RALF1 peptide triggers biphasic root growth inhibition upstream of auxin biosynthesis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35878023
PubMed Central
PMC9351349
DOI
10.1073/pnas.2121058119
Knihovny.cz E-zdroje
- Klíčová slova
- RALF1, auxin, biphasic regulation, cross-talk, root growth inhibition,
- MeSH
- Arabidopsis * metabolismus MeSH
- fosfotransferasy MeSH
- kořeny rostlin * růst a vývoj MeSH
- kyseliny indoloctové * metabolismus MeSH
- peptidové hormony * metabolismus MeSH
- proteiny huseníčku * metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- At3g51550 protein, Arabidopsis MeSH Prohlížeč
- fosfotransferasy MeSH
- kyseliny indoloctové * MeSH
- peptidové hormony * MeSH
- proteiny huseníčku * MeSH
- RALF1 protein, Arabidopsis MeSH Prohlížeč
Plant cell growth responds rapidly to various stimuli, adapting architecture to environmental changes. Two major endogenous signals regulating growth are the phytohormone auxin and the secreted peptides rapid alkalinization factors (RALFs). Both trigger very rapid cellular responses and also exert long-term effects [Du et al., Annu. Rev. Plant Biol. 71, 379-402 (2020); Blackburn et al., Plant Physiol. 182, 1657-1666 (2020)]. However, the way, in which these distinct signaling pathways converge to regulate growth, remains unknown. Here, using vertical confocal microscopy combined with a microfluidic chip, we addressed the mechanism of RALF action on growth. We observed correlation between RALF1-induced rapid Arabidopsis thaliana root growth inhibition and apoplast alkalinization during the initial phase of the response, and revealed that RALF1 reversibly inhibits primary root growth through apoplast alkalinization faster than within 1 min. This rapid apoplast alkalinization was the result of RALF1-induced net H+ influx and was mediated by the receptor FERONIA (FER). Furthermore, we investigated the cross-talk between RALF1 and the auxin signaling pathways during root growth regulation. The results showed that RALF-FER signaling triggered auxin signaling with a delay of approximately 1 h by up-regulating auxin biosynthesis, thus contributing to sustained RALF1-induced growth inhibition. This biphasic RALF1 action on growth allows plants to respond rapidly to environmental stimuli and also reprogram growth and development in the long term.
Department of Biotechnology College of Science Taif University 21944 Taif Saudi Arabia
Institute of Science and Technology Austria 3400 Klosterneuburg Austria
Zobrazit více v PubMed
Arsuffi G., Braybrook S. A., Acid growth: An ongoing trip. J. Exp. Bot. 69, 137–146 (2018). PubMed
Du M., Spalding E. P., Gray W. M., Rapid Auxin-Mediated Cell Expansion. Annu. Rev. Plant Biol. 71, 379–402 (2020). PubMed PMC
Pearce G., Moura D. S., Stratmann J., Ryan C. A. Jr, RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc. Natl. Acad. Sci. U.S.A. 98, 12843–12847 (2001). PubMed PMC
Haruta M., Monshausen G., Gilroy S., Sussman M. R., A cytoplasmic Ca2+ functional assay for identifying and purifying endogenous cell signaling peptides in Arabidopsis seedlings: Identification of AtRALF1 peptide. Biochemistry 47, 6311–6321 (2008). PubMed
Campbell L., Turner S. R., A comprehensive analysis of RALF proteins in green plants suggests there are two distinct functional groups. Front. Plant Sci. 8, 37 (2017). PubMed PMC
Cao J., Shi F., Evolution of the RALF gene family in plants: Gene duplication and selection patterns. Evol. Bioinform. 8, 271–292 (2012). PubMed PMC
Masachis S., et al. , A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nat. Microbiol. 1, 16043 (2016). PubMed
Thynne E., et al. , Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides. Mol. Plant Pathol. 18, 811–824 (2017). PubMed PMC
Haruta M., Sabat G., Stecker K., Minkoff B. B., Sussman M. R., A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343, 408–411 (2014). PubMed PMC
Cheung A. Y., Wu H.-M., THESEUS 1, FERONIA and relatives: A family of cell wall-sensing receptor kinases? Curr. Opin. Plant Biol. 14, 632–641 (2011). PubMed
Liu P., Haruta M., Minkoff B. B., Sussman M. R., Probing a plant plasma membrane receptor kinase’s three-dimensional structure using mass spectrometry-based protein footprinting. Biochemistry 57, 5159–5168 (2018). PubMed
Chakravorty D., Yu Y., Assmann S. M., A kinase-dead version of FERONIA receptor-like kinase has dose-dependent impacts on rosette morphology and RALF1-mediated stomatal movements. FEBS Lett. 592, 3429–3437 (2018). PubMed PMC
Haruta M., Gaddameedi V., Burch H., Fernandez D., Sussman M. R., Comparison of the effects of a kinase-dead mutation of FERONIA on ovule fertilization and root growth of Arabidopsis. FEBS Lett. 592, 2395–2402 (2018). PubMed
Blackburn M. R., Haruta M., Moura D. S., Twenty years of progress in physiological and biochemical investigation of RALF peptides. Plant Physiol. 182, 1657–1666 (2020). PubMed PMC
Dressano K., et al. , BAK1 is involved in AtRALF1-induced inhibition of root cell expansion. PLoS Genet. 13, e1007053 (2017). PubMed PMC
Campos W. F., et al. , Arabidopsis thaliana rapid alkalinization factor 1-mediated root growth inhibition is dependent on calmodulin-like protein 38. J. Biol. Chem. 293, 2159–2171 (2018). PubMed PMC
Friml J., Fourteen stations of auxin. CSH Perspect. Biol. 14, a039859 (2021). PubMed PMC
Mashiguchi K., et al. , The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 108, 18512–18517 (2011). PubMed PMC
Petrásek J., Friml J., Auxin transport routes in plant development. Development 136, 2675–2688 (2009). PubMed
Lavy M., Estelle M., Mechanisms of auxin signaling. Development 143, 3226–3229 (2016). PubMed PMC
Fendrych M., et al. , Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants 4, 453–459 (2018). PubMed PMC
Dubey S. M., Serre N. B. C., Oulehlová D., Vittal P., Fendrych M., No time for transcription—Rapid auxin responses in plants. Cold Spring Harb. Perspect. Biol. 13, 039891 (2021). PubMed PMC
Li L., et al. , Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature 599, 273–277 (2021). PubMed PMC
Cao M., et al. , TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature 568, 240–243 (2019). PubMed
Lin W., et al. , TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature 599, 278–282 (2021). PubMed PMC
Wang Q., et al. , A phosphorylation-based switch controls TAA1-mediated auxin biosynthesis in plants. Nat. Commun. 11, 679 (2020). PubMed PMC
Barbez E., Dünser K., Gaidora A., Lendl T., Busch W., Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 114, E4884–E4893 (2017). PubMed PMC
Dong Q., Zhang Z., Liu Y., Tao L. Z., Liu H., FERONIA regulates auxin-mediated lateral root development and primary root gravitropism. FEBS Lett. 593, 97–106 (2019). PubMed
Li E., Wang G., Zhang Y. L., Kong Z., Li S., FERONIA mediates root nutating growth. Plant J. 104, 1105–1116 (2020). PubMed
Yu M., et al. , The RALF1-FERONIA interaction modulates endocytosis to mediate control of root growth in Arabidopsis. Development 147, dev189902 (2020). PubMed
Gonneau M., et al. , Receptor kinase THESEUS1 is a rapid alkalinization factor 34 receptor in Arabidopsis. Curr. Biol. 28, 2452–2458.e2454 (2018). PubMed
von Wangenheim D., et al. , Live tracking of moving samples in confocal microscopy for vertically grown roots. eLife 6, e26792 (2017). PubMed PMC
Martinière A., et al. , Uncovering pH at both sides of the root plasma membrane interface using noninvasive imaging. Proc. Natl. Acad. Sci. U.S.A. 115, 6488–6493 (2018). PubMed PMC
Gjetting S. K., et al. , Evidence for multiple receptors mediating RALF-triggered Ca2+ signaling and proton pump inhibition. Plant J. 104, 433–446 (2020). PubMed
Zhang Y., Li L., Friml J., Evaluation of gravitropism in non-seed plants. Methods Mol. Biol. 2368, 43–51. PubMed
Carbonell A., et al. , New generation of artificial MicroRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis. Plant Physiol. 165, 15–29 (2014). PubMed PMC
Spartz A. K., et al. , SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. Plant Cell 26, 2129–2142 (2014). PubMed PMC
Hayashi K., et al. , Rational design of an auxin antagonist of the SCF(TIR1) auxin receptor complex. ACS Chem. Biol. 7, 590–598 (2012). PubMed
Liao C.-Y., et al. , Reporters for sensitive and quantitative measurement of auxin response. Nat. Methods 12, 207–210 (2015). PubMed PMC
Moreno-Risueno M. A., et al. , Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329, 1306–1311 (2010). PubMed PMC
Abas L., et al. , Naphthylphthalamic acid associates with and inhibits PIN auxin transporters. Proc. Natl. Acad. Sci. U.S.A. 118, e2020857118 (2021). PubMed PMC
He W., et al. , A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23, 3944–3960 (2011). PubMed PMC
Nishimura T., et al. , Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J. 77, 352–366 (2014). PubMed
Morffy N., Strader L. C., Old town roads: Routes of auxin biosynthesis across kingdoms. Curr. Opin. Plant Biol. 55, 21–27 (2020). PubMed PMC
Dharmasiri N., et al. , Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 9, 109–119 (2005). PubMed
Knox K., Grierson C. S., Leyser O., AXR3 and SHY2 interact to regulate root hair development. Development 130, 5769–5777 (2003). PubMed
Robert H. S., et al. , Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr. Biol. 23, 2506–2512 (2013). PubMed
Friml J., et al. , Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147–153 (2003). PubMed
Huang R., et al. , Noncanonical auxin signaling regulates cell division pattern during lateral root development. Proc. Natl. Acad. Sci. U.S.A. 116, 21285–21290 (2019). PubMed PMC
Yamauchi S., et al. , The plasma membrane H+-ATPase AHA1 plays a major role in stomatal opening in response to blue light. Plant Physiol. 171, 2731–2743 (2016). PubMed PMC
Li L., Krens S. F. G., Fendrych M., Friml J., Real-time analysis of auxin response, cell wall pH and elongation in Arabidopsis thaliana Hypocotyls. Bio Protoc. 8, e2685 (2018). PubMed PMC
Novák O., et al. , Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 72, 523–536 (2012). PubMed
Gullberg J., Jonsson P., Nordström A., Sjöström M., Moritz T., Design of experiments: An efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Anal. Biochem. 331, 283–295 (2004). PubMed
Jonsson P., et al. , High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Anal. Chem. 77, 5635–5642 (2005). PubMed
Zhang Y., Rodriguez L., Li L., Zhang X., Friml J., Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants. Sci. Adv. 6, eabc8895 (2020). PubMed PMC