• This record comes from PubMed

Semi-Lethal Primary Ciliary Dyskinesia in Rats Lacking the Nme7 Gene

. 2021 Apr 07 ; 22 (8) : . [epub] 20210407

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
17-13491S Grantová Agentura České Republiky
Progres Q25/LF1 Univerzita Karlova v Praze
RVO64165 Ministerstvo Zdravotnictví Ceské Republiky
RVO 68378050, LM2018126 and OP RDI CZ.1.05 / 2.1.00 / 19.0395 and CZ.1.05 / 1.1.00 / 02.0109 Ministerstvo Školství, Mládeže a Tělovýchovy

NME7 (non-metastatic cells 7, nucleoside diphosphate kinase 7) is a member of a gene family with a profound effect on health/disease status. NME7 is an established member of the ciliome and contributes to the regulation of the microtubule-organizing center. We aimed to create a rat model to further investigate the phenotypic consequences of Nme7 gene deletion. The CRISPR/Cas9 nuclease system was used for the generation of Sprague Dawley Nme7 knock-out rats targeting the exon 4 of the Nme7 gene. We found the homozygous Nme7 gene deletion to be semi-lethal, as the majority of SDNme7-/- pups died prior to weaning. The most prominent phenotypes in surviving SDNme7-/- animals were hydrocephalus, situs inversus totalis, postnatal growth retardation, and sterility of both sexes. Thinning of the neocortex was histologically evident at 13.5 day of gestation, dilation of all ventricles was detected at birth, and an external sign of hydrocephalus, i.e., doming of the skull, was usually apparent at 2 weeks of age. Heterozygous SDNme7+/- rats developed normally; we did not detect any symptoms of primary ciliary dyskinesia. The transcriptomic profile of liver and lungs corroborated the histological findings, revealing defects in cell function and viability. In summary, the knock-out of the rat Nme7 gene resulted in a range of conditions consistent with the presentation of primary ciliary dyskinesia, supporting the previously implicated role of the centrosomally located Nme7 gene in ciliogenesis and control of ciliary transport.

See more in PubMed

Afzelius B.A. A human syndrome caused by immotile cilia. Science. 1976;193:317–319. doi: 10.1126/science.1084576. PubMed DOI

Reiter J.F., Leroux M.R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 2017;18:533–547. doi: 10.1038/nrm.2017.60. PubMed DOI PMC

Desvignes T., Pontarotti P., Fauvel C., Bobe J. Nme protein family evolutionary history, a vertebrate perspective. BMC Evol. Biol. 2009;9:256. doi: 10.1186/1471-2148-9-256. PubMed DOI PMC

Puts G.S., Leonard M.K., Pamidimukkala N.V., Snyder D.E., Kaetzel D.M. Nuclear functions of NME proteins. Lab. Investig. 2018;98:211–218. doi: 10.1038/labinvest.2017.109. PubMed DOI PMC

Liu P., Choi Y.K., Qi R.Z. NME7 is a functional component of the gamma-tubulin ring complex. Mol. Biol. Cell. 2014;25:2017–2025. doi: 10.1091/mbc.e13-06-0339. PubMed DOI PMC

Lai C.K., Gupta N., Wen X., Rangell L., Chih B., Peterson A.S., Bazan J.F., Li L., Scales S.J. Functional characterization of putative cilia genes by high-content analysis. Mol. Biol. Cell. 2011;22:1104–1119. doi: 10.1091/mbc.e10-07-0596. PubMed DOI PMC

Wang C.H., Ma N., Lin Y.T., Wu C.C., Hsiao M., Lu F.L., Yu C.C., Chen S.Y., Lu J. A shRNA functional screen reveals Nme6 and Nme7 are crucial for embryonic stem cell renewal. Stem Cells. 2012;30:2199–2211. doi: 10.1002/stem.1203. PubMed DOI

Romani P., Ignesti M., Gargiulo G., Hsu T., Cavaliere V. Extracellular NME proteins: A player or a bystander? Lab. Investig. 2018;98:248–257. doi: 10.1038/labinvest.2017.102. PubMed DOI

Heit J.A., Armasu S.M., Asmann Y.W., Cunningham J.M., Matsumoto M.E., Petterson T.M., De Andrade M. A genome-wide association study of venous thromboembolism identifies risk variants in chromosomes 1q24.2 and 9q. J. Thromb. Haemost. 2012;10:1521–1531. doi: 10.1111/j.1538-7836.2012.04810.x. PubMed DOI PMC

Lindstrom S., Wang L., Smith E.N., Gordon W., van Hylckama Vlieg A., de Andrade M., Brody J.A., Pattee J.W., Haessler J., Brumpton B.M., et al. Genomic and transcriptomic association studies identify 16 novel susceptibility loci for venous thromboembolism. Blood. 2019;134:1645–1657. doi: 10.1182/blood.2019000435. PubMed DOI PMC

Herrera-Rivero M., Stoll M., Hegenbarth J.C., Ruhle F., Limperger V., Junker R., Franke A., Hoffmann P., Shneyder M., Stach M., et al. Single- and Multimarker Genome-Wide Scans Evidence Novel Genetic Risk Modifiers for Venous Thromboembolism. Thromb. Haemost. 2021 doi: 10.1055/s-0041-1723988. PubMed DOI

Giri A., Hellwege J.N., Keaton J.M., Park J., Qiu C., Warren H.R., Torstenson E.S., Kovesdy C.P., Sun Y.V., Wilson O.D., et al. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat. Genet. 2019;51:51–62. doi: 10.1038/s41588-018-0303-9. PubMed DOI PMC

Hoffmann T.J., Ehret G.B., Nandakumar P., Ranatunga D., Schaefer C., Kwok P.Y., Iribarren C., Chakravarti A., Risch N. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat. Genet. 2017;49:54–64. doi: 10.1038/ng.3715. PubMed DOI PMC

Mendez-Giraldez R., Gogarten S.M., Below J.E., Yao J., Seyerle A.A., Highland H.M., Kooperberg C., Soliman E.Z., Rotter J.I., Kerr K.F., et al. GWAS of the electrocardiographic QT interval in Hispanics/Latinos generalizes previously identified loci and identifies population-specific signals. Sci. Rep. 2017;7:17075. doi: 10.1038/s41598-017-17136-0. PubMed DOI PMC

Van Setten J., Verweij N., Mbarek H., Niemeijer M.N., Trompet S., Arking D.E., Brody J.A., Gandin I., Grarup N., Hall L.M., et al. Genome-wide association meta-analysis of 30,000 samples identifies seven novel loci for quantitative ECG traits. Eur. J. Hum. Genet. 2019;27:952–962. doi: 10.1038/s41431-018-0295-z. PubMed DOI PMC

Sedova L., Skolnikova E., Hodulova M., Vcelak J., Seda O., Bendlova B. Expression profiling of Nme7 interactome in experimental models of metabolic syndrome. Physiol. Res. 2018;67(Suppl. 3):S543–S550. doi: 10.33549/physiolres.934021. PubMed DOI

Reish O., Aspit L., Zouella A., Roth Y., Polak-Charcon S., Baboushkin T., Benyamini L., Scheetz T.E., Mussaffi H., Sheffield V.C., et al. A Homozygous Nme7 Mutation Is Associated with Situs Inversus Totalis. Hum. Mutat. 2016;37:727–731. doi: 10.1002/humu.22998. PubMed DOI PMC

Vogel P., Read R., Hansen G.M., Freay L.C., Zambrowicz B.P., Sands A.T. Situs inversus in Dpcd/Poll-/-, Nme7-/-, and Pkd1l1-/- mice. Vet. Pathol. 2010;47:120–131. doi: 10.1177/0300985809353553. PubMed DOI

Vogel P., Read R.W., Hansen G.M., Payne B.J., Small D., Sands A.T., Zambrowicz B.P. Congenital hydrocephalus in genetically engineered mice. Vet. Pathol. 2012;49:166–181. doi: 10.1177/0300985811415708. PubMed DOI

Yu Y., Fuscoe J.C., Zhao C., Guo C., Jia M., Qing T., Bannon D.I., Lancashire L., Bao W., Du T., et al. A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages. Nat. Commun. 2014;5:3230. doi: 10.1038/ncomms4230. PubMed DOI PMC

Fagerberg L., Hallstrom B.M., Oksvold P., Kampf C., Djureinovic D., Odeberg J., Habuka M., Tahmasebpoor S., Danielsson A., Edlund K., et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell Proteom. 2014;13:397–406. doi: 10.1074/mcp.M113.035600. PubMed DOI PMC

Kriegstein A., Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 2009;32:149–184. doi: 10.1146/annurev.neuro.051508.135600. PubMed DOI PMC

Wang X., Zhou Y., Wang J., Tseng I.C., Huang T., Zhao Y., Zheng Q., Gao Y., Luo H., Zhang X., et al. SNX27 Deletion Causes Hydrocephalus by Impairing Ependymal Cell Differentiation and Ciliogenesis. J. Neurosci. 2016;36:12586–12597. doi: 10.1523/JNEUROSCI.1620-16.2016. PubMed DOI PMC

Murtha L.A., Yang Q., Parsons M.W., Levi C.R., Beard D.J., Spratt N.J., McLeod D.D. Cerebrospinal fluid is drained primarily via the spinal canal and olfactory route in young and aged spontaneously hypertensive rats. Fluids Barriers CNS. 2014;11:12. doi: 10.1186/2045-8118-11-12. PubMed DOI PMC

De Jesus D.F., Orime K., Kaminska D., Kimura T., Basile G., Wang C.H., Haertle L., Riemens R., Brown N.K., Hu J., et al. Parental metabolic syndrome epigenetically reprograms offspring hepatic lipid metabolism in mice. J. Clin. Investig. 2020;130:2391–2407. doi: 10.1172/JCI127502. PubMed DOI PMC

Masuzaki R., Zhao S., Valerius M.T., Tsugawa D., Oya Y., Ray K.C., Karp S.J. SOCS2 Balances Metabolic and Restorative Requirements during Liver Regeneration. J. Biol. Chem. 2016;291:3346–3358. doi: 10.1074/jbc.M115.703264. PubMed DOI PMC

Monti-Rocha R., Cramer A., Gaio Leite P., Antunes M.M., Pereira R.V.S., Barroso A., Queiroz-Junior C.M., David B.A., Teixeira M.M., Menezes G.B., et al. SOCS2 Is Critical for the Balancing of Immune Response and Oxidate Stress Protecting Against Acetaminophen-Induced Acute Liver Injury. Front. Immunol. 2018;9:3134. doi: 10.3389/fimmu.2018.03134. PubMed DOI PMC

Wang Y., Nakajima T., Gonzalez F.J., Tanaka N. PPARs as Metabolic Regulators in the Liver: Lessons from Liver-Specific PPAR-Null Mice. Int. J. Mol. Sci. 2020;21:2061. doi: 10.3390/ijms21062061. PubMed DOI PMC

Zadjali F., Santana-Farre R., Vesterlund M., Carow B., Mirecki-Garrido M., Hernandez-Hernandez I., Flodstrom-Tullberg M., Parini P., Rottenberg M., Norstedt G., et al. SOCS2 deletion protects against hepatic steatosis but worsens insulin resistance in high-fat-diet-fed mice. FASEB J. 2012;26:3282–3291. doi: 10.1096/fj.12-205583. PubMed DOI

Bukowy-Bieryllo Z., Rabiasz A., Dabrowski M., Pogorzelski A., Wojda A., Dmenska H., Grzela K., Sroczynski J., Witt M., Zietkiewicz E. Truncating mutations in exons 20 and 21 of OFD1 can cause primary ciliary dyskinesia without associated syndromic symptoms. J. Med. Genet. 2019;56:769–777. doi: 10.1136/jmedgenet-2018-105918. PubMed DOI

Wallmeier J., Nielsen K.G., Kuehni C.E., Lucas J.S., Leigh M.W., Zariwala M.A., Omran H. Motile ciliopathies. Nat. Rev. Dis. Primers. 2020;6:77. doi: 10.1038/s41572-020-0209-6. PubMed DOI

Ghosh S., Das P.J., McQueen C.M., Gerber V., Swiderski C.E., Lavoie J.P., Chowdhary B.P., Raudsepp T. Analysis of genomic copy number variation in equine recurrent airway obstruction (heaves) Anim. Genet. 2016;47:334–344. doi: 10.1111/age.12426. PubMed DOI

Pejler G. The emerging role of mast cell proteases in asthma. Eur. Respir. J. 2019;54 doi: 10.1183/13993003.00685-2019. PubMed DOI

Koh I.U., Choi N.H., Lee K., Yu H.Y., Yun J.H., Kong J.H., Kim H.J., Lee S., Kim S.C., Kim B.J., et al. Obesity susceptible novel DNA methylation marker on regulatory region of inflammation gene: Results from the Korea Epigenome Study (KES) BMJ Open Diabetes Res. Care. 2020;8:e001338. doi: 10.1136/bmjdrc-2020-001338. PubMed DOI PMC

Mandal J., Roth M., Papakonstantinou E., Fang L., Savic S., Tamm M., Stolz D. Adrenomedullin mediates pro-angiogenic and pro-inflammatory cytokines in asthma and COPD. Pulm. Pharmacol. Ther. 2019;56:8–14. doi: 10.1016/j.pupt.2019.01.006. PubMed DOI

Taylor B.J., Snyder E.M., Richert M.L., Wheatley C.M., Chase S.C., Olson L.J., Johnson B.D. Effect of beta2-adrenergic receptor stimulation on lung fluid in stable heart failure patients. J. Heart Lung Transplant. 2017;36:418–426. doi: 10.1016/j.healun.2016.09.008. PubMed DOI PMC

Sironen A., Shoemark A., Patel M., Loebinger M.R., Mitchison H.M. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell. Mol. Life Sci. 2020;77:2029–2048. doi: 10.1007/s00018-019-03389-7. PubMed DOI PMC

Terre B., Lewis M., Gil-Gomez G., Han Z., Lu H., Aguilera M., Prats N., Roy S., Zhao H., Stracker T.H. Defects in efferent duct multiciliogenesis underlie male infertility in GEMC1-, MCIDAS- or CCNO-deficient mice. Development. 2019;146 doi: 10.1242/dev.162628. PubMed DOI PMC

Marshall C.B., Mays D.J., Beeler J.S., Rosenbluth J.M., Boyd K.L., Guasch G.L.S., Shaver T.M., Tang L.J., Liu Q., Shyr Y., et al. p73 Is Required for Multiciliogenesis and Regulates the Foxj1-Associated Gene Network. Cell Rep. 2016;14:2289–2300. doi: 10.1016/j.celrep.2016.02.035. PubMed DOI PMC

Núnez-Ollé M., Jung C., Terré B., Balsiger N.A., Plata C., Roset R., Pardo-Pastor C., Garrido M., Rojas S., Alameda F., et al. Constitutive Cyclin O deficiency results in penetrant hydrocephalus, impaired growth and infertility. Oncotarget. 2017;8:99261–99273. doi: 10.18632/oncotarget.21818. PubMed DOI PMC

Terre B., Piergiovanni G., Segura-Bayona S., Gil-Gomez G., Youssef S.A., Attolini C.S., Wilsch-Brauninger M., Jung C., Rojas A.M., Marjanovic M., et al. GEMC1 is a critical regulator of multiciliated cell differentiation. EMBO J. 2016;35:942–960. doi: 10.15252/embj.201592821. PubMed DOI PMC

Kurkowiak M., Zietkiewicz E., Witt M. Recent advances in primary ciliary dyskinesia genetics. J. Med. Genet. 2015;52:1–9. doi: 10.1136/jmedgenet-2014-102755. PubMed DOI PMC

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Kramer A., Green J., Pollard J., Jr., Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30:523–530. doi: 10.1093/bioinformatics/btt703. PubMed DOI PMC

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Heterozygous Nme7 Mutation Affects Glucose Tolerance in Male Rats

. 2021 Jul 18 ; 12 (7) : . [epub] 20210718

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...