D.M., Serra L.M., Yang S., Nivet E., Cortina C., González F., et al. Generation of Induced Pluripotent Stem Cells from Human Renal Proximal Tubular Cells with Only Two Transcription Factors, Oct4 and Sox2. J. Biol. Chem. 2012;287:24131–24138. doi: 10.1074/jbc.M112.350413. PubMed DOI PMC

Wang C.-H., Ma N., Lin Y.-T., Wu C.-C., Hsiao M., Lu F.L., Yu C.-C., Chen S.-Y., Lu J. A shRNA Functional Screen Reveals Nme6 and Nme7 Are Crucial for Embryonic Stem Cell Renewal. STEM CELLS. 2012;30:2199–2211. doi: 10.1002/stem.1203. PubMed DOI

Hinden L., Kogot-Levin A., Tam J., Leibowitz G. Pathogenesis of diabesity-induced kidney disease: Role of kidney nutrient sensing. FEBS J. 2021 doi: 10.1111/febs.15790. PubMed DOI

Kakiyama G., Marques D., Martin R., Takei H., Rodriguez-Agudo D., LaSalle S.A., Hashiguchi T., Liu X., Green R., Erickson S., et al. Insulin resistance dysregulates CYP7B1 leading to oxysterol accumulation: A pathway for NAFL to NASH transition. J. Lipid Res. 2020;61:1629–1644. doi: 10.1194/jlr.RA120000924. PubMed DOI PMC

Powell D.R., Gay J.P., Smith M., Wilganowski N., Harris A., Holland A., Reyes M., Kirkham L., Kirkpatrick L.L., Zambrowicz B., et al. Fatty acid desaturase 1 knockout mice are lean with improved glycemic control and decreased development of atheromatous plaque. Diabetes Metab. Syndr. Obes. Targets Ther. 2016;9:185–199. doi: 10.2147/DMSO.S106653. PubMed DOI PMC

Virbasius J., Czech M.P. Map4k4 Signaling Nodes in Metabolic and Cardiovascular Diseases. Trends Endocrinol. Metab. 2016;27:484–492. doi: 10.1016/j.tem.2016.04.006. PubMed DOI PMC

Odom D.T., Zizlsperger N., Gordon D.B., Bell G.W., Rinaldi N.J., Murray H.L., Volkert T.L., Schreiber J., Rolfe P.A., Gifford D.K., et al. Control of pancreas and liver gene expression by HNF transcription factors. Science. 2004;303:1378–1381. doi: 10.1126/science.1089769. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Parental overnutrition by carbohydrates in developmental origins of metabolic syndrome

. 2021 Dec 30 ; 70 (Suppl4) : S585-S596.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...