• Je něco špatně v tomto záznamu ?

Optogenetic confirmation of transverse-tubular membrane excitability in intact cardiac myocytes

M. Scardigli, M. Pásek, L. Santini, C. Palandri, E. Conti, C. Crocini, M. Campione, LM. Loew, AAF. de Vries, DA. Pijnappels, FS. Pavone, C. Poggesi, E. Cerbai, R. Coppini, P. Kohl, C. Ferrantini, L. Sacconi

. 2024 ; 602 (5) : 791-808. [pub] 20240213

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24006867

Grantová podpora
422681845 German Research Foundation
871124 European Union's Horizon 2020 research and innovation programme

E-zdroje Online Plný text

NLK Free Medical Journals od 1878 do Před 1 rokem
PubMed Central od 1878 do Před 1 rokem
Wiley Free Content od 1997 do Před 1 rokem

T-tubules (TT) form a complex network of sarcolemmal membrane invaginations, essential for well-co-ordinated excitation-contraction coupling (ECC) and thus homogeneous mechanical activation of cardiomyocytes. ECC is initiated by rapid depolarization of the sarcolemmal membrane. Whether TT membrane depolarization is active (local generation of action potentials; AP) or passive (following depolarization of the outer cell surface sarcolemma; SS) has not been experimentally validated in cardiomyocytes. Based on the assessment of ion flux pathways needed for AP generation, we hypothesize that TT are excitable. We therefore explored TT excitability experimentally, using an all-optical approach to stimulate and record trans-membrane potential changes in TT that were structurally disconnected, and hence electrically insulated, from the SS membrane by transient osmotic shock. Our results establish that cardiomyocyte TT can generate AP. These AP show electrical features that differ substantially from those observed in SS, consistent with differences in the density of ion channels and transporters in the two different membrane domains. We propose that TT-generated AP represent a safety mechanism for TT AP propagation and ECC, which may be particularly relevant in pathophysiological settings where morpho-functional changes reduce the electrical connectivity between SS and TT membranes. KEY POINTS: Cardiomyocytes are characterized by a complex network of membrane invaginations (the T-tubular system) that propagate action potentials to the core of the cell, causing uniform excitation-contraction coupling across the cell. In the present study, we investigated whether the T-tubular system is able to generate action potentials autonomously, rather than following depolarization of the outer cell surface sarcolemma. For this purpose, we developed a fully optical platform to probe and manipulate the electrical dynamics of subcellular membrane domains. Our findings demonstrate that T-tubules are intrinsically excitable, revealing distinct characteristics of self-generated T-tubular action potentials. This active electrical capability would protect cells from voltage drops potentially occurring within the T-tubular network.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24006867
003      
CZ-PrNML
005      
20240423155538.0
007      
ta
008      
240412s2024 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1113/JP285202 $2 doi
035    __
$a (PubMed)38348881
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Scardigli, Marina $u Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
245    10
$a Optogenetic confirmation of transverse-tubular membrane excitability in intact cardiac myocytes / $c M. Scardigli, M. Pásek, L. Santini, C. Palandri, E. Conti, C. Crocini, M. Campione, LM. Loew, AAF. de Vries, DA. Pijnappels, FS. Pavone, C. Poggesi, E. Cerbai, R. Coppini, P. Kohl, C. Ferrantini, L. Sacconi
520    9_
$a T-tubules (TT) form a complex network of sarcolemmal membrane invaginations, essential for well-co-ordinated excitation-contraction coupling (ECC) and thus homogeneous mechanical activation of cardiomyocytes. ECC is initiated by rapid depolarization of the sarcolemmal membrane. Whether TT membrane depolarization is active (local generation of action potentials; AP) or passive (following depolarization of the outer cell surface sarcolemma; SS) has not been experimentally validated in cardiomyocytes. Based on the assessment of ion flux pathways needed for AP generation, we hypothesize that TT are excitable. We therefore explored TT excitability experimentally, using an all-optical approach to stimulate and record trans-membrane potential changes in TT that were structurally disconnected, and hence electrically insulated, from the SS membrane by transient osmotic shock. Our results establish that cardiomyocyte TT can generate AP. These AP show electrical features that differ substantially from those observed in SS, consistent with differences in the density of ion channels and transporters in the two different membrane domains. We propose that TT-generated AP represent a safety mechanism for TT AP propagation and ECC, which may be particularly relevant in pathophysiological settings where morpho-functional changes reduce the electrical connectivity between SS and TT membranes. KEY POINTS: Cardiomyocytes are characterized by a complex network of membrane invaginations (the T-tubular system) that propagate action potentials to the core of the cell, causing uniform excitation-contraction coupling across the cell. In the present study, we investigated whether the T-tubular system is able to generate action potentials autonomously, rather than following depolarization of the outer cell surface sarcolemma. For this purpose, we developed a fully optical platform to probe and manipulate the electrical dynamics of subcellular membrane domains. Our findings demonstrate that T-tubules are intrinsically excitable, revealing distinct characteristics of self-generated T-tubular action potentials. This active electrical capability would protect cells from voltage drops potentially occurring within the T-tubular network.
650    12
$a kardiomyocyty $x metabolismus $7 D032383
650    12
$a optogenetika $7 D062308
650    _2
$a sarkolema $x metabolismus $7 D012508
650    _2
$a buněčná membrána $7 D002462
650    _2
$a membránové potenciály $7 D008564
650    _2
$a akční potenciály $x fyziologie $7 D000200
655    _2
$a časopisecké články $7 D016428
700    1_
$a Pásek, Michal $u Institute of Thermomechanics, Czech Academy of Science, Prague, Czech Republic $u Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
700    1_
$a Santini, Lorenzo $u Department of Neurology, Psychology, Drug Sciences and Child Health, University of Florence, Florence, Italy
700    1_
$a Palandri, Chiara $u Department of Neurology, Psychology, Drug Sciences and Child Health, University of Florence, Florence, Italy
700    1_
$a Conti, Emilia $u European Laboratory for Non-Linear Spectroscopy - LENS, Sesto Fiorentino, Italy $u Neuroscience Institute, National Research Council, Pisa, Italy
700    1_
$a Crocini, Claudia $u DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany $u Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité-Universitätsmedizin Berlin, Berlin, Germany
700    1_
$a Campione, Marina $u Institute of Neuroscience (IN-CNR) and Department of Biomedical Science, University of Padua, Padua, Italy
700    1_
$a Loew, Leslie M $u Center for Cell Analysis and Modeling, University of Connecticut, Farmington, CT, USA $1 https://orcid.org/0000000218514646
700    1_
$a de Vries, Antoine A F $u Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
700    1_
$a Pijnappels, Daniël A $u Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
700    1_
$a Pavone, Francesco S $u European Laboratory for Non-Linear Spectroscopy - LENS, Sesto Fiorentino, Italy
700    1_
$a Poggesi, Corrado $u Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
700    1_
$a Cerbai, Elisabetta $u Department of Neurology, Psychology, Drug Sciences and Child Health, University of Florence, Florence, Italy $u European Laboratory for Non-Linear Spectroscopy - LENS, Sesto Fiorentino, Italy
700    1_
$a Coppini, Raffaele $u Department of Neurology, Psychology, Drug Sciences and Child Health, University of Florence, Florence, Italy
700    1_
$a Kohl, Peter $u Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany $1 https://orcid.org/0000000304166270
700    1_
$a Ferrantini, Cecilia $u Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
700    1_
$a Sacconi, Leonardo $u European Laboratory for Non-Linear Spectroscopy - LENS, Sesto Fiorentino, Italy $u Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany $u Institute of Clinical Physiology, National Research Council (IFC-CNR), Florence, Italy $1 https://orcid.org/0000000293205085
773    0_
$w MED00002907 $t Journal of physiology (London. Print) $x 1469-7793 $g Roč. 602, č. 5 (2024), s. 791-808
856    41
$u https://pubmed.ncbi.nlm.nih.gov/38348881 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20240412 $b ABA008
991    __
$a 20240423155535 $b ABA008
999    __
$a ok $b bmc $g 2081067 $s 1216634
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 602 $c 5 $d 791-808 $e 20240213 $i 1469-7793 $m Journal of physiology (London. Print) $n J Physiol (Lond) $x MED00002907
GRA    __
$a 422681845 $p German Research Foundation
GRA    __
$a 871124 $p European Union's Horizon 2020 research and innovation programme
LZP    __
$a Pubmed-20240412

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...