Heterozygous Nme7 Mutation Affects Glucose Tolerance in Male Rats
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34356103
PubMed Central
PMC8305224
DOI
10.3390/genes12071087
PII: genes12071087
Knihovny.cz E-zdroje
- Klíčová slova
- animal models, metabolic syndrome, pancreatic fibrosis,
- MeSH
- adipozita genetika MeSH
- diabetes mellitus 2. typu metabolismus MeSH
- dyslipidemie genetika MeSH
- glukosa metabolismus MeSH
- játra metabolismus MeSH
- krysa rodu Rattus MeSH
- lipogeneze genetika MeSH
- metabolismus lipidů fyziologie MeSH
- nukleosiddifosfátkinasa genetika metabolismus MeSH
- obezita metabolismus MeSH
- porucha glukózové tolerance genetika metabolismus MeSH
- potkani Sprague-Dawley MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glukosa MeSH
- NME7 protein, human MeSH Prohlížeč
- nukleosiddifosfátkinasa MeSH
Complex metabolic conditions such as type 2 diabetes and obesity result from the interaction of numerous genetic and environmental factors. While the family of Nme proteins has been connected so far mostly to development, proliferation, or ciliary functions, several lines of evidence from human and experimental studies point to the potential involvement of one of its members, NME7 (non-metastatic cells 7, nucleoside diphosphate kinase 7) in carbohydrate and lipid metabolism. As a complete lack of Nme7 is semilethal in rats, we compared morphometric, metabolic, and transcriptomic profiles of standard diet-fed heterozygous Nme7+/- on male rats vs. their wild-type Nme7+/+ controls. Nme7+/- animals showed increased body weight, adiposity, higher insulin levels together with decreased glucose tolerance. Moreover, they displayed pancreatic islet fibrosis and kidney tubular damage. Despite no signs of overt liver steatosis or dyslipidemia, we found significant changes in the hepatic transcriptome of Nme7+/- male rats with a concerted increase of expression of lipogenic enzymes including Scd1, Fads1, Dhcr7 and a decrease of Cyp7b1 and Nme7. Network analyses suggested possible links between Nme7 and the activation of Srebf1 and Srebf2 upstream regulators. These results further support the implication of NME7 in the pathogenesis of glucose intolerance and adiposity.
Zobrazit více v PubMed
Blüher M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019;15:288–298. doi: 10.1038/s41574-019-0176-8. PubMed DOI
Seda O., Liška F., Křenová A., Kazdová L., Šedová L., Zima T., Peng J., Pelinkova K., Tremblay J., Hamet P., et al. Dynamic genetic architecture of metabolic syndrome attributes in the rat. Physiol. Genom. 2005;21:243–252. doi: 10.1152/physiolgenomics.00230.2004. PubMed DOI
Kumar S. U., Rajan B., Kumar D. T., Preethi V. A., Abunada T., Younes S., Okashah S., Ethiraj S., Priya Doss C. G., Zayed H. Involvement of Essential Signaling Cascades and Analysis of Gene Networks in Diabesity. Genes. 2020;11:1256. doi: 10.3390/genes11111256. PubMed DOI PMC
Nikpay M., Turner A.W., McPherson R. Partitioning the Pleiotropy Between Coronary Artery Disease and Body Mass Index Reveals the Importance of Low Frequency Variants and Central Nervous System–Specific Functional Elements. Circ. Genom. Precis. Med. 2018;11:e002050. doi: 10.1161/CIRCGEN.117.002050. PubMed DOI
Zhao W., Rasheed A., Tikkanen E., Lee J.-J., Butterworth A.S., Howson J.M.M., Assimes T.L., Chowdhury R., Orho-Melander M., Damrauer S., et al. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat. Genet. 2017;49:1450–1457. doi: 10.1038/ng.3943. PubMed DOI PMC
Zeng Y., He H., Zhang L., Zhu W., Shen H., Yan Y.-J., Deng H.-W. GWA-based pleiotropic analysis identified potential SNPs and genes related to type 2 diabetes and obesity. J. Hum. Genet. 2021;66:297–306. doi: 10.1038/s10038-020-00843-4. PubMed DOI PMC
Birling M.-C., International Mouse Phenotyping Consortium (IMPC) Yoshiki A., Adams D.J., Ayabe S., Beaudet A.L., Bottomley J., Bradley A., Brown S.D.M., Bürger A., et al. A resource of targeted mutant mouse lines for 5061 genes. Nat. Genet. 2021;53:416–419. doi: 10.1038/s41588-021-00825-y. PubMed DOI PMC
Vcelak J., Seda O., Vankova M., Lukasova P., Vrbikova J., Tremblay J., Bendlova B., Hamet P. Common variant on 1q24.2 (187cM) affects insulin secretion of beta cells and lipid spectrum in French-Canadian and Czech populations. Diabetologia. 2009;52:S230–S231.
Hodulova M., Sedova L., Křenová D., Liška F., Krupkova M., Kazdová L., Tremblay J., Hamet P., Kren V., Šeda O. Genomic Determinants of Triglyceride and Cholesterol Distribution into Lipoprotein Fractions in the Rat. PLoS ONE. 2014;9:e109983. doi: 10.1371/journal.pone.0109983. PubMed DOI PMC
Šedová L., Školníková E., Hodúlová M., Včelák J., Šeda O., Bendlová B. Expression Profiling of Nme7 Interactome in Experimental Models of Metabolic Syndrome. Physiol. Res. 2018;67:S543–S550. doi: 10.33549/physiolres.934021. PubMed DOI
Ostrowski L.E., Blackburn K., Radde K.M., Moyer M.B., Schlatzer D.M., Moseley A., Boucher R.C. A proteomic analysis of human cilia: Identification of novel components. Mol. Cell Proteom. 2002;1:451–465. doi: 10.1074/mcp.M200037-MCP200. PubMed DOI
Lai C.K., Gupta N., Wen X., Rangell L., Chih B., Peterson A.S., Bazan J.F., Li L., Scales S.J. Functional characterization of putative cilia genes by high-content analysis. Mol. Biol. Cell. 2011;22:1104–1119. doi: 10.1091/mbc.e10-07-0596. PubMed DOI PMC
Liu P., Choi Y.K., Qi R.Z. NME7 is a functional component of the gamma-tubulin ring complex. Mol. Biol. Cell. 2014;25:2017–2025. doi: 10.1091/mbc.e13-06-0339. PubMed DOI PMC
Reish O., Aspit L., Zouella A., Roth Y., Polak-Charcon S., Baboushkin T., Benyamini L., Scheetz T., Mussaffi H., Sheffield V., et al. A Homozygous Nme7 Mutation Is Associated withSitus Inversus Totalis. Hum. Mutat. 2016;37:727–731. doi: 10.1002/humu.22998. PubMed DOI PMC
Vogel P., Read R., Hansen G.M., Freay L.C., Zambrowicz B.P., Sands A.T. Situs inversus in Dpcd/Poll-/-, Nme7-/-, and Pkd1l1-/- mice. Vet. Pathol. 2010;47:120–131. doi: 10.1177/0300985809353553. PubMed DOI
Vogel P., Read R.W., Hansen G.M., Payne B.J., Small D., Sands A.T., Zambrowicz B.P. Congenital Hydrocephalus in Genetically Engineered Mice. Vet. Pathol. 2011;49:166–181. doi: 10.1177/0300985811415708. PubMed DOI
Šedová L., Buková I., Bažantová P., Petrezsélyová S., Prochazka J., Školníková E., Zudová D., Včelák J., Makovický P., Bendlová B., et al. Semi-Lethal Primary Ciliary Dyskinesia in Rats Lacking the Nme7 Gene. Int. J. Mol. Sci. 2021;22:3810. doi: 10.3390/ijms22083810. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Benjamini Y., Hochberg Y. Controlling The False Discovery Rate—A Practical And Powerful Approach To Multiple Testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Kramer A., Green J., Pollard J., Jr., Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30:523–530. doi: 10.1093/bioinformatics/btt703. PubMed DOI PMC
Boissan M., Schlattner U., Lacombe M.-L. The NDPK/NME superfamily: State of the art. Lab. Investig. 2018;98:164–174. doi: 10.1038/labinvest.2017.137. PubMed DOI
Vujkovic M., Keaton J.M., Lynch J.A., Miller D.R., Zhou J., Tcheandjieu C., Huffman J.E., Assimes T.L., Lorenz K., Zhu X., et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat. Genet. 2020;52:680–691. doi: 10.1038/s41588-020-0637-y. PubMed DOI PMC
Veluthakal R., Kaetzel D., Kowluru A. Nm23-H1 regulates glucose-stimulated insulin secretion in pancreatic beta-cells via Arf6-Rac1 signaling axis. Cell Physiol. Biochem. 2013;32:533–541. doi: 10.1159/000354457. PubMed DOI PMC
Hoffmann T.J., Ehret G.B., Nandakumar P., Ranatunga D., Schaefer C., Kwok P.-Y., Iribarren C., Chakravarti G.B.E.P.N.A., Risch D.R.C.S.C.I.N. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat. Genet. 2017;49:54–64. doi: 10.1038/ng.3715. PubMed DOI PMC
Van Setten J., Verweij N., Mbarek H., Niemeijer M.N., Trompet S., Arking D.E., Brody J.A., Gandin I., Grarup N., Hall L.M., et al. Genome-wide association meta-analysis of 30,000 samples identifies seven novel loci for quantitative ECG traits. Eur. J. Hum. Genet. 2019;27:952–962. doi: 10.1038/s41431-018-0295-z. PubMed DOI PMC
Heit J.A., Armasu S.M., Asmann Y.W., Cunningham J.M., Matsumoto M.E., Petterson T.M., De Andrade M. A genome-wide association study of venous thromboembolism identifies risk variants in chromosomes 1q24.2 and 9q. J. Thromb. Haemost. 2012;10:1521–1531. doi: 10.1111/j.1538-7836.2012.04810.x. PubMed DOI PMC
Herrera-Rivero M., Stoll M., Hegenbarth J.-C., Rühle F., Limperger V., Junker R., Franke A., Hoffmann P., Shneyder M., Stach M., et al. Single- and Multimarker Genome-Wide Scans Evidence Novel Genetic Risk Modifiers for Venous Thromboembolism. Thromb. Haemost. 2021 doi: 10.1055/s-0041-1723988. PubMed DOI
Hajdu A., Róna G. Morphological Observations on Spontaneous Pancreatic Islet Changes in Rats. Diabetes. 1967;16:108–110. doi: 10.2337/diab.16.2.108. PubMed DOI
Hajdu A., Herr F., Rona G. The functional significance of a spontaneous pancreatic islet change in aged rats. Diabetologia. 1968;4:44–47. doi: 10.1007/BF01241032. PubMed DOI
Imaoka M., Jindo T., Takasaki W. The Process and Development Mechanism of Age-related Fibrosis in the Pancreatic Islets of Sprague-Dawley Rats: Immunohistochemical Detection of Myofibroblasts and Suppression Effect by Estrogen Treatment. J. Toxicol. Pathol. 2013;26:1–10. doi: 10.1293/tox.26.1. PubMed DOI PMC
Movassat J., Saulnier C., Serradas P., Portha B. Impaired development of pancreatic beta-cell mass is a primary event during the progression to diabetes in the GK rat. Diabetologia. 1997;40:916–925. doi: 10.1007/s001250050768. PubMed DOI
Ko S.H., Kwon H.S., Kim S.R., Moon S.D., Ahn Y.B., Song K.H., Son H.S., Cha B.Y., Lee K.W., Son H.Y., et al. Ramipril treatment suppresses islet fibrosis in Otsuka Long-Evans Tokushima fatty rats. Biochem. Biophys. Res. Commun. 2004;316:114–122. doi: 10.1016/j.bbrc.2004.02.023. PubMed DOI
Clark A., Nilsson M.R. Islet amyloid: A complication of islet dysfunction or an aetiological factor in Type 2 diabetes? Diabetologia. 2004;47:157–169. doi: 10.1007/s00125-003-1304-4. PubMed DOI
Kusaba T., Lalli M., Kramann R., Kobayashi A., Humphreys B.D. Differentiated kidney epithelial cells repair injured proximal tubule. Proc. Natl. Acad. Sci. USA. 2014;111:1527–1532. doi: 10.1073/pnas.1310653110. PubMed DOI PMC
Maeshima A., Yamashita S., Nojima Y. Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J. Am. Soc. Nephrol. 2003;14:3138–3146. doi: 10.1097/01.ASN.0000098685.43700.28. PubMed DOI
Montserrat N., Ramirez-Bajo M.J., Xia Y., Sancho-Martinez I., Rull D.M., Serra L.M., Yang S., Nivet E., Cortina C., González F., et al. Generation of Induced Pluripotent Stem Cells from Human Renal Proximal Tubular Cells with Only Two Transcription Factors, Oct4 and Sox2. J. Biol. Chem. 2012;287:24131–24138. doi: 10.1074/jbc.M112.350413. PubMed DOI PMC
Wang C.-H., Ma N., Lin Y.-T., Wu C.-C., Hsiao M., Lu F.L., Yu C.-C., Chen S.-Y., Lu J. A shRNA Functional Screen Reveals Nme6 and Nme7 Are Crucial for Embryonic Stem Cell Renewal. STEM CELLS. 2012;30:2199–2211. doi: 10.1002/stem.1203. PubMed DOI
Hinden L., Kogot-Levin A., Tam J., Leibowitz G. Pathogenesis of diabesity-induced kidney disease: Role of kidney nutrient sensing. FEBS J. 2021 doi: 10.1111/febs.15790. PubMed DOI
Kakiyama G., Marques D., Martin R., Takei H., Rodriguez-Agudo D., LaSalle S.A., Hashiguchi T., Liu X., Green R., Erickson S., et al. Insulin resistance dysregulates CYP7B1 leading to oxysterol accumulation: A pathway for NAFL to NASH transition. J. Lipid Res. 2020;61:1629–1644. doi: 10.1194/jlr.RA120000924. PubMed DOI PMC
Powell D.R., Gay J.P., Smith M., Wilganowski N., Harris A., Holland A., Reyes M., Kirkham L., Kirkpatrick L.L., Zambrowicz B., et al. Fatty acid desaturase 1 knockout mice are lean with improved glycemic control and decreased development of atheromatous plaque. Diabetes Metab. Syndr. Obes. Targets Ther. 2016;9:185–199. doi: 10.2147/DMSO.S106653. PubMed DOI PMC
Virbasius J., Czech M.P. Map4k4 Signaling Nodes in Metabolic and Cardiovascular Diseases. Trends Endocrinol. Metab. 2016;27:484–492. doi: 10.1016/j.tem.2016.04.006. PubMed DOI PMC
Odom D.T., Zizlsperger N., Gordon D.B., Bell G.W., Rinaldi N.J., Murray H.L., Volkert T.L., Schreiber J., Rolfe P.A., Gifford D.K., et al. Control of pancreas and liver gene expression by HNF transcription factors. Science. 2004;303:1378–1381. doi: 10.1126/science.1089769. PubMed DOI PMC
Parental overnutrition by carbohydrates in developmental origins of metabolic syndrome