WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity

. 2018 Jan ; 14 (1) : e1007177. [epub] 20180129

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29377885
Odkazy

PubMed 29377885
PubMed Central PMC5805370
DOI 10.1371/journal.pgen.1007177
PII: PGENETICS-D-16-02549
Knihovny.cz E-zdroje

Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17- and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain- and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development.

Zobrazit více v PubMed

Petrášek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertová D, et al. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science. 2006; 312: 914–918. doi: 10.1126/science.1123542 PubMed DOI

Wiśniewska J, Xu J, Seifertová D, Brewer PB, Růžička K, Blilou I, et al. Polar PIN localization directs auxin flow in plants. Science. 2006; 312: 883 doi: 10.1126/science.1121356 PubMed DOI

Adamowski M, Friml J. PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell. 2015; 27: 20–32. doi: 10.1105/tpc.114.134874 PubMed DOI PMC

Sachs T. The induction of transport channels by auxin. Planta. 1975; 127: 201–206. doi: 10.1007/BF00380716 PubMed DOI

Sachs T. Cellular interactions in tissue and organ development. Symp Soc Exp Biol. 1986; 40: 181–210. PubMed

Bennett T, Hines G, Leyser O. Canalization: what the flux? Trends Genet. 2014; 30: 41–48. doi: 10.1016/j.tig.2013.11.001 PubMed DOI

Berleth T, Sachs T. Plant morphogenesis: long-distance coordination and local patterning. Curr Opin Plant Biol. 2001; 4: 57–62. PubMed

Sauer M, Balla J, Luschnig C, Wiśniewska J, Reinöhl V, Friml J, Benková E. Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev. 2006; 20: 2902–2911. doi: 10.1101/gad.390806 PubMed DOI PMC

Mazur E, Benková E, Friml J. Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis. Sci Rep. 2016; 6: 33754 doi: 10.1038/srep33754 PubMed DOI PMC

Booker J, Chatfield S, Leyser O. Auxin acts in xylem-associated or medullary cells to mediate apical dominance. Plant Cell. 2003; 15: 495–507. doi: 10.1105/tpc.007542 PubMed DOI PMC

Balla J, Kalousek P, Reinöhl V, Friml J, Procházka S. Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J. 2011; 65: 571–577. doi: 10.1111/j.1365-313X.2010.04443.x PubMed DOI

Bennett T, Hines G, van Rongen M, Waldie T, Sawchuk MG, Scarpella E, Ljung K, Leyser O. Connective auxin transport in the shoot facilitates communication between shoot apices. PLoS Biol. 2016; 14: e1002446 doi: 10.1371/journal.pbio.1002446 PubMed DOI PMC

Paciorek T, Zažímalová E, Ruthardt N, Petrášek J, Stierhof Y-D, Kleine-Vehn J, et al. Auxin inhibits endocytosis and promotes its own efflux from cells. Nature. 2005; 435: 1251–1256. doi: 10.1038/nature03633 PubMed DOI

Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, et al. ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell. 2010; 143: 111–121. doi: 10.1016/j.cell.2010.09.027 PubMed DOI PMC

Wabnik K, Kleine-Vehn J, Balla J, Sauer M, Naramoto S, Reinöhl V, et al. Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling. Mol Syst Biol. 2010; 6: 447 doi: 10.1038/msb.2010.103 PubMed DOI PMC

Robert HS, Grones P, Stepanova AN, Robles LM, Lokerse AS, Alonso JM, et al. Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr Biol. 2013; 23: 2506–2512. doi: 10.1016/j.cub.2013.09.039 PubMed DOI

Wabnik K, Robert HS, Smith RS, Friml J. Modeling framework for the establishment of the apical-basal embryonic axis in plants. Curr Biol. 2013; 23: 2513–2518. doi: 10.1016/j.cub.2013.10.038 PubMed DOI

Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell. 2003; 115: 591–602. PubMed

Rakusová H, Abbas M, Han H, Song S, Robert HS, Friml J. Termination of shoot gravitropic responses by auxin feedback on PIN3 polarity. Curr Biol. 2016; 26: 3026–3032. doi: 10.1016/j.cub.2016.08.067 PubMed DOI

Friml J, Benková E, Blilou I, Wiśniewska J, Hamann T, Ljung K, et al. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell. 2002; 108: 661–673. PubMed

Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A, et al. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 1998; 17: 6903–6911. doi: 10.1093/emboj/17.23.6903 PubMed DOI PMC

Kleine-Vehn J, Leitner J, Zwiewka M, Sauer M, Abas L, Luschnig C, Friml J. Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc Natl Acad Sci USA. 2008; 105: 17812–17817. doi: 10.1073/pnas.0808073105 PubMed DOI PMC

Chapman EJ, Estelle M. Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet. 2009; 43: 265–285. doi: 10.1146/annurev-genet-102108-134148 PubMed DOI

Grones P, Friml J. Auxin transporters and binding proteins at a glance. J Cell Sci. 2015; 128: 1–7. doi: 10.1242/jcs.159418 PubMed DOI

Salehin M, Bagchi R, Estelle M. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell. 2015; 27: 9–19. doi: 10.1105/tpc.114.133744 PubMed DOI PMC

Knox K, Grierson CS, Leyser O. AXR3 and SHY2 interact to regulate root hair development. Development. 2003; 130: 5769–5777. doi: 10.1242/dev.00659 PubMed DOI

Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G, Guilfoyle TJ, et al. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J. 2005; 43: 118–130. doi: 10.1111/j.1365-313X.2005.02432.x PubMed DOI

Tejos R, Rodriguez-Furlán C, Adamowski M, Sauer M, Norambuena L, Friml J. PATELLINS are regulators of auxin-mediated PIN1 relocation and plant development in Arabidopsis thaliana. J Cell Sci. 2017; in press (doi: 10.1242/jcs.204198) PubMed DOI

Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, et al. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell. 2005; 17: 444–463. doi: 10.1105/tpc.104.028316 PubMed DOI PMC

Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I, et al. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell. 2007; 130: 1044–1056. doi: 10.1016/j.cell.2007.07.033 PubMed DOI

Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, et al. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science. 2004; 306: 862–865. doi: 10.1126/science.1100618 PubMed DOI

Huang F, Kemel Zago M, Abas L, van Marion A, Galván-Ampudia CS, Offringa R. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport. Plant Cell. 2010; 22: 1129–1142. doi: 10.1105/tpc.109.072678 PubMed DOI PMC

Zhang J, Nodzyński T, Pěnčik A, Rolčik J, Friml J. PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport. Proc Natl Acad Sci USA. 2010; 107: 918–922. doi: 10.1073/pnas.0909460107 PubMed DOI PMC

Mei Y, Jia W-J, Chu Y-J, Xue H-W. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins. Cell Res. 2012; 22: 581–597. doi: 10.1038/cr.2011.150 PubMed DOI PMC

Ugalde J-M, Rodriguez-Furlán C, De Rycke R, Norambuena L, Friml J, León G, Tejos R. Phosphatidylinositol 4-phosphate 5-kinases 1 and 2 are involved in the regulation of vacuole morphology during Arabidopsis thaliana pollen development. Plant Sci. 2016; 250: 10–19. doi: 10.1016/j.plantsci.2016.05.014 PubMed DOI

Ischebeck T, Werner S, Krishnamoorthy P, Lerche J, Meijón M, Stenzel I, et al. Phosphatidylinositol 4,5-bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis. Plant Cell. 2013; 25: 4894–4911. doi: 10.1105/tpc.113.116582 PubMed DOI PMC

Tejos R, Sauer M, Vanneste S, Palacios-Gomez M, Li H, Heilmann M, et al. Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin-mediated cell polarity and patterning in Arabidopsis. Plant Cell. 2014; 26: 2114–2128. doi: 10.1105/tpc.114.126185 PubMed DOI PMC

Agusti J, Lichtenberger R, Schwarz M, Nehlin L, Greb T. Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth. PLoS Genet. 2011; 7: e1001312 doi: 10.1371/journal.pgen.1001312 PubMed DOI PMC

Hu W, Feng B, Ma H. Ectopic expression of the Arabidopsis MINI ZINC FINGER1 and MIF3 genes induces shoot meristems on leaf margins. Plant Mol Biol. 2011; 76: 57–68. doi: 10.1007/s11103-011-9768-y PubMed DOI

Eulgem T, Somssich IE. Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol. 2007; 10: 366–371. doi: 10.1016/j.pbi.2007.04.020 PubMed DOI

Eulgem T, Rushton PJ, Robatzek S, Somssich IE. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000; 5: 199–206. PubMed

Ülker B, Somssich IE. WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol. 2004; 7: 491–498. doi: 10.1016/j.pbi.2004.07.012 PubMed DOI

Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol. 2008; 68: 81–92. doi: 10.1007/s11103-008-9353-1 PubMed DOI PMC

Grunewald W, Karimi M, Wieczorek K, Van de Cappelle E, Wischnitzki E, Grundler F, et al. A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes. Plant Physiol. 2008; 148: 358–368. doi: 10.1104/pp.108.119131 PubMed DOI PMC

Grunewald W, De Smet I, Lewis DR, Löfke C, Jansen L, Goeminne G, et al. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc Natl Acad Sci USA. 2012; 109: 1554–1559. doi: 10.1073/pnas.1121134109 PubMed DOI PMC

Grunewald W, De Smet I, De Rybel B, Robert HS, van de Cotte B, Willemsen V, et al. Tightly controlled WRKY23 expression mediates Arabidopsis embryo development. EMBO Rep. 2013; 14: 1136–1142. doi: 10.1038/embor.2013.169 PubMed DOI PMC

Ulmasov T, Hagen G, Guilfoyle TJ. ARF1, a transcription factor that binds to auxin response elements. Science. 1997; 276: 1865–1868. PubMed

Boer DR, Freire-Rios A, van den Berg WAM, Saaki T, Manfield IW, Kepinski S, et al. Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell. 2014; 156: 577–589. doi: 10.1016/j.cell.2013.12.027 PubMed DOI

Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E. AGRIS: the Arabidopsis Gene Regulatory Information Server, an update. Nucleic Acids Res. 2011; 39: D1118–D1122. doi: 10.1093/nar/gkq1120 PubMed DOI PMC

Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, et al. Efflux-dependent auxin gradients establish the apical—basal axis of Arabidopsis. Nature. 2003; 426: 147–153. doi: 10.1038/nature02085 PubMed DOI

Scarpella E, Marcos D, Friml J, Berleth T. Control of leaf vascular patterning by polar auxin transport. Genes Dev. 2006; 20: 1015–1027. doi: 10.1101/gad.1402406 PubMed DOI PMC

Mattsson J, Ckurshumova W, Berleth T. Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol. 2003; 131: 1327–1339. doi: 10.1104/pp.013623 PubMed DOI PMC

Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, et al. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell. 2004; 119: 109–120. doi: 10.1016/j.cell.2004.09.018 PubMed DOI

Schluttenhofer C, Yuan L. Regulation of specialized metabolism by WRKY transcription factors. Plant Physiol. 2015; 167: 295–306. doi: 10.1104/pp.114.251769 PubMed DOI PMC

Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 2003; 34: 733–739. PubMed

Luschnig C, Gaxiola RA, Grisafi P, Fink GR. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 1998; 12: 2175–2187. PubMed PMC

Baster P, Robert S, Kleine-Vehn J, Vanneste S, Kania U, Grunewald W, De Rybel B, Beeckman T, Friml J. SCFTIR1/AFB-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO J. 2013; 32: 260–274. doi: 10.1038/emboj.2012.310 PubMed DOI PMC

Sawchuk MG, Scarpella E. Polarity, continuity, and alignment in plant vascular strands. J Integr Plant Biol 2013; 55: 824–834. doi: 10.1111/jipb.12086 PubMed DOI

Rolland-Lagan A-G, Prusinkiewicz P. Reviewing models of auxin canalization in the context of leaf vein pattern formation in Arabidopsis. Plant J. 2005; 44: 854–865. doi: 10.1111/j.1365-313X.2005.02581.x PubMed DOI

Smith RS, Guyomarc'h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P. A plausible model of phyllotaxis. Proc Natl Acad Sci USA. 2006; 103: 1301–1306. doi: 10.1073/pnas.0510457103 PubMed DOI PMC

Wabnik K, Kleine-Vehn J, Govaerts W, Friml J. Prototype cell-to-cell auxin transport mechanism by intracellular auxin compartmentalization. Trends Plant Sci. 2011; 16: 468–475. doi: 10.1016/j.tplants.2011.05.002 PubMed DOI

Cieslak M, Runions A, Prusinkiewicz P. Auxin-driven patterning with unidirectional fluxes. J Exp Bot. 2015; 66: 5083–5102. doi: 10.1093/jxb/erv262 PubMed DOI PMC

Stenzel I, Ischebeck T, König S, Hołubowska A, Sporysz M, Hause B, Heilmann I. The type B phosphatidylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsis thaliana. Plant Cell. 2008; 20: 124–141. doi: 10.1105/tpc.107.052852 PubMed DOI PMC

Bakshi M, Oelmüller R. WRKY transcription factors: Jack of many trades in plants. Plant Signal Behav. 2014; 9: e27700 doi: 10.4161/psb.27700 PubMed DOI PMC

Guan Y, Meng X, Khanna R, LaMontagne E, Liu Y, Zhang S. Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in Arabidopsis. PLoS Genet. 2014; 10: e1004384 doi: 10.1371/journal.pgen.1004384 PubMed DOI PMC

Kleine-Vehn J., et al. Cellular and molecular requirements for polar PIN targeting and transcytosis in plants. Mol Plant. 2008; 6:1056–66. PubMed

Xu J., et al. A molecular framework for plant regeneration. Science. 2006; 311: 385–388. doi: 10.1126/science.1121790 PubMed DOI

Leal Valentim F, van Mourik S, Posé D, Kim MC, Schmid M, van Ham RCHJ, et al. A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network. PLoS ONE. 2015; 10: e0116973 doi: 10.1371/journal.pone.0116973 PubMed DOI PMC

Lemon WJ, Liyanarachchi S, You M. A high performance test of differential gene expression for oligonucleotide arrays. Genome Biol. 2003; 4: R67 doi: 10.1186/gb-2003-4-10-r67 PubMed DOI PMC

Sauer M, Friml J. Immunolocalization of proteins in plants. Methods Mol Biol. 2010; 655: 253–263. doi: 10.1007/978-1-60761-765-5_17 PubMed DOI

Abas L, Benjamins R, Malenica N, Paciorek T, Wiśniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C. Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol. 2006; 8: 249–256 doi: 10.1038/ncb1369 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The Phytotoxin Myrigalone A Triggers a Phased Detoxification Programme and Inhibits Lepidium sativum Seed Germination via Multiple Mechanisms including Interference with Auxin Homeostasis

. 2022 Apr 21 ; 23 (9) : . [epub] 20220421

Receptor kinase module targets PIN-dependent auxin transport during canalization

. 2020 Oct 30 ; 370 (6516) : 550-557.

Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization

. 2020 Jul 14 ; 11 (1) : 3508. [epub] 20200714

Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in Arabidopsis

. 2020 Jun ; 226 (5) : 1375-1383. [epub] 20200222

Arabidopsis Flippases Cooperate with ARF GTPase Exchange Factors to Regulate the Trafficking and Polarity of PIN Auxin Transporters

. 2020 May ; 32 (5) : 1644-1664. [epub] 20200319

The lipid code-dependent phosphoswitch PDK1-D6PK activates PIN-mediated auxin efflux in Arabidopsis

. 2020 May ; 6 (5) : 556-569. [epub] 20200511

Pinstatic Acid Promotes Auxin Transport by Inhibiting PIN Internalization

. 2019 Jun ; 180 (2) : 1152-1165. [epub] 20190401

Mechanistic framework for cell-intrinsic re-establishment of PIN2 polarity after cell division

. 2018 Dec ; 4 (12) : 1082-1088. [epub] 20181203

Maternal auxin supply contributes to early embryo patterning in Arabidopsis

. 2018 Aug ; 4 (8) : 548-553. [epub] 20180716

PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism

. 2018 Jul 06 ; 8 (1) : 10279. [epub] 20180706

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace