ABP1-TMK auxin perception for global phosphorylation and auxin canalization
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P 29988
Austrian Science Fund FWF - Austria
083367
Wellcome Trust - United Kingdom
742985
European Research Council - International
PubMed
36071161
DOI
10.1038/s41586-022-05187-x
PII: 10.1038/s41586-022-05187-x
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis * genetika metabolismus MeSH
- fosforylace MeSH
- koncentrace vodíkových iontů MeSH
- kyseliny indoloctové * metabolismus MeSH
- mutace MeSH
- protein-serin-threoninkinasy * genetika metabolismus MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- protonové ATPasy metabolismus MeSH
- proudění cytoplazmy MeSH
- regulátory růstu rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AT1G66150 protein, Arabidopsis MeSH Prohlížeč
- auxin-binding protein 1 MeSH Prohlížeč
- kyseliny indoloctové * MeSH
- protein-serin-threoninkinasy * MeSH
- proteiny huseníčku * MeSH
- protonové ATPasy MeSH
- regulátory růstu rostlin MeSH
The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1-3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization.
Institute for Multidisciplinary Research University of Belgrade Belgrade Serbia
Institute of Science and Technology Austria Klosterneuburg Austria
Laboratory of Biochemistry Wageningen University Wageningen The Netherlands
Zobrazit více v PubMed
Friml, J. Fourteen stations of auxin. Cold Spring Harb. Perspect. Biol. 14, a039859 (2021).
Lavy, M. & Estelle, M. Mechanisms of auxin signaling. Development 143, 3226–3229 (2016). PubMed DOI PMC
Morffy, N. & Strader, L. C. Structural aspects of auxin signaling. Cold Spring Harb. Perspect. Biol. 14, a039883 (2021).
Napier, R. The story of auxin-binding protein 1 (ABP1). Cold Spring Harb. Perspect. Biol. 13, a039909 (2021).
Fendrych, M. et al. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants 4, 453–459 (2018). PubMed DOI PMC
Dindas, J. et al. AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nat. Commun. 9, 1174 (2018). PubMed DOI PMC
Gallei, M., Luschnig, C. & Friml, J. Auxin signalling in growth: Schrödinger’s cat out of the bag. Curr. Opin. Plant Biol. 53, 43–49 (2020). PubMed DOI
Li, L., Gallei, M. & Friml, J. Bending to auxin: fast acid growth for tropisms. Trends Plant Sci. 27, 440–449 (2022).
Kuhn, A. et al. Direct ETTIN–auxin interaction controls chromatin states in gynoecium development. eLife 9, e51787 (2020). PubMed DOI PMC
Cao, M. et al. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature 568, 240–243 (2019). PubMed DOI
Dubey, S. M., Serre, N. B. C., Oulehlová, D., Vittal, P. & Fendrych, M. No time for transcription-rapid auxin responses in plants. Cold Spring Harb. Perspect. Biol. 13, a039891 (2021). PubMed DOI
Adamowski, M. & Friml, J. PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27, 20–32 (2015). PubMed DOI PMC
Narasimhan, M. et al. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. Plant Physiol. 186, 1122–1142 (2021). PubMed DOI PMC
Robert, S. et al. ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143, 111–121 (2010). PubMed DOI PMC
Sachs, T. The induction of transport channels by auxin. Planta 127, 201–206 (1975). PubMed DOI
Han, H. et al. Rapid auxin-mediated phosphorylation of myosin regulates trafficking and polarity in Arabidopsis. Preprint at bioRxiv https://doi.org/10.1101/2021.04.13.439603 (2021).
Li, L. et al. Cell surface and intracellular auxin signalling for H + fluxes in root growth. Nature 599, 273–277 (2021). PubMed DOI PMC
Lin, W. et al. TMK-based cell-surface auxin signaling activates cell wall acidification. Nature 599, 278–282 (2021).
McLaughlin, H. M., Ang, A. C. H. & Østergaard, L. Noncanonical auxin signaling. Cold Spring Harb. Perspect. Biol. 13, a039917 (2021). PubMed DOI
Hertel, R., Thomson, K. S. & Russo, V. E. In-vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta 107, 325–340 (1972). PubMed DOI
Xu, T. et al. Cell surface ABP1–TMK auxin-sensing complex activates ROP GTPase signaling. Science 343, 1025–1028 (2014). PubMed DOI PMC
Gao, Y. et al. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc. Natl Acad. Sci. USA 112, 2275–2280 (2015). PubMed DOI PMC
Grones, P. et al. Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles. J. Exp. Bot. 66, 5055–5065 (2015). PubMed DOI
Michalko, J., Dravecká, M., Bollenbach, T. & Friml, J. Embryo-lethal phenotypes in early abp1 mutants are due to disruption of the neighboring BSM gene. F1000Res. 4, 1104 (2015). PubMed DOI PMC
Dai, X. et al. Embryonic lethality of Arabidopsis abp1-1 is caused by deletion of the adjacent BSM gene. Nature Plants 1, 15183 (2015). PubMed DOI PMC
Smakowska-Luzan, E. et al. An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature 553, 342–346 (2018). PubMed DOI PMC
Woo, E. J. et al. Crystal structure of auxin-binding protein 1 in complex with auxin. EMBO J. 21, 2877–2885 (2002). PubMed DOI PMC
Tian, H., Klambt, D. & Jones, A. M. Auxin-binding protein 1 does not bind auxin within the endoplasmic reticulum despite this being the predominant subcellular location for this hormone receptor. J. Biol. Chem. 270, 26962–26969 (1995). PubMed DOI
Gelová, Z. et al. Developmental roles of auxin binding protein 1 in Arabidopsis thaliana. Plant Sci. 303, 110750 (2021). PubMed DOI
Dahlke, R. I. et al. Protoplast swelling and hypocotyl growth depend on different auxin signaling pathways. Plant Physiol. 175, 982–994 (2017). PubMed DOI PMC
Jayakannan, M., Bose, J., Babourina, O., Rengel, Z. & Shabala, S. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K PubMed DOI PMC
Paponov, I. A. et al. Auxin-induced plasma membrane depolarization is regulated by auxin transport and not by AUXIN BINDING PROTEIN1. Front. Plant Sci. 9, 1953 (2019). PubMed DOI PMC
Serre, N. B. C. et al. AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root. Nat. Plants 7, 1229–1238 (2021). PubMed DOI PMC
Tominaga, M. & Ito, K. The molecular mechanism and physiological role of cytoplasmic streaming. Curr. Opin. Plant Biol. 27, 104–110 (2015). PubMed DOI
Sauer, M. et al. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev. 20, 2902–2911 (2006). PubMed DOI PMC
Mazur, E., Benková, E. & Friml, J. Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis. Sci. Rep. 6, 33754 (2016). PubMed DOI PMC
Mazur, E. et al. Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis. Plant Sci. 293, 110414 (2020). PubMed DOI
Mazur, E., Kulik, I., Hajný, J. & Friml, J. Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in Arabidopsis. New Phytol. 226, 1375–1383 (2020). PubMed DOI PMC
Dai, N., Wang, W., Patterson, S. E. & Bleecker, A. B. The TMK subfamily of receptor-like kinases in Arabidopsis display an essential role in growth and a reduced sensitivity to auxin. PLoS One 8, e60990 (2013). PubMed DOI PMC
Hajný, J., Tan, S. & Friml, J. Auxin canalization: from speculative models toward molecular players. Curr. Opin. Plant Biol. 65, 102174 (2022). PubMed DOI
Wabnik, K. et al. Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling. Mol. Syst. Biol. 6, 447 (2010). PubMed DOI PMC
Hajný, J. et al. Receptor kinase module targets PIN-dependent auxin transport during canalization. Science 370, 550–557 (2020). PubMed DOI PMC
Yin, K., Han, X., Xu, Z. & Xue, H. Arabidopsis GLP4 is localized to the Golgi and binds auxin in vitro. Acta Biochim. Biophys. Sin. 41, 478–487 (2009). PubMed DOI
Friml, J. et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147–153 (2003). PubMed DOI
Benková, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003). PubMed DOI
Klode, M., Dahlke, R. I., Sauter, M. & Steffens, B. Expression and subcellular localization of Arabidopsis thaliana auxin-binding protein 1 (ABP1). J. Plant Growth Regul. 30, 416–424 (2011). DOI
Özkan, E. et al. An extracellular interactome of immunoglobulin and LRR proteins reveals receptor–ligand networks. Cell 154, 228–239 (2013). DOI PMC
Wasilko, D. J. et al. The titerless infected-cells preservation and scale-up (TIPS) method for large-scale production of NO-sensitive human soluble guanylate cyclase (sGC) from insect cells infected with recombinant baculovirus. Protein Expr. Purif. 65, 122–132 (2009). PubMed DOI
Tan, S. et al. Salicylic acid targets protein phosphatase 2A to attenuate growth in plants. Curr. Biol. 30, 381–395.e8 (2020). PubMed DOI PMC
Jerabek-Willemsen, M., Wienken, C. J., Braun, D., Baaske, P. & Duhr, S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 9, 342–353 (2011). PubMed DOI PMC
Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009). PubMed DOI
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016). PubMed DOI
Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456 (2016). PubMed DOI
Okumura, M. & Kinoshita, T. Measurement of ATP hydrolytic activity of plasma membrane H+-ATPase from Arabidopsis thaliana leaves. Bio-protocol 6, e2044 (2016).
Živanovic, B., Köhler, K., Galland, P. & Weisenseel, M. Membrane potential and endogenous ion current of Phycomyces sporangiophores. Electro. Magnetobiol. 20, 343–362 (2009).
Young, G. et al. Quantitative mass imaging of single biological macromolecules. Science 360, 423–427 (2018). PubMed DOI PMC
Kelly, S. M., Jess, T. J. & Price, N. C. How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751, 119–139 (2005). PubMed DOI
Anthis, N. J. & Clore, G. M. Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Sci. 22, 851–858 (2013). PubMed DOI PMC
RAF-like protein kinases mediate a deeply conserved, rapid auxin response
The AUX1-AFB1-CNGC14 module establishes a longitudinal root surface pH profile
The AFB1 auxin receptor controls the cytoplasmic auxin response pathway in Arabidopsis thaliana