ABP1-TMK auxin perception for global phosphorylation and auxin canalization

. 2022 Sep ; 609 (7927) : 575-581. [epub] 20220907

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36071161

Grantová podpora
P 29988 Austrian Science Fund FWF - Austria
083367 Wellcome Trust - United Kingdom
742985 European Research Council - International

Odkazy

PubMed 36071161
DOI 10.1038/s41586-022-05187-x
PII: 10.1038/s41586-022-05187-x
Knihovny.cz E-zdroje

The phytohormone auxin triggers transcriptional reprogramming through a well-characterized perception machinery in the nucleus. By contrast, mechanisms that underlie fast effects of auxin, such as the regulation of ion fluxes, rapid phosphorylation of proteins or auxin feedback on its transport, remain unclear1-3. Whether auxin-binding protein 1 (ABP1) is an auxin receptor has been a source of debate for decades1,4. Here we show that a fraction of Arabidopsis thaliana ABP1 is secreted and binds auxin specifically at an acidic pH that is typical of the apoplast. ABP1 and its plasma-membrane-localized partner, transmembrane kinase 1 (TMK1), are required for the auxin-induced ultrafast global phospho-response and for downstream processes that include the activation of H+-ATPase and accelerated cytoplasmic streaming. abp1 and tmk mutants cannot establish auxin-transporting channels and show defective auxin-induced vasculature formation and regeneration. An ABP1(M2X) variant that lacks the capacity to bind auxin is unable to complement these defects in abp1 mutants. These data indicate that ABP1 is the auxin receptor for TMK1-based cell-surface signalling, which mediates the global phospho-response and auxin canalization.

Komentář v

PubMed

Zobrazit více v PubMed

Friml, J. Fourteen stations of auxin. Cold Spring Harb. Perspect. Biol. 14, a039859 (2021).

Lavy, M. & Estelle, M. Mechanisms of auxin signaling. Development 143, 3226–3229 (2016). PubMed DOI PMC

Morffy, N. & Strader, L. C. Structural aspects of auxin signaling. Cold Spring Harb. Perspect. Biol. 14, a039883 (2021).

Napier, R. The story of auxin-binding protein 1 (ABP1). Cold Spring Harb. Perspect. Biol. 13, a039909 (2021).

Fendrych, M. et al. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants 4, 453–459 (2018). PubMed DOI PMC

Dindas, J. et al. AUX1-mediated root hair auxin influx governs SCFTIR1/AFB-type Ca2+ signaling. Nat. Commun. 9, 1174 (2018). PubMed DOI PMC

Gallei, M., Luschnig, C. & Friml, J. Auxin signalling in growth: Schrödinger’s cat out of the bag. Curr. Opin. Plant Biol. 53, 43–49 (2020). PubMed DOI

Li, L., Gallei, M. & Friml, J. Bending to auxin: fast acid growth for tropisms. Trends Plant Sci. 27, 440–449 (2022).

Kuhn, A. et al. Direct ETTIN–auxin interaction controls chromatin states in gynoecium development. eLife 9, e51787 (2020). PubMed DOI PMC

Cao, M. et al. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature 568, 240–243 (2019). PubMed DOI

Dubey, S. M., Serre, N. B. C., Oulehlová, D., Vittal, P. & Fendrych, M. No time for transcription-rapid auxin responses in plants. Cold Spring Harb. Perspect. Biol. 13, a039891 (2021). PubMed DOI

Adamowski, M. & Friml, J. PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27, 20–32 (2015). PubMed DOI PMC

Narasimhan, M. et al. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. Plant Physiol. 186, 1122–1142 (2021). PubMed DOI PMC

Robert, S. et al. ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143, 111–121 (2010). PubMed DOI PMC

Sachs, T. The induction of transport channels by auxin. Planta 127, 201–206 (1975). PubMed DOI

Han, H. et al. Rapid auxin-mediated phosphorylation of myosin regulates trafficking and polarity in Arabidopsis. Preprint at bioRxiv https://doi.org/10.1101/2021.04.13.439603 (2021).

Li, L. et al. Cell surface and intracellular auxin signalling for H + fluxes in root growth. Nature 599, 273–277 (2021). PubMed DOI PMC

Lin, W. et al. TMK-based cell-surface auxin signaling activates cell wall acidification. Nature 599, 278–282 (2021).

McLaughlin, H. M., Ang, A. C. H. & Østergaard, L. Noncanonical auxin signaling. Cold Spring Harb. Perspect. Biol. 13, a039917 (2021). PubMed DOI

Hertel, R., Thomson, K. S. & Russo, V. E. In-vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta 107, 325–340 (1972). PubMed DOI

Xu, T. et al. Cell surface ABP1–TMK auxin-sensing complex activates ROP GTPase signaling. Science 343, 1025–1028 (2014). PubMed DOI PMC

Gao, Y. et al. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc. Natl Acad. Sci. USA 112, 2275–2280 (2015). PubMed DOI PMC

Grones, P. et al. Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles. J. Exp. Bot. 66, 5055–5065 (2015). PubMed DOI

Michalko, J., Dravecká, M., Bollenbach, T. & Friml, J. Embryo-lethal phenotypes in early abp1 mutants are due to disruption of the neighboring BSM gene. F1000Res. 4, 1104 (2015). PubMed DOI PMC

Dai, X. et al. Embryonic lethality of Arabidopsis abp1-1 is caused by deletion of the adjacent BSM gene. Nature Plants 1, 15183 (2015). PubMed DOI PMC

Smakowska-Luzan, E. et al. An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature 553, 342–346 (2018). PubMed DOI PMC

Woo, E. J. et al. Crystal structure of auxin-binding protein 1 in complex with auxin. EMBO J. 21, 2877–2885 (2002). PubMed DOI PMC

Tian, H., Klambt, D. & Jones, A. M. Auxin-binding protein 1 does not bind auxin within the endoplasmic reticulum despite this being the predominant subcellular location for this hormone receptor. J. Biol. Chem. 270, 26962–26969 (1995). PubMed DOI

Gelová, Z. et al. Developmental roles of auxin binding protein 1 in Arabidopsis thaliana. Plant Sci. 303, 110750 (2021). PubMed DOI

Dahlke, R. I. et al. Protoplast swelling and hypocotyl growth depend on different auxin signaling pathways. Plant Physiol. 175, 982–994 (2017). PubMed DOI PMC

Jayakannan, M., Bose, J., Babourina, O., Rengel, Z. & Shabala, S. Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K PubMed DOI PMC

Paponov, I. A. et al. Auxin-induced plasma membrane depolarization is regulated by auxin transport and not by AUXIN BINDING PROTEIN1. Front. Plant Sci. 9, 1953 (2019). PubMed DOI PMC

Serre, N. B. C. et al. AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root. Nat. Plants 7, 1229–1238 (2021). PubMed DOI PMC

Tominaga, M. & Ito, K. The molecular mechanism and physiological role of cytoplasmic streaming. Curr. Opin. Plant Biol. 27, 104–110 (2015). PubMed DOI

Sauer, M. et al. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev. 20, 2902–2911 (2006). PubMed DOI PMC

Mazur, E., Benková, E. & Friml, J. Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis. Sci. Rep. 6, 33754 (2016). PubMed DOI PMC

Mazur, E. et al. Clathrin-mediated trafficking and PIN trafficking are required for auxin canalization and vascular tissue formation in Arabidopsis. Plant Sci. 293, 110414 (2020). PubMed DOI

Mazur, E., Kulik, I., Hajný, J. & Friml, J. Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in Arabidopsis. New Phytol. 226, 1375–1383 (2020). PubMed DOI PMC

Dai, N., Wang, W., Patterson, S. E. & Bleecker, A. B. The TMK subfamily of receptor-like kinases in Arabidopsis display an essential role in growth and a reduced sensitivity to auxin. PLoS One 8, e60990 (2013). PubMed DOI PMC

Hajný, J., Tan, S. & Friml, J. Auxin canalization: from speculative models toward molecular players. Curr. Opin. Plant Biol. 65, 102174 (2022). PubMed DOI

Wabnik, K. et al. Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling. Mol. Syst. Biol. 6, 447 (2010). PubMed DOI PMC

Hajný, J. et al. Receptor kinase module targets PIN-dependent auxin transport during canalization. Science 370, 550–557 (2020). PubMed DOI PMC

Yin, K., Han, X., Xu, Z. & Xue, H. Arabidopsis GLP4 is localized to the Golgi and binds auxin in vitro. Acta Biochim. Biophys. Sin. 41, 478–487 (2009). PubMed DOI

Friml, J. et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147–153 (2003). PubMed DOI

Benková, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115, 591–602 (2003). PubMed DOI

Klode, M., Dahlke, R. I., Sauter, M. & Steffens, B. Expression and subcellular localization of Arabidopsis thaliana auxin-binding protein 1 (ABP1). J. Plant Growth Regul. 30, 416–424 (2011). DOI

Özkan, E. et al. An extracellular interactome of immunoglobulin and LRR proteins reveals receptor–ligand networks. Cell 154, 228–239 (2013). DOI PMC

Wasilko, D. J. et al. The titerless infected-cells preservation and scale-up (TIPS) method for large-scale production of NO-sensitive human soluble guanylate cyclase (sGC) from insect cells infected with recombinant baculovirus. Protein Expr. Purif. 65, 122–132 (2009). PubMed DOI

Tan, S. et al. Salicylic acid targets protein phosphatase 2A to attenuate growth in plants. Curr. Biol. 30, 381–395.e8 (2020). PubMed DOI PMC

Jerabek-Willemsen, M., Wienken, C. J., Braun, D., Baaske, P. & Duhr, S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol. 9, 342–353 (2011). PubMed DOI PMC

Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009). PubMed DOI

Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016). PubMed DOI

Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456 (2016). PubMed DOI

Okumura, M. & Kinoshita, T. Measurement of ATP hydrolytic activity of plasma membrane H+-ATPase from Arabidopsis thaliana leaves. Bio-protocol 6, e2044 (2016).

Živanovic, B., Köhler, K., Galland, P. & Weisenseel, M. Membrane potential and endogenous ion current of Phycomyces sporangiophores. Electro. Magnetobiol. 20, 343–362 (2009).

Young, G. et al. Quantitative mass imaging of single biological macromolecules. Science 360, 423–427 (2018). PubMed DOI PMC

Kelly, S. M., Jess, T. J. & Price, N. C. How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751, 119–139 (2005). PubMed DOI

Anthis, N. J. & Clore, G. M. Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Sci. 22, 851–858 (2013). PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...