No Time for Transcription-Rapid Auxin Responses in Plants

. 2021 Aug 02 ; 13 (8) : . [epub] 20210802

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33648988
Odkazy

PubMed 33648988
PubMed Central PMC8327833
DOI 10.1101/cshperspect.a039891
PII: cshperspect.a039891
Knihovny.cz E-zdroje

Auxin regulates the transcription of auxin-responsive genes by the TIR1/AFBs-Aux/IAA-ARF signaling pathway, and in this way facilitates plant growth and development. However, rapid, nontranscriptional responses to auxin that cannot be explained by this pathway have been reported. In this review, we focus on several examples of rapid auxin responses: (1) the triggering of changes in plasma membrane potential in various plant species and tissues, (2) inhibition of root growth, which also correlates with membrane potential changes, cytosolic Ca2+ spikes, and a rise of apoplastic pH, (3) the influence on endomembrane trafficking of PIN proteins and other membrane cargoes, and (4) activation of ROPs (Rho of plants) and their downstream effectors such as the cytoskeleton or vesicle trafficking. In most cases, the signaling pathway triggering the response is poorly understood. A role for the TIR1/AFBs in rapid root growth regulation is emerging, as well as the involvement of transmembrane kinases (TMKs) in the activation of ROPs. We discuss similarities and differences among these rapid responses and focus on their physiological significance, which remains an enigma in most cases.

Zobrazit více v PubMed

Adamowski M, Friml J. 2015. PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27: 20–32. 10.1105/tpc.114.134874 PubMed DOI PMC

Arieti RS, Staiger CJ. 2020. Auxin-induced actin cytoskeleton rearrangements require AUX1. New Phytol 226: 441–459. 10.1111/nph.16382 PubMed DOI PMC

Badescu GO, Napier RM. 2006. Receptors for auxin: will it all end in TIRs? Trends Plant Sci 11: 217–223. 10.1016/j.tplants.2006.03.001 PubMed DOI

Band LR, Wells DM, Larrieu A, Sun J, Middleton AM, French AP, Brunoud G, Sato EM, Wilson MH, Peŕet B, et al. 2012. Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc Natl Acad Sci 109: 4668–4673. 10.1073/pnas.1201498109 PubMed DOI PMC

Barbez E, Dünser K, Gaidora A, Lendl T, Busch W. 2017. Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc Natl Acad Sci 114: E4884–E4893. 10.1073/pnas.1613499114 PubMed DOI PMC

Bates GW, Goldsmith MH. 1983. Rapid response of the plasma-membrane potential in oat coleoptiles to auxin and other weak acids. Planta 159: 231–237. 10.1007/BF00397530 PubMed DOI

Behera S, Xu Z, Luoni L, Bonza MC, Doccula FG, De Michelis MI, Morris RJ, Schwarzländer M, Costa A. 2018. Cellular Ca2+ signals generate defined pH signatures in plants. Plant Cell 30: 2704–2719. 10.1105/tpc.18.00655 PubMed DOI PMC

Belteton SA, Sawchuk MG, Donohoe BS, Scarpella E, Szymanski DB. 2018. Reassessing the roles of PIN proteins and anticlinal microtubules during pavement cell morphogenesis. Plant Physiol 176: 432–449. 10.1104/pp.17.01554 PubMed DOI PMC

Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA. 1996. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273: 948–950. 10.1126/science.273.5277.948 PubMed DOI

Bhosale R, Giri J, Pandey BK, Giehl RFH, Hartmann A, Traini R, Truskina J, Leftley N, Hanlon M, Swarup K, et al. 2018. A mechanistic framework for auxin dependent Arabidopsis root hair elongation to low external phosphate. Nat Commun 9: 1409. 10.1038/s41467-018-03851-3 PubMed DOI PMC

Bossen ME, Tretyn A, Kendrick RE, Vredenberg WJ. 1991. Comparison between swelling of etiolated wheat (Triticum aestivum L.) protoplasts induced by phytochrome and α-naphthaleneacetic acid, benzylaminopurine, gibberellic acid abscisic acid and acetylcholine. J Plant Physiol 137: 706–710. 10.1016/S0176-1617(11)81226-5 DOI

Calderón Villalobos LIA, Lee S, De Oliveira C, Ivetac A, Brandt W, Armitage L, Sheard LB, Tan X, Parry G, Mao H, et al. 2012. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 8: 477–485. 10.1038/nchembio.926 PubMed DOI PMC

Cao M, Chen R, Li P, Yu Y, Zheng R, Ge D, Zheng W, Wang X, Gu Y, Gelová Z, et al. 2019. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature 568: 240–243. 10.1038/s41586-019-1069-7 PubMed DOI

Carrier DJ, Bakar NTA, Swarup R, Callaghan R, Napier RM, Bennett MJ, Kerr ID. 2008. The binding of auxin to the Arabidopsis auxin influx transporter AUX1. Plant Physiol 148: 529–535. 10.1104/pp.108.122044 PubMed DOI PMC

Chen JG, Ullah H, Young JC, Sussman MR, Jones AM. 2001. ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev 15: 902–911. 10.1101/gad.866201 PubMed DOI PMC

Chen J, Wang F, Zheng S, Xu T, Yang Z. 2015. Pavement cells: a model system for non-transcriptional auxin signalling and crosstalks. J Exp Bot 66: 4957–4970. 10.1093/jxb/erv266 PubMed DOI PMC

Delbarre A, Muller P, Imhoff V, Guern J. 1996. Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198: 532–541. 10.1007/BF00262639 PubMed DOI

Dezfulian MH, Jalili E, Roberto DKA, Moss BL, Khoo K, Nemhauser JL, Crosby WL. 2016. Oligomerization of SCFTIR1 is essential for Aux/IAA degradation and auxin signaling in Arabidopsis. PLoS Genet 12: e1006301. 10.1371/journal.pgen.1006301 PubMed DOI PMC

Dharmasiri N, Dharmasiri S, Estelle M. 2005. The F-box protein TIR1 is an auxin receptor. Nature 435: 441–445. 10.1038/nature03543 PubMed DOI

Dindas J, Scherzer S, Roelfsema MRG, Von Meyer K, Müller HM, Al-Rasheid KAS, Palme K, Dietrich P, Becker D, Bennett MJ, et al. 2018. AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nat Commun 9: 1174. 10.1038/s41467-018-03582-5 PubMed DOI PMC

Dindas J, Becker D, Roelfsema MRG, Scherzer S, Bennett M, Hedrich R. 2020. Pitfalls in auxin pharmacology. New Phytol 227: 286–292. 10.1111/nph.16491 PubMed DOI

Du M, Spalding EP, Gray WM. 2020. Rapid auxin-mediated cell expansion. Annu Rev Plant Biol 71: 379–402. 10.1146/annurev-arplant-073019-025907 PubMed DOI PMC

Enders TA, Frick EM, Strader LC. 2017. An Arabidopsis kinase cascade influences auxin-responsive cell expansion. Plant J 92: 68–81. 10.1111/tpj.13635 PubMed DOI PMC

Evans ML, Mulkey TJ, Vesper MJ. 1980. Auxin action on proton influx in corn roots and its correlation with growth. Planta 148: 510–512. 10.1007/BF02395322 PubMed DOI

Evans ML, Ishikawa H, Estelle MA. 1994. Responses of Arabidopsis roots to auxin studied with high temporal resolution: comparison of wild type and auxin-response mutants. Planta 194: 215–222. 10.1007/BF01101680 DOI

Fehér A, Lajkó DB. 2015. Signals fly when kinases meet Rho-of-plants (ROP) small G-proteins. Plant Sci 237: 93–107. 10.1016/j.plantsci.2015.05.007 PubMed DOI

Feiguelman G, Fu Y, Yalovsky S. 2018. ROP GTPases structure–function and signaling pathways. Plant Physiol 176: 57–79. 10.1104/pp.17.01415 PubMed DOI PMC

Felle H, Peters W, Palme K. 1991. The electrical response of maize to auxins. Biochim Biophys Acta 1064: 199–204. 10.1016/0005-2736(91)90302-O PubMed DOI

Fendrych M, Leung J, Friml J. 2016. Tir1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. eLife 5: e19048. 10.7554/eLife.19048 PubMed DOI PMC

Fendrych M, Akhmanova M, Merrin J, Glanc M, Hagihara S, Takahashi K, Uchida N, Torii KU, Friml J. 2018. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat Plants 4: 453–459. 10.1038/s41477-018-0190-1 PubMed DOI PMC

Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K. 1998. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282: 2226–2230. 10.1126/science.282.5397.2226 PubMed DOI

Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y. 2015. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci 112: 2275–2280. 10.1073/pnas.1500365112 PubMed DOI PMC

Geldner N, Friml J, Stierhof YD, Jürgens G, Palme K. 2001. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413: 425–428. 10.1038/35096571 PubMed DOI

Gjetting KSK, Ytting CK, Schulz A, Fuglsang AT. 2012. Live imaging of intra-and extracellular pH in plants using pHusion, a novel genetically encoded biosensor. J Exp Bot 63: 3207–3218. 10.1093/jxb/ers040 PubMed DOI PMC

Goering H. 1979. Depolarization of transmembrane potential of corn and wheat coleoptiles under reduced water potential and after IAA application. Plant Cell Physiol 20: 649–656.

Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M. 2001. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414: 271–276. 10.1038/35104500 PubMed DOI

Han M, Park Y, Kim I, Kim EH, Yu TK, Rhee S, Suh JY. 2014. Structural basis for the auxin-induced transcriptional regulation by Aux/IAA17. Proc Natl Acad Sci 111: 18613–18618. 10.1073/pnas.1419525112 PubMed DOI PMC

Han X, Shi Y, Liu G, Guo Y, Yang Y. 2018. Activation of ROP6 GTPase by phosphatidylglycerol in Arabidopsis. Front Plant Sci 9: 347. 10.3389/fpls.2018.00347 PubMed DOI PMC

Hayashi KI, Neve J, Hirose M, Kuboki A, Shimada Y, Kepinski S, Nozaki H. 2012. Rational design of an auxin antagonist of the SCFTIR1 auxin receptor complex. ACS Chem Biol 7: 590–598. 10.1021/cb200404c PubMed DOI

Hazak O, Bloch D, Poraty L, Sternberg H, Zhang J, Friml J, Yalovsky S. 2010. A rho scaffold integrates the secretory system with feedback mechanisms in regulation of auxin distribution. PLoS Biol 8: e1000282. 10.1371/journal.pbio.1000282 PubMed DOI PMC

Hertel R, Lomax TL, Briggs WR. 1983. Auxin transport in membrane vesicles from Cucurbita pepo L. Planta 157: 193–201. 10.1007/BF00405182 PubMed DOI

Holland AJ, Fachinetti D, Han JS, Cleveland DW. 2012. Inducible, reversible system for the rapid and complete degradation of proteins in mammalian cells. Proc Natl Acad Sci 109: E3350–E3357. 10.1073/pnas.1216880109 PubMed DOI PMC

Jásik J, Bokor B, Stuchlík S, Mičieta K, Turňa J, Schmelzer E. 2016. Effects of auxins on PIN-FORMED2 (PIN2) dynamics are not mediated by inhibiting PIN2 endocytosis. Plant Physiol 172: 1019–1031. PubMed PMC

Jelínková A, Müller K, Fílová-Pařezová M, Petrášek J. 2015. NtGNL1a ARF-GEF acts in endocytosis in tobacco cells. BMC Plant Biol 15: 272. 10.1186/s12870-015-0621-3 PubMed DOI PMC

Kamimoto Y, Terasaka K, Hamamoto M, Takanashi K, Fukuda S, Shitan N, Sugiyama A, Suzuki H, Shibata D, Wang B, et al. 2012. Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. Plant Cell Physiol 53: 2090–2100. 10.1093/pcp/pcs149 PubMed DOI

Kepinski S, Leyser O. 2005. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435: 446–451. 10.1038/nature03542 PubMed DOI

Knox K, Grierson CS, Leyser O. 2003. AXR3 and SHY2 interact to regulate root hair development. Development 130: 5769–5777. 10.1242/dev.00659 PubMed DOI

Kubeš M, Yang H, Richter GL, Cheng Y, Młodzińska E, Wang X, Blakeslee JJ, Carraro N, Petrášek J, Zažímalová E, et al. 2012. The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. Plant J 69: 640–654. 10.1111/j.1365-313X.2011.04818.x PubMed DOI

Lin D, Nagawa S, Chen J, Cao L, Chen X, Xu T, Li H, Dhonukshe P, Yamamuro C, Friml J, et al. 2012. A ROP GTPase-dependent auxin signaling pathway regulates the subcellular distribution of PIN2 in Arabidopsis roots. Curr Biol 22: 1319–1325. 10.1016/j.cub.2012.05.019 PubMed DOI PMC

Lomax TL, Mehlhorn RJ, Briggs WR. 1985. Active auxin uptake by zucchini membrane vesicles: quantitation using ESR volume and delta pH determinations. Proc Natl Acad Sci 82: 6541–6545. 10.1073/pnas.82.19.6541 PubMed DOI PMC

Loper MT, Spanswick RM. 1991. Auxin transport in suspension-cultured soybean root cells. II: Anion effects on carrier-mediated uptake. Plant Physiol 96: 192–197. 10.1104/pp.96.1.192 PubMed DOI PMC

Lüthen H, Böttger M. 1988. Kinetics of proton secretion and growth in maize roots: action of various plant growth effectors. Plant Sci 54: 37–43. 10.1016/0168-9452(88)90053-2 DOI

Mangano S, Denita-Juarez SP, Choi HS, Marzol E, Hwang Y, Ranocha P, Velasquez SM, Borassi C, Barberini ML, Aptekmann AA, et al. 2017. Molecular link between auxin and ROS-mediated polar growth. Proc Natl Acad Sci 114: 5289–5294. 10.1073/pnas.1701536114 PubMed DOI PMC

Marten I, Zeilinger C, Redhead C, Landry DW, Al-Awqati Q, Hedrich R. 1992. Identification and modulation of a voltage-dependent anion channel in the plasma membrane of guard cells by high-affinity ligands. EMBO J 11: 3569–3575. 10.1002/j.1460-2075.1992.tb05440.x PubMed DOI PMC

Michalko J, Glanc M, Perrot-Rechenmann C, Friml J. 2016. Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein. F1000Res 5: 86. 10.12688/f1000research.7654.1 PubMed DOI PMC

Milo R, Jorgensen P, Moran U, Weber G, Springer M. 2010. BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res 38: D750–D753. 10.1093/nar/gkp889 PubMed DOI PMC

Minamisawa K, Fukai K. 1991. Production of indole-3-acetic acid by Bradyrhizobium japonicum: a correlation with genotype grouping and rhizobitoxine production. Plant Cell Physiol 32: 1–9.

Mockaitis K, Howell SH. 2000. Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J 24: 785–796. 10.1046/j.1365-313x.2000.00921.x PubMed DOI

Monshausen GB, Miller ND, Murphy AS, Gilroy S. 2011. Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J 65: 309–318. 10.1111/j.1365-313X.2010.04423.x PubMed DOI

Moss BL, Mao H, Guseman JM, Hinds TR, Hellmuth A, Kovenock M, Noorassa A, Lanctot A, Calderón Villalobos LIA, Zheng N, et al. 2015. Rate motifs tune auxin/indole-3-acetic acid degradation dynamics. Plant Physiol 169: 803–813. 10.1104/pp.15.00587 PubMed DOI PMC

Nagawa S, Xu T, Lin D, Dhonukshe P, Zhang X, Friml J, Scheres B, Fu Y, Yang Z. 2012. ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biol 10: e1001299. 10.1371/journal.pbio.1001299 PubMed DOI PMC

Niemeyer M, Moreno Castillo E, Ihling CH, Iacobucci C, Wilde V, Hellmuth A, Hoehenwarter W, Samodelov SL, Zurbriggen MD, Kastritis PL, et al. 2020. Flexibility of intrinsically disordered degrons in AUX/IAA proteins reinforces auxin co-receptor assemblies. Nat Commun 11: 2277. 10.1038/s41467-020-16147-2 PubMed DOI PMC

Nishimura K, Fukagawa T, Takisawa H, Kakimoto T, Kanemaki M. 2009. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat Methods 6: 917–922. 10.1038/nmeth.1401 PubMed DOI

Nishimura K, Yamada R, Hagihara S, Iwasaki R, Uchida N, Kamura T, Takahashi K, Torii KU, Fukagawa T. 2020. A super-sensitive auxin-inducible degron system with an engineered auxin-TIR1 pair. Nucleic Acids Res 48: e108. 10.1093/nar/gkaa748 PubMed DOI PMC

Paciorek T, Zazímalová E, Ruthardt N, Petrášek J, Stierhof Y-D, Kleine-Vehn J, Morris DA, Emans N, Jürgens G, Geldner N, et al. 2005. Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435: 1251–1256. 10.1038/nature03633 PubMed DOI

Pan J, Fujioka S, Peng J, Chen J, Li G, Chen R. 2009. The E3 ubiquitin ligase SCFTIR1/AFB and membrane sterols play key roles in auxin regulation of endocytosis, recycling, and plasma membrane accumulation of the auxin efflux transporter PIN2 in Arabidopsis thaliana. Plant Cell 21: 568–580. 10.1105/tpc.108.061465 PubMed DOI PMC

Pan X, Fang L, Liu J, Senay-Aras B, Lin W, Zheng S, Zhang T, Guo J, Manor U, Van Norman J, et al. 2020. Auxin-induced signaling protein nanoclustering contributes to cell polarity formation. Nat Commun 11: 3914. 10.1038/s41467-020-17602-w PubMed DOI PMC

Paponov IA, Dindas J, Król E, Friz T, Budnyk V, Teale W, Paponov M, Hedrich R, Palme K. 2019a. Auxin-induced plasma membrane depolarization is regulated by auxin transport and not by AUXIN BINDING PROTEIN1. Front Plant Sci 9: 1953. 10.3389/fpls.2018.01953 PubMed DOI PMC

Paponov IA, Friz T, Budnyk V, Teale W, Wüst F, Paponov M, Al-Babili S, Palme K. 2019b. Natural auxin does not inhibit Brefeldin A induced PIN1 and PIN2 internalization in root cells. Front Plant Sci 10: 574. 10.3389/fpls.2019.00574 PubMed DOI PMC

Petrášek J, Friml J. 2009. Auxin transport routes in plant development. Development 136: 2675–2688. 10.1242/dev.030353 PubMed DOI

Petrášek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertová D, Wisniewska J, Tadele Z, Kubes M, Covanová M, et al. 2006. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312: 914–918. 10.1126/science.1123542 PubMed DOI

Platre MP, Bayle V, Armengot L, Bareille J, del Mar Marquès-Bueno M, Creff A, Maneta-Peyret L, Fiche JB, Nollmann M, Miège C, et al. 2019. Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine. Science 364: 57–62. 10.1126/science.aav9959 PubMed DOI

Prigge MJ, Platre M, Kadakia N, Zhang Y, Greenham K, Szutu W, Pandey BK, Bhosale RA, Bennett MJ, Busch W, et al. 2020. Genetic analysis of the Arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions. eLife 9: 1–28. 10.7554/eLife.54740 PubMed DOI PMC

Ramans Harborough S, Kalverda A, Thompson G, Kieffer M, Kubes M, Quareshy M, Uzunova V, Prusinska J, Hayashi K, Napier R, et al. 2019. A fuzzy encounter complex precedes formation of the fully-engaged TIR1-Aux/IAA auxin co-receptor system. bioRxiv 10.1101/781922 DOI

Ramírez-Sánchez O, Pérez-Rodríguez P, Delaye L, Tiessen A. 2016. Plant proteins are smaller because they are encoded by fewer exons than animal proteins. Genome Proteom Bioinf 14: 357–370. 10.1016/j.gpb.2016.06.003 PubMed DOI PMC

Raven JA. 1975. Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74: 163–172. 10.1111/j.1469-8137.1975.tb02602.x DOI

Ravichandran SJ, Linh NM, Scarpella E. 2020. The canalization hypothesis—challenges and alternatives. New Phytol 227: 1051–1059. 10.1111/nph.16605 PubMed DOI

Reichardt I, Stierhof Y-D, Mayer U, Richter S, Schwarz H, Schumacher K, Jürgens G. 2007. Plant cytokinesis requires de novo secretory trafficking but not endocytosis. Curr Biol 17: 2047–2053. 10.1016/j.cub.2007.10.040 PubMed DOI

Retzer K, Lacek J, Skokan R, Del Genio CI, Vosolsobě S, Laňková M, Malínská K, Konstantinova N, Zažímalová E, Napier RM, et al. 2017. Evolutionary conserved cysteines function as cis-acting regulators of Arabidopsis PIN-FORMED 2 distribution. Int J Mol Sci 18: 2274. 10.3390/ijms18112274 PubMed DOI PMC

Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, Vanneste S, Zhang J, Simon S, Čovanová M, et al. 2010. ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143: 111–121. 10.1016/j.cell.2010.09.027 PubMed DOI PMC

Rubery PH, Sheldrake AR. 1974. Carrier-mediated auxin transport. Planta 118: 101–121. 10.1007/BF00388387 PubMed DOI

Ruck A, Palme K, Venis MA, Napier RM, Felle HH. 1993. Patch-clamp analysis establishes a role for an auxin binding protein in the auxin stimulation of plasma membrane current in Zea mays protoplasts. Plant J 4: 41–46. 10.1046/j.1365-313X.1993.04010041.x DOI

Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M. 1998. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev 12: 198–207. 10.1101/gad.12.2.198 PubMed DOI PMC

Scheitz K, Lüthen H, Schenck D. 2013. Rapid auxin-induced root growth inhibition requires the TIR and AFB auxin receptors. Planta 238: 1171–1176. 10.1007/s00425-013-1941-x PubMed DOI

Schepetilnikov M, Dimitrova M, Mancera-Martínez E, Geldreich A, Keller M, Ryabova LA. 2013. TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. EMBO J 32: 1087–1102. 10.1038/emboj.2013.61 PubMed DOI PMC

Schepetilnikov M, Makarian J, Srour O, Geldreich A, Yang Z, Chicher J, Hammann P, Ryabova LA. 2017. GTPase ROP2 binds and promotes activation of target of rapamycin, TOR, in response to auxin. EMBO J 36: 886–903. 10.15252/embj.201694816 PubMed DOI PMC

Senn AP, Goldsmith MH. 1988. Regulation of electrogenic proton pumping by auxin and fusicoccin as related to the growth of Avena coleoptiles. Plant Physiol 88: 131–138. 10.1104/pp.88.1.131 PubMed DOI PMC

Shih HW, Depew CL, Miller ND, Monshausen GB. 2015. The cyclic nucleotide-gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana. Curr Biol 25: 3119–3125. 10.1016/j.cub.2015.10.025 PubMed DOI

Simon S, Kubeš M, Baster P, Robert S, Dobrev PI, Friml J, Petrášek J, Zažímalová E. 2013. Defining the selectivity of processes along the auxin response chain: a study using auxin analogues. New Phytol 200: 1034–1048. 10.1111/nph.12437 PubMed DOI

Sorek N, Segev O, Gutman O, Bar E, Richter S, Poraty L, Hirsch JA, Henis YI, Lewinsohn E, Jürgens G, et al. 2010. An S-acylation switch of conserved G domain cysteines is required for polarity signaling by ROP GTPases. Curr Biol 20: 914–920. 10.1016/j.cub.2010.03.057 PubMed DOI

Swarup R, Péret B. 2012. AUX/LAX family of auxin influx carriers—an overview. Front Plant Sci 3: 225. 10.3389/fpls.2012.00225 PubMed DOI PMC

Sze H. 1985. H+-translocating ATPases: advances using membrane vesicles. Annu Rev Plant Physiol 36: 175–208. 10.1146/annurev.pp.36.060185.001135 DOI

Sze H, Li X, Palmgren MG. 1999. Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell 11: 677–689. PubMed PMC

Takahashi K, Hayashi K, Kinoshita T. 2012. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis. Plant Physiol 159: 632–641. 10.1104/pp.112.196428 PubMed DOI PMC

Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N. 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446: 640–645. 10.1038/nature05731 PubMed DOI

Tao L, Cheung AY, Wu H. 2002. Plant Rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant Cell 14: 2745–2760. 10.1105/tpc.006320 PubMed DOI PMC

Tretyn A, Wagner G, Felle HH. 1991. Signal transduction in Sinapis alba root hairs: auxins as external messengers. J Plant Physiol 139: 187–193. 10.1016/S0176-1617(11)80606-1 DOI

Uchida N, Takahashi K, Iwasaki R, Yamada R, Yoshimura M, Endo TA, Kimura S, Zhang H, Nomoto M, Tada Y, et al. 2018. Chemical hijacking of auxin signaling with an engineered auxin-TIR1 pair. Nat Chem Biol 14: 299–305. 10.1038/nchembio.2555 PubMed DOI PMC

Weijers D, Benkova E, Jäger KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jürgens G. 2005. Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24: 1874–1885. 10.1038/sj.emboj.7600659 PubMed DOI PMC

Weisenseel MH, Meyer AJ. 1997. Bioelectricity, gravity and plants. Planta 203: S98–S106. 10.1007/PL00008122 PubMed DOI

Winkler M, Niemeyer M, Hellmuth A, Janitza P, Christ G, Samodelov SL, Wilde V, Majovsky P, Trujillo M, Zurbriggen MD, et al. 2017. Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction. Nat Commun 8: 15706. 10.1038/ncomms15706 PubMed DOI PMC

Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z. 2010. Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143: 99–110. 10.1016/j.cell.2010.09.003 PubMed DOI PMC

Xu T, Dai N, Chen J, Nagawa S, Cao M, Li H, Zhou Z, Chen X, De Rycke R, Rakusová H, et al. 2014. Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343: 1025–1028. 10.1126/science.1245125 PubMed DOI PMC

Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E. 2006. High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 16: 1123–1127. 10.1016/j.cub.2006.04.029 PubMed DOI

Young LM, Evans ML, Hertel R. 1990. Correlations between gravitropic curvature and auxin movement across gravistimulated roots of Zea mays. Plant Physiol 92: 792–796. 10.1104/pp.92.3.792 PubMed DOI PMC

Yu H, Zhang Y, Moss BL, Bargmann BOR, Wang R, Prigge M, Nemhauser JL, Estelle M. 2015. Untethering the TIR1 auxin receptor from the SCF complex increases its stability and inhibits auxin response. Nat Plants 1: 14030. 10.1038/nplants.2014.30 PubMed DOI PMC

Zaina S, Reggiani R, Bertani A. 1990. Preliminary evidence for involvement of GTP-binding protein(s) in auxin signal transduction in rice (Oryza sativa L.) coleoptile. J Plant Physiol 136: 653–658. 10.1016/S0176-1617(11)81339-8 DOI

Zhou X, Levin EJ, Pan Y, McCoy JG, Sharma R, Kloss B, Bruni R, Quick M, Zhou M. 2014. Structural basis of the alternating-access mechanism in a bile acid transporter. Nature 505: 569–573. 10.1038/nature12811 PubMed DOI PMC

Zwiewka M, Bilanovičová V, Seifu YW, Nodzyński T. 2019. The nuts and bolts of PIN auxin efflux carriers. Front Plant Sci 10: 985. 10.3389/fpls.2019.00985 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...