Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27649687
PubMed Central
PMC5030676
DOI
10.1038/srep33754
PII: srep33754
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis fyziologie MeSH
- kambium fyziologie MeSH
- kyseliny indoloctové metabolismus MeSH
- regenerace MeSH
- stonky rostlin fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
Synchronized tissue polarization during regeneration or de novo vascular tissue formation is a plant-specific example of intercellular communication and coordinated development. According to the canalization hypothesis, the plant hormone auxin serves as polarizing signal that mediates directional channel formation underlying the spatio-temporal vasculature patterning. A necessary part of canalization is a positive feedback between auxin signaling and polarity of the intercellular auxin flow. The cellular and molecular mechanisms of this process are still poorly understood, not the least, because of a lack of a suitable model system. We show that the main genetic model plant, Arabidopsis (Arabidopsis thaliana) can be used to study the canalization during vascular cambium regeneration and new vasculature formation. We monitored localized auxin responses, directional auxin-transport channels formation, and establishment of new vascular cambium polarity during regenerative processes after stem wounding. The increased auxin response above and around the wound preceded the formation of PIN1 auxin transporter-marked channels from the primarily homogenous tissue and the transient, gradual changes in PIN1 localization preceded the polarity of newly formed vascular tissue. Thus, Arabidopsis is a useful model for studies of coordinated tissue polarization and vasculature formation after wounding allowing for genetic and mechanistic dissection of the canalization hypothesis.
Zobrazit více v PubMed
Scarpella E., Marcos D., Friml J. & Berleth T. Control of leaf vascular patterning by polar auxin transport. Genes Dev. 20, 1015–1027 (2006). PubMed PMC
Balla J., Kalousek P., Reinöhl V., Friml J. & Procházka S. Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J. 65, 571–577 (2011). PubMed
Turing A. M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B-Biol. Sci. 237, 37–72 (1952).
Sachs T. The induction of transport channels by auxin. Planta 127, 201–206 (1975). PubMed
Sachs T. The control of the patterned differentiation of vascular tissues. Adv. Bot. Res. 9, 151–262 (1981).
Gälweiler PubMed
Friml J. PubMed
Friml J., Wiśniewska J., Benková E., Mendgen K. & Palme K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in PubMed
Friml J. PubMed
Friml J. PubMed
Reinhardt D. PubMed
Petrášek J. PubMed
Wiśniewska J. PubMed
Benková E. PubMed
Dhonukshe P. PubMed
Paciorek T. PubMed
Grones P. PubMed
Wenzel C. L., Schuetz M., Yu Q. & Mattsson J. Dynamics of PubMed
Flaishman M. A., Loginovsky K. & Lev-Yadun S. Regenerative xylem in inflorescence stems of
Aloni R. & Sachs T. The three-dimensional structure of primary phloem systems. Planta 113, 345–353 (1973). PubMed
Aloni R. & Zimmermann M. H. Length, width, and pattern of regenerative vessels along strips of vascular tissue. Bot. Gaz. 145, 50–54 (1984).
Lev-Yadun S. Wound effects arrest wave phenomena in the secondary xylem of
Lev-Yadun S. The distance to which wound effects influence the structure of secondary xylem of decapitated PubMed
Philipson W. R., Ward J. M. & Butterfield B. G. The Vascular Cambium: Its Development and Activity. Chapman & Hall, London, United Kingdom (1971).
Uggla C., Moritz T., Sandberg G. & Sundberg B. Auxin as a positional signal in pattern formation in plants. Proc. Natl. Acad. Sci. USA 93, 9282–9286 (1996). PubMed PMC
Uggla C., Mellerowicz E. J. & Sundberg B. Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol. 117, 113–121 (1998). PubMed PMC
Uggla C., Magel E., Moritz T. & Sundberg B. Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine. Plant Physiol. 125, 2029–2039 (2001). PubMed PMC
Chaffey N. Why is there so little research into the cell biology of the secondary vascular system of trees? New Phytol. 153, 213–223 (2002).
Wilson J. W. & Wilson P. M. W. The position of regenerating cambia, a new hypothesis. New Phytol. 60, 63–73 (1961).
Hejnowicz Z. Tensional stress in the cambium and its developmental significance. Am. J. Bot. 67, 1–5 (1980).
Jacobs W. P. The role of auxin in differentiation of xylem around a wound. Am. J. Bot. 39, 301–309 (1952).
Sachs T. Cell polarity and tissue patterning in plants. Development Suppl. 1, 83–93 (1991).
Sachs T. & Cohen D. Circular vessels and the control of vascular differentiation in plants. Differentiation 21, 22–26 (1982).
Hejnowicz Z. & Kurczyńska E. U. Occurrence of circular vessels above axillary buds in stems of woody plants. Acta Soc. Bot. Pol. 56, 415–419 (1987).
Lev-Yadun S. & Aloni R. Vascular differentiation in branch junctions of trees: circular patterns and functional significance. Trees 4, 49–54 (1990).
Ko J. H., Han K. H., Park S. & Yang J. Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling. Plant Physiol. 135, 1069–1083 (2004). PubMed PMC
Mazur E., Kurczyńska E. U. & Friml J. Cellular events during interfascicular cambium ontogenesis in inflorescence stems of PubMed
Busse J. S. & Evert R. F. Vascular differentiation and transition in the seedling of
Chaffey N., Cholewa E., Regan S. & Sundberg B. Secondary xylem development in PubMed
Ragni L. & Hardtke C. S. Small but thick enough, the Arabidopsis hypocotyl as a model to study secondary growth. Physiol. Plant. 151, 164–171 (2014). PubMed
Lev-Yadun S. & Flaishman M. A. The effect of submergence on ontogeny of cambium and secondary xylem and on fiber lignification in inflorescence stems of Arabidopsis. IAWA J. 22, 159–169 (2001).
Paul-Victor C. & Rowe N. Effect of mechanical perturbation on the biomechanics, primary growth and secondary tissue development in inflorescence stems of PubMed PMC
Sanchez P., Nehlin L. & Greb T. From thin to thick: major transitions during stem development. Trends Plant Sci. 17, 113–121 (2012). PubMed PMC
Mazur E. & Kurczyńska E. U. Rays, intrusive growth, and storied cambium in the inflorescence stems of PubMed PMC
Baima S. PubMed
Ulmasov T., Murfett J., Hagen G. & Guilfoyle T. J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9, 1963–1971 (1997). PubMed PMC
Altamura
Lev-Yadun S. Fibres and fibre-sclereids in wild-type
Nieminen K. M., Kauppinen L. & Helariutta Y. A weed for wood? Arabidopsis as a genetic model for xylem development. Plant Physiol. 135, 653–659 (2004). PubMed PMC
Melnyk C. W., Schuster C., Leyser O. & Meyerowitz E. M. A Developmental Framework for Graft Formation and Vascular Reconnection in PubMed PMC
Rolland-Lagan A. G. & Prusinkiewicz P. Reviewing models of auxin canalization in the context of leaf vein pattern formation in PubMed
Parry G. & Estelle M. Auxin receptors: a new role for F-box proteins. Curr. Opin. Cell Biol. 18, 152–156 (2006). PubMed
Kelley D. R. & Estelle M. Ubiquitin-mediated control of plant hormone signaling. Plant Physiol. 160, 47–55 (2012). PubMed PMC
Vieten A. PubMed
Michalko J., Dravecká M., Bollenbach T. & Friml J. Embryo-lethal phenotypes in early PubMed PMC
Kurczyńska E. U. & Hejnowicz Z. Differentiation of circular vessels in isolated segments of
Lev-Yadun S. Circular vessels in the secondary xylem of
Barnett J. R. & Harris J. M. Early stages of bordered pit formation in radiata pine. Wood Sci. Technol. 9, 233–241 (1975).
Leitch M. A. & Savidge R. A. Evidence for auxin regulation of bordered-pit positioning during tracheid differentiation in
O’Brien T. P. & McCully M. E. The Study of Plant Structure: Principles and Selected Methods, 1st Ed. Termarcarphi 1981, Melbourne, Australia (1981).
Jefferson R. A., Kavanagh T. A. & Bevan M. W. GUS fusions: ß-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907 (1987). PubMed PMC
Paciorek T., Sauer M., Balla J., Wiśniewska J. & Friml J. Immunocytochemical technique for protein localization in sections of plant tissues. Nat. Protoc. 1, 104–107 (2006). PubMed
ABP1-TMK auxin perception for global phosphorylation and auxin canalization
Receptor kinase module targets PIN-dependent auxin transport during canalization
Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization
Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in Arabidopsis
Mechanistic framework for cell-intrinsic re-establishment of PIN2 polarity after cell division
WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity