RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis

. 2022 Aug 02 ; 119 (31) : e2121058119. [epub] 20220725

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35878023

Plant cell growth responds rapidly to various stimuli, adapting architecture to environmental changes. Two major endogenous signals regulating growth are the phytohormone auxin and the secreted peptides rapid alkalinization factors (RALFs). Both trigger very rapid cellular responses and also exert long-term effects [Du et al., Annu. Rev. Plant Biol. 71, 379-402 (2020); Blackburn et al., Plant Physiol. 182, 1657-1666 (2020)]. However, the way, in which these distinct signaling pathways converge to regulate growth, remains unknown. Here, using vertical confocal microscopy combined with a microfluidic chip, we addressed the mechanism of RALF action on growth. We observed correlation between RALF1-induced rapid Arabidopsis thaliana root growth inhibition and apoplast alkalinization during the initial phase of the response, and revealed that RALF1 reversibly inhibits primary root growth through apoplast alkalinization faster than within 1 min. This rapid apoplast alkalinization was the result of RALF1-induced net H+ influx and was mediated by the receptor FERONIA (FER). Furthermore, we investigated the cross-talk between RALF1 and the auxin signaling pathways during root growth regulation. The results showed that RALF-FER signaling triggered auxin signaling with a delay of approximately 1 h by up-regulating auxin biosynthesis, thus contributing to sustained RALF1-induced growth inhibition. This biphasic RALF1 action on growth allows plants to respond rapidly to environmental stimuli and also reprogram growth and development in the long term.

Zobrazit více v PubMed

Arsuffi G., Braybrook S. A., Acid growth: An ongoing trip. J. Exp. Bot. 69, 137–146 (2018). PubMed

Du M., Spalding E. P., Gray W. M., Rapid Auxin-Mediated Cell Expansion. Annu. Rev. Plant Biol. 71, 379–402 (2020). PubMed PMC

Pearce G., Moura D. S., Stratmann J., Ryan C. A. Jr, RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc. Natl. Acad. Sci. U.S.A. 98, 12843–12847 (2001). PubMed PMC

Haruta M., Monshausen G., Gilroy S., Sussman M. R., A cytoplasmic Ca2+ functional assay for identifying and purifying endogenous cell signaling peptides in Arabidopsis seedlings: Identification of AtRALF1 peptide. Biochemistry 47, 6311–6321 (2008). PubMed

Campbell L., Turner S. R., A comprehensive analysis of RALF proteins in green plants suggests there are two distinct functional groups. Front. Plant Sci. 8, 37 (2017). PubMed PMC

Cao J., Shi F., Evolution of the RALF gene family in plants: Gene duplication and selection patterns. Evol. Bioinform. 8, 271–292 (2012). PubMed PMC

Masachis S., et al. , A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nat. Microbiol. 1, 16043 (2016). PubMed

Thynne E., et al. , Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides. Mol. Plant Pathol. 18, 811–824 (2017). PubMed PMC

Haruta M., Sabat G., Stecker K., Minkoff B. B., Sussman M. R., A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343, 408–411 (2014). PubMed PMC

Cheung A. Y., Wu H.-M., THESEUS 1, FERONIA and relatives: A family of cell wall-sensing receptor kinases? Curr. Opin. Plant Biol. 14, 632–641 (2011). PubMed

Liu P., Haruta M., Minkoff B. B., Sussman M. R., Probing a plant plasma membrane receptor kinase’s three-dimensional structure using mass spectrometry-based protein footprinting. Biochemistry 57, 5159–5168 (2018). PubMed

Chakravorty D., Yu Y., Assmann S. M., A kinase-dead version of FERONIA receptor-like kinase has dose-dependent impacts on rosette morphology and RALF1-mediated stomatal movements. FEBS Lett. 592, 3429–3437 (2018). PubMed PMC

Haruta M., Gaddameedi V., Burch H., Fernandez D., Sussman M. R., Comparison of the effects of a kinase-dead mutation of FERONIA on ovule fertilization and root growth of Arabidopsis. FEBS Lett. 592, 2395–2402 (2018). PubMed

Blackburn M. R., Haruta M., Moura D. S., Twenty years of progress in physiological and biochemical investigation of RALF peptides. Plant Physiol. 182, 1657–1666 (2020). PubMed PMC

Dressano K., et al. , BAK1 is involved in AtRALF1-induced inhibition of root cell expansion. PLoS Genet. 13, e1007053 (2017). PubMed PMC

Campos W. F., et al. , Arabidopsis thaliana rapid alkalinization factor 1-mediated root growth inhibition is dependent on calmodulin-like protein 38. J. Biol. Chem. 293, 2159–2171 (2018). PubMed PMC

Friml J., Fourteen stations of auxin. CSH Perspect. Biol. 14, a039859 (2021). PubMed PMC

Mashiguchi K., et al. , The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 108, 18512–18517 (2011). PubMed PMC

Petrásek J., Friml J., Auxin transport routes in plant development. Development 136, 2675–2688 (2009). PubMed

Lavy M., Estelle M., Mechanisms of auxin signaling. Development 143, 3226–3229 (2016). PubMed PMC

Fendrych M., et al. , Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants 4, 453–459 (2018). PubMed PMC

Dubey S. M., Serre N. B. C., Oulehlová D., Vittal P., Fendrych M., No time for transcription—Rapid auxin responses in plants. Cold Spring Harb. Perspect. Biol. 13, 039891 (2021). PubMed PMC

Li L., et al. , Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature 599, 273–277 (2021). PubMed PMC

Cao M., et al. , TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature 568, 240–243 (2019). PubMed

Lin W., et al. , TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature 599, 278–282 (2021). PubMed PMC

Wang Q., et al. , A phosphorylation-based switch controls TAA1-mediated auxin biosynthesis in plants. Nat. Commun. 11, 679 (2020). PubMed PMC

Barbez E., Dünser K., Gaidora A., Lendl T., Busch W., Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 114, E4884–E4893 (2017). PubMed PMC

Dong Q., Zhang Z., Liu Y., Tao L. Z., Liu H., FERONIA regulates auxin-mediated lateral root development and primary root gravitropism. FEBS Lett. 593, 97–106 (2019). PubMed

Li E., Wang G., Zhang Y. L., Kong Z., Li S., FERONIA mediates root nutating growth. Plant J. 104, 1105–1116 (2020). PubMed

Yu M., et al. , The RALF1-FERONIA interaction modulates endocytosis to mediate control of root growth in Arabidopsis. Development 147, dev189902 (2020). PubMed

Gonneau M., et al. , Receptor kinase THESEUS1 is a rapid alkalinization factor 34 receptor in Arabidopsis. Curr. Biol. 28, 2452–2458.e2454 (2018). PubMed

von Wangenheim D., et al. , Live tracking of moving samples in confocal microscopy for vertically grown roots. eLife 6, e26792 (2017). PubMed PMC

Martinière A., et al. , Uncovering pH at both sides of the root plasma membrane interface using noninvasive imaging. Proc. Natl. Acad. Sci. U.S.A. 115, 6488–6493 (2018). PubMed PMC

Gjetting S. K., et al. , Evidence for multiple receptors mediating RALF-triggered Ca2+ signaling and proton pump inhibition. Plant J. 104, 433–446 (2020). PubMed

Zhang Y., Li L., Friml J., Evaluation of gravitropism in non-seed plants. Methods Mol. Biol. 2368, 43–51. PubMed

Carbonell A., et al. , New generation of artificial MicroRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis. Plant Physiol. 165, 15–29 (2014). PubMed PMC

Spartz A. K., et al. , SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. Plant Cell 26, 2129–2142 (2014). PubMed PMC

Hayashi K., et al. , Rational design of an auxin antagonist of the SCF(TIR1) auxin receptor complex. ACS Chem. Biol. 7, 590–598 (2012). PubMed

Liao C.-Y., et al. , Reporters for sensitive and quantitative measurement of auxin response. Nat. Methods 12, 207–210 (2015). PubMed PMC

Moreno-Risueno M. A., et al. , Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329, 1306–1311 (2010). PubMed PMC

Abas L., et al. , Naphthylphthalamic acid associates with and inhibits PIN auxin transporters. Proc. Natl. Acad. Sci. U.S.A. 118, e2020857118 (2021). PubMed PMC

He W., et al. , A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23, 3944–3960 (2011). PubMed PMC

Nishimura T., et al. , Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J. 77, 352–366 (2014). PubMed

Morffy N., Strader L. C., Old town roads: Routes of auxin biosynthesis across kingdoms. Curr. Opin. Plant Biol. 55, 21–27 (2020). PubMed PMC

Dharmasiri N., et al. , Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 9, 109–119 (2005). PubMed

Knox K., Grierson C. S., Leyser O., AXR3 and SHY2 interact to regulate root hair development. Development 130, 5769–5777 (2003). PubMed

Robert H. S., et al. , Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr. Biol. 23, 2506–2512 (2013). PubMed

Friml J., et al. , Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147–153 (2003). PubMed

Huang R., et al. , Noncanonical auxin signaling regulates cell division pattern during lateral root development. Proc. Natl. Acad. Sci. U.S.A. 116, 21285–21290 (2019). PubMed PMC

Yamauchi S., et al. , The plasma membrane H+-ATPase AHA1 plays a major role in stomatal opening in response to blue light. Plant Physiol. 171, 2731–2743 (2016). PubMed PMC

Li L., Krens S. F. G., Fendrych M., Friml J., Real-time analysis of auxin response, cell wall pH and elongation in Arabidopsis thaliana Hypocotyls. Bio Protoc. 8, e2685 (2018). PubMed PMC

Novák O., et al. , Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 72, 523–536 (2012). PubMed

Gullberg J., Jonsson P., Nordström A., Sjöström M., Moritz T., Design of experiments: An efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Anal. Biochem. 331, 283–295 (2004). PubMed

Jonsson P., et al. , High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Anal. Chem. 77, 5635–5642 (2005). PubMed

Zhang Y., Rodriguez L., Li L., Zhang X., Friml J., Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants. Sci. Adv. 6, eabc8895 (2020). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...