-
Something wrong with this record ?
Evaluation of Gelatin-Based Poly(Ester Urethane Urea) Electrospun Fibers Using Human Mesenchymal and Neural Stem Cells
T. Vieira, JC. Silva, S. Kubinova, JP. Borges, C. Henriques
Language English Country Germany
Document type Journal Article
Grant support
2022.07258.PTDC
Fundação para a Ciência e a Tecnologia
LA/P/0037/2020
Associate Laboratory Institute of Nanostructures, Nanomodelling and Nanofabrication-i3N
UIDP/50025/2020
Associate Laboratory Institute of Nanostructures, Nanomodelling and Nanofabrication-i3N
PTDC/CTM-COM/32606/2017
Fundação para a Ciência e Tecnologia
UIDB/50025/2020
Fundação para a Ciência e Tecnologia
- MeSH
- Biocompatible Materials chemistry pharmacology MeSH
- Cell Adhesion drug effects MeSH
- Cell Differentiation drug effects MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Mesenchymal Stem Cells * cytology drug effects metabolism MeSH
- Neural Stem Cells * cytology drug effects metabolism MeSH
- Tensile Strength MeSH
- Polyesters * chemistry pharmacology MeSH
- Polyurethanes * chemistry pharmacology MeSH
- Cell Proliferation drug effects MeSH
- Materials Testing MeSH
- Tissue Engineering * methods MeSH
- Tissue Scaffolds chemistry MeSH
- Cell Survival drug effects MeSH
- Gelatin * chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Previously, a new biodegradable poly(ester urethane urea) was synthesized based on polycaprolactone-diol and fish gelatin (PU-Gel). In this work, the potential of this new material for neural tissue engineering is evaluated. Membranes with randomly oriented fibers and with aligned fibers are produced using electrospinning and characterized regarding their mechanical behavior under both dry and wet conditions. Wet samples exhibit a lower Young's modulus than dry ones and aligned membranes are stiffer and more brittle than those randomly oriented. Cyclic tensile tests are conducted and high values for recovery ratio and resilience are obtained. Both membranes exhibited a hydrophobic surface, measured by the water contact angle (WCA). Human mesenchymal stem cells from umbilical cord tissue (UC-MSCs) and human neural stem cells (NSCs) are seeded on both types of membranes, which support their adhesion and proliferation. Cells stained for the cytoskeleton and nucleus in membranes with aligned fibers display an elongated morphology following the alignment direction. As the culture time increased, higher cell viability is obtained on randomfibers for UC-MSCs while no differences are observed for NSCs. The membranes support neuronal differentiation of NSCs, as evidenced by markers for a neuronal filament protein (NF70) and for a microtubule-associated protein (MAP2).
Institute of Experimental Medicine Academy of Sciences of the Czech Republic Prague 4 Czech Republic
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25004127
- 003
- CZ-PrNML
- 005
- 20250206105140.0
- 007
- ta
- 008
- 250121s2024 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/mabi.202400014 $2 doi
- 035 __
- $a (PubMed)39072995
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Vieira, Tânia $u CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal $u Departamento de Física, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal $1 https://orcid.org/0000000184471886
- 245 10
- $a Evaluation of Gelatin-Based Poly(Ester Urethane Urea) Electrospun Fibers Using Human Mesenchymal and Neural Stem Cells / $c T. Vieira, JC. Silva, S. Kubinova, JP. Borges, C. Henriques
- 520 9_
- $a Previously, a new biodegradable poly(ester urethane urea) was synthesized based on polycaprolactone-diol and fish gelatin (PU-Gel). In this work, the potential of this new material for neural tissue engineering is evaluated. Membranes with randomly oriented fibers and with aligned fibers are produced using electrospinning and characterized regarding their mechanical behavior under both dry and wet conditions. Wet samples exhibit a lower Young's modulus than dry ones and aligned membranes are stiffer and more brittle than those randomly oriented. Cyclic tensile tests are conducted and high values for recovery ratio and resilience are obtained. Both membranes exhibited a hydrophobic surface, measured by the water contact angle (WCA). Human mesenchymal stem cells from umbilical cord tissue (UC-MSCs) and human neural stem cells (NSCs) are seeded on both types of membranes, which support their adhesion and proliferation. Cells stained for the cytoskeleton and nucleus in membranes with aligned fibers display an elongated morphology following the alignment direction. As the culture time increased, higher cell viability is obtained on randomfibers for UC-MSCs while no differences are observed for NSCs. The membranes support neuronal differentiation of NSCs, as evidenced by markers for a neuronal filament protein (NF70) and for a microtubule-associated protein (MAP2).
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a nervové kmenové buňky $x cytologie $x účinky léků $x metabolismus $7 D058953
- 650 12
- $a mezenchymální kmenové buňky $x cytologie $x účinky léků $x metabolismus $7 D059630
- 650 12
- $a želatina $x chemie $7 D005780
- 650 12
- $a polyestery $x chemie $x farmakologie $7 D011091
- 650 12
- $a polyurethany $x chemie $x farmakologie $7 D011140
- 650 12
- $a tkáňové inženýrství $x metody $7 D023822
- 650 _2
- $a buněčná diferenciace $x účinky léků $7 D002454
- 650 _2
- $a tkáňové podpůrné struktury $x chemie $7 D054457
- 650 _2
- $a viabilita buněk $x účinky léků $7 D002470
- 650 _2
- $a proliferace buněk $x účinky léků $7 D049109
- 650 _2
- $a testování materiálů $7 D008422
- 650 _2
- $a biokompatibilní materiály $x chemie $x farmakologie $7 D001672
- 650 _2
- $a pevnost v tahu $7 D013718
- 650 _2
- $a kultivované buňky $7 D002478
- 650 _2
- $a buněčná adheze $x účinky léků $7 D002448
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Silva, Jorge Carvalho $u CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal $u Departamento de Física, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- 700 1_
- $a Kubinova, Sarka $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
- 700 1_
- $a Borges, João P $u CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal $u Departamento de Ciência dos Materiais, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- 700 1_
- $a Henriques, Célia $u CENIMAT/i3N, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal $u Departamento de Física, NOVA School of Sciences and Technology, Universidade Nova de Lisboa, Caparica, 2829-516, Portugal
- 773 0_
- $w MED00006593 $t Macromolecular bioscience $x 1616-5195 $g Roč. 24, č. 9 (2024), s. e2400014
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39072995 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250121 $b ABA008
- 991 __
- $a 20250206105135 $b ABA008
- 999 __
- $a ok $b bmc $g 2263711 $s 1240134
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 24 $c 9 $d e2400014 $e 20240729 $i 1616-5195 $m Macromolecular bioscience $n Macromol Biosci $x MED00006593
- GRA __
- $a 2022.07258.PTDC $p Fundação para a Ciência e a Tecnologia
- GRA __
- $a LA/P/0037/2020 $p Associate Laboratory Institute of Nanostructures, Nanomodelling and Nanofabrication-i3N
- GRA __
- $a UIDP/50025/2020 $p Associate Laboratory Institute of Nanostructures, Nanomodelling and Nanofabrication-i3N
- GRA __
- $a PTDC/CTM-COM/32606/2017 $p Fundação para a Ciência e Tecnologia
- GRA __
- $a UIDB/50025/2020 $p Fundação para a Ciência e Tecnologia
- LZP __
- $a Pubmed-20250121