The Phytotoxin Myrigalone A Triggers a Phased Detoxification Programme and Inhibits Lepidium sativum Seed Germination via Multiple Mechanisms including Interference with Auxin Homeostasis

. 2022 Apr 21 ; 23 (9) : . [epub] 20220421

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35563008

Grantová podpora
BB/M02203X/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/M011178/1 Biotechnology and Biological Sciences Research Council - United Kingdom
CZ.02.1.01/0.0/0.0/16_019/000082 European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000738 Centre for Experimental Plant Biology

Molecular responses of plants to natural phytotoxins comprise more general and compound-specific mechanisms. How phytotoxic chalcones and other flavonoids inhibit seedling growth was widely studied, but how they interfere with seed germination is largely unknown. The dihydrochalcone and putative allelochemical myrigalone A (MyA) inhibits seed germination and seedling growth. Transcriptome (RNAseq) and hormone analyses of Lepidium sativum seed responses to MyA were compared to other bioactive and inactive compounds. MyA treatment of imbibed seeds triggered the phased induction of a detoxification programme, altered gibberellin, cis-(+)-12-oxophytodienoic acid and jasmonate metabolism, and affected the expression of hormone transporter genes. The MyA-mediated inhibition involved interference with the antioxidant system, oxidative signalling, aquaporins and water uptake, but not uncoupling of oxidative phosphorylation or p-hydroxyphenylpyruvate dioxygenase expression/activity. MyA specifically affected the expression of auxin-related signalling genes, and various transporter genes, including for auxin transport (PIN7, ABCG37, ABCG4, WAT1). Responses to auxin-specific inhibitors further supported the conclusion that MyA interferes with auxin homeostasis during seed germination. Comparative analysis of MyA and other phytotoxins revealed differences in the specific regulatory mechanisms and auxin transporter genes targeted to interfere with auxin homestasis. We conclude that MyA exerts its phytotoxic activity by multiple auxin-dependent and independent molecular mechanisms.

Zobrazit více v PubMed

Weitbrecht K., Müller K., Leubner-Metzger G. First off the mark: Early seed germination. J. Exp. Bot. 2011;62:3289–3309. doi: 10.1093/jxb/err030. PubMed DOI

Kong C.H., Xuan T.D., Khanh T.D., Tran H.D., Trung N.T. Allelochemicals and signaling chemicals in plants. Molecules. 2019;24:2737. doi: 10.3390/molecules24152737. PubMed DOI PMC

Nakabayashi K., Leubner-Metzger G. Seed dormancy and weed emergence: From simulating environmental change to understanding trait plasticity, adaptive evolution, and population fitness. J. Exp. Bot. 2021;72:4181–4185. doi: 10.1093/jxb/erab150. PubMed DOI PMC

Baerson S.R., Sanchez-Moreiras A., Pedrol-Bonjoch N., Schulz M., Kagan I.A., Agarwal A.K., Reigosa M.J., Duke S.O. Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one. J. Biol. Chem. 2005;280:21867–21881. doi: 10.1074/jbc.M500694200. PubMed DOI

Scavo A., Abbate C., Mauromicale G. Plant allelochemicals: Agronomic, nutritional and ecological relevance in the soil system. Plant Soil. 2019;442:23–48. doi: 10.1007/s11104-019-04190-y. DOI

Hu Y.F., Na X.F., Li J.L., Yang L.J., You J., Liang X.L., Wang J.F., Peng L., Bi Y.R. Narciclasine, a potential allelochemical, affects subcellular trafficking of auxin transporter proteins and actin cytoskeleton dynamics in Arabidopsis roots. Planta. 2015;242:1349–1360. doi: 10.1007/s00425-015-2373-6. PubMed DOI

Araniti F., Bruno L., Sunseri F., Pacenza M., Forgione I., Bitonti M.B., Abenavoli M.R. The allelochemical farnesene affects Arabidopsis thaliana root meristem altering auxin distribution. Plant Physiol. Biochem. 2017;121:14–20. doi: 10.1016/j.plaphy.2017.10.005. PubMed DOI

Gandia-Herrero F., Lorenz A., Larson T., Graham I.A., Bowles D.J., Rylott E.L., Bruce N.C. Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: Discovery of bifunctional O- and C-glucosyltransferases. Plant J. 2008;56:963–974. doi: 10.1111/j.1365-313X.2008.03653.x. PubMed DOI

Zhang J.J., Yang H. Metabolism and detoxification of pesticides in plants. Sci. Total Environ. 2021;790:148034. doi: 10.1016/j.scitotenv.2021.148034. PubMed DOI

Ramel F., Sulmon C., Serra A.A., Gouesbet G., Couee I. Xenobiotic sensing and signalling in higher plants. J. Exp. Bot. 2012;63:3999–4014. doi: 10.1093/jxb/ers102. PubMed DOI

Killeen D.P., Larsen L., Dayan F.E., Gordon K.C., Perry N.B., van Klink J.W. Nortriketones: Antimicrobial trimethylated acylphloroglucinols from manuka (Leptospermum scoparium) J. Nat. Prod. 2016;79:564–569. doi: 10.1021/acs.jnatprod.5b00968. PubMed DOI

Beaudegnies R., Edmunds A.J., Fraser T.E., Hall R.G., Hawkes T.R., Mitchell G., Schaetzer J., Wendeborn S., Wibley J. Herbicidal 4-hydroxyphenylpyruvate dioxygenase inhibitors—A review of the triketone chemistry story from a Syngenta perspective. Bioorg. Med. Chem. 2009;17:4134–4152. doi: 10.1016/j.bmc.2009.03.015. PubMed DOI

Skipsey M., Knight K.M., Brazier-Hicks M., Dixon D.P., Steel P.G., Edwards R. Xenobiotic responsiveness of Arabidopsis thaliana to a chemical series derived from a herbicide safener. J. Biol. Chem. 2011;286:32268–32276. doi: 10.1074/jbc.M111.252726. PubMed DOI PMC

Duke S.O., Pan Z.Q., Bajsa-Hirschel J. Proving the mode of action of phytotoxic phytochemicals. Plants. 2020;9:756. doi: 10.3390/plants9121756. PubMed DOI PMC

Westwood J.H., Charudattan R., Duke S.O., Fennimore S.A., Marrone P., Slaughter D.C., Swanton C., Zollinger R. Weed management in 2050: Perspectives on the future of weed science. Weed Sci. 2018;66:275–285. doi: 10.1017/wsc.2017.78. DOI

Chotsaeng N., Laosinwattana C., Charoenying P. Herbicidal activity of flavokawains and related trans-chalcones against Amaranthus tricolor L. and Echinochloa crus-galli (L.) Beauv. ACS Omega. 2019;4:20748–20755. doi: 10.1021/acsomega.9b03144. PubMed DOI PMC

Popovici J., Bertrand C., Jacquemoud D., Bellvert F., Fernandez M.P., Comte G., Piola F. An allelochemical from Myrica gale with strong phytotoxic activity against highly invasive Fallopia x bohemica taxa. Molecules. 2011;16:2323–2333. doi: 10.3390/molecules16032323. PubMed DOI PMC

Grana E., Diaz-Tielas C., Sanchez-Moreiras A.M., Reigosa M.J., Celeiro M., Abagyan R., Teijeira M., Duke M.V., Clerk T., Pan Z.Q., et al. Transcriptome and binding data indicate that citral inhibits single strand DNA-binding proteins. Physiol. Plant. 2020;169:99–109. doi: 10.1111/ppl.13055. PubMed DOI

Diaz-Tielas C., Grana E., Sanchez-Moreiras A.M., Reigosa M.J., Vaughn J.N., Pan Z.Q., Bajsa-Hirschel J., Duke M.V., Duke S.O. Transcriptome responses to the natural phytotoxin t-chalcone in Arabidopsis thaliana L. Pest Manag. Sci. 2019;75:2490–2504. doi: 10.1002/ps.5405. PubMed DOI

Cao X.N., Ma F., Xu T.T., Wang J.J., Liu S.C., Li G.H., Su Q., Qiao Z.J., Na X. Transcriptomic analysis reveals key early events of narciclasine signaling in Arabidopsis root apex. Plant Cell Rep. 2016;35:2381–2401. doi: 10.1007/s00299-016-2042-7. PubMed DOI

Vanholme B., El Houari I., Boerjan W. Bioactivity: Phenylpropanoids’ best kept secret. Curr. Opin. Biotechnol. 2019;56:156–162. doi: 10.1016/j.copbio.2018.11.012. PubMed DOI

Lohman D.J., McConnaughay K.D. Patterns of defensive chemical production in wild parsnip seedlings (Apiaceae: Pastinaca sativa L.) Chemoecology. 1998;8:195–200. doi: 10.1007/s000490050025. DOI

Nebo L., Varela R.M., Molinillo J.M.G., Sampaio O.M., Severino V.G.P., Cazal C.M., da Silva M.F.G.F., Fernandes J.B., Macias F.A. Phytotoxicity of alkaloids, coumarins and flavonoids isolated from 11 species belonging to the Rutaceae and Meliaceae families. Phytochem. Lett. 2014;8:226–232. doi: 10.1016/j.phytol.2014.02.010. DOI

Macias F.A., Molinillo J.M.G., Torres A., Varela R.M., Castellano D. Bioactive flavonoids from Helianthus annuus cultivars. Phytochemistry. 1997;45:683–687. doi: 10.1016/S0031-9422(97)00011-3. DOI

Diaz-Tielas C., Sotelo T., Grana E., Reigosa M.J., Sanchez-Moreiras A.M. Phytotoxic potential of trans-chalcone on crop plants and model species. J. Plant Growth Regul. 2014;33:181–194. doi: 10.1007/s00344-013-9360-6. DOI

Li P., Ding L., Zhang L., He J., Huan Z.W. Weisiensin B inhibits primary and lateral root development by interfering with polar auxin transport in Arabidopsis thaliana. Plant Physiol. Biochem. 2019;139:738–745. doi: 10.1016/j.plaphy.2019.04.020. PubMed DOI

De Martino L., Mancini E., de Almeida L.F., De Feo V. The antigerminative activity of twenty-seven monoterpenes. Molecules. 2010;15:6630–6637. doi: 10.3390/molecules15096630. PubMed DOI PMC

Lopez-Gonzalez D., Costas-Gil A., Reigosa M.J., Araniti F., Sanchez-Moreiras A.M. A natural indole alkaloid, norharmane, affects PIN expression patterns and compromises root growth in Arabidopsis thaliana. Plant Physiol. Biochem. 2020;151:378–390. doi: 10.1016/j.plaphy.2020.03.047. PubMed DOI

Hu Y.F., Yang L.J., Na X.F., You J., Hu W., Liang X.L., Liu J., Mao L.N., Wang X.M., Wang H.H., et al. Narciclasine inhibits the responses of Arabidopsis roots to auxin. Planta. 2012;236:597–612. doi: 10.1007/s00425-012-1632-z. PubMed DOI

Na X.F., Hu Y.F., Yue K., Lu H.X., Jia P.F., Wang H.H., Wang X.M., Bi Y.R. Concentration-dependent effects of narciclasine on cell cycle progression in Arabidopsis root tips. BMC Plant Biol. 2011;11:184. doi: 10.1186/1471-2229-11-184. PubMed DOI PMC

Bassel G.W., Fung P., Chow T.-F.F., Foong J.A., Provart N.J., Cutler S.R. Elucidating the germination transcriptional program using small molecules. Plant Physiol. 2008;147:143–155. doi: 10.1104/pp.107.110841. PubMed DOI PMC

Zhuang C.L., Zhang W., Sheng C.Q., Zhang W.N., Xing C.G., Miao Z.Y. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 2017;117:7762–7810. doi: 10.1021/acs.chemrev.7b00020. PubMed DOI PMC

Ndikuryayo F., Moosavi B., Yang W.C., Yang G.F. 4-Hydroxyphenylpyruvate dioxygenase inhibitors: From chemical biology to agrochemicals. J. Agric. Food Chem. 2017;65:8523–8537. doi: 10.1021/acs.jafc.7b03851. PubMed DOI

Mathiesen L., Malterud K.E., Sund R.B. Uncoupling of respiration and inhibition of ATP synthesis in mitochondria by C-methylated flavonoids from Myrica gale L. Eur. J. Pharm. Sci. 1996;4:373–379. doi: 10.1016/S0928-0987(96)00179-0. DOI

Mathiesen L., Malterud K.E., Sund R.B. Hydrogen bond formation as basis for radical scavenging activity: A structure-activity study of C-methylated dihydrochalcones from Myrica gale and structurally related acetophenones. Free Radic. Biol. Med. 1997;22:307–311. doi: 10.1016/S0891-5849(96)00277-8. PubMed DOI

Malterud K.E., Diep O.H., Sund R.B. C-methylated dihydrochalcones from Myrica gale L: Effects as antioxidants and as scavengers of 1,1-diphenyl-2-picrylhydrazyl. Pharmacol. Toxicol. 1996;78:111–116. doi: 10.1111/j.1600-0773.1996.tb00190.x. PubMed DOI

Oracz K., Voegele A., Tarkowska D., Jacquemoud D., Tureckova V., Urbanova T., Strnad M., Sliwinska E., Leubner-Metzger G. Myrigalone A inhibits Lepidium sativum seed germination by interference with gibberellin metabolism and apoplastic superoxide production required for embryo extension growth and endosperm rupture. Plant Cell Physiol. 2012;53:81–95. doi: 10.1093/pcp/pcr124. PubMed DOI

Voegele A., Graeber K., Oracz K., Tarkowska D., Jacquemoud D., Tureckova V., Urbanova T., Strnad M., Leubner-Metzger G. Embryo growth, testa permeability, and endosperm weakening are major targets for the environmentally regulated inhibition of Lepidium sativum seed germination by myrigalone A. J. Exp. Bot. 2012;63:5337–5350. doi: 10.1093/jxb/ers197. PubMed DOI PMC

Steinbrecher T., Leubner-Metzger G. The biomechanics of seed germination. J. Exp. Bot. 2017;68:765–783. doi: 10.1093/jxb/erw428. PubMed DOI

Scheler C., Weitbrecht K., Pearce S.P., Hampstead A., Buettner-Mainik A., Lee K., Voegele A., Oracz K., Dekkers B., Wang X., et al. Promotion of testa rupture during garden cress germination involves seed compartment-specific expression and activity of pectin methylesterases. Plant Physiol. 2015;167:200–215. doi: 10.1104/pp.114.247429. PubMed DOI PMC

Wasternack C., Strnad M. Jasmonates: News on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds. Int. J. Mol. Sci. 2018;19:2539. doi: 10.3390/ijms19092539. PubMed DOI PMC

Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Graeber K., Linkies A., Steinbrecher T., Mummenhoff K., Tarkowská D., Turečková V., Ignatz M., Sperber K., Voegele A., de Jong H., et al. DELAY OF GERMINATION 1 mediates a conserved coat dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proc. Natl. Acad. Sci. USA. 2014;111:E3571–E3580. doi: 10.1073/pnas.1403851111. PubMed DOI PMC

Beynon E.R., Symons Z.C., Jackson R.G., Lorenz A., Rylott E.L., Bruce N.C. The role of oxophytodienoate reductases in the detoxification of the explosive 2,4,6-trinitrotoluene by Arabidopsis. Plant Physiol. 2009;151:253–261. doi: 10.1104/pp.109.141598. PubMed DOI PMC

Dixon D.P., Edwards R. Selective binding of glutathione conjugates of fatty acid derivatives by plant glutathione transferases. J. Biol. Chem. 2009;284:21249–21256. doi: 10.1074/jbc.M109.020107. PubMed DOI PMC

Walden N., German D.A., Wolf E.M., Kiefer M., Rigault P., Huang X.C., Kiefer C., Schmickl R., Franzke A., Neuffer B., et al. Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat. Commun. 2020;11:3795. doi: 10.1038/s41467-020-17605-7. PubMed DOI PMC

Mueller S., Hilbert B., Dueckershoff K., Roitsch T., Krischke M., Mueller M.J., Berger S. General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell. 2008;20:768–785. doi: 10.1105/tpc.107.054809. PubMed DOI PMC

Wulff N., Ernst H.A., Jorgensen M.E., Lambertz S., Maierhofer T., Belew Z.M., Crocoll C., Motawia M.S., Geiger D., Jorgensen F.S., et al. An optimized screen reduces the number of GA transporters and provides insights into nitrate transporter 1/peptide transporter family sSubstrate determinants. Front. Plant Sci. 2019;10:1106. doi: 10.3389/fpls.2019.01106. PubMed DOI PMC

Gräfe K., Schmitt L. The ABC transporter G subfamily in Arabidopsis thaliana. J. Exp. Bot. 2021;72:92–106. doi: 10.1093/jxb/eraa260. PubMed DOI

Choi J., Eom S., Shin K., Lee R.A., Choi S., Lee J.H., Lee S., Soh M.S. Identification of lysine histidine transporter 2 as an 1-aminocyclopropane carboxylic acid transporter in Arabidopsis thaliana by transgenic complementation approach. Front. Plant Sci. 2019;10:1092. doi: 10.3389/fpls.2019.01092. PubMed DOI PMC

Xie Z., Wu F., Lin W.-C., Luo J. The utilization of photophosphorylation uncoupler to improve lipid production of Chlorella, a case study using transcriptome and functional gene expression analysis to reveal its mechanism. Biochem. Eng. J. 2022;178:108275. doi: 10.1016/j.bej.2021.108275. DOI

Jayasinghe U.L., Ratnayake R.M., Medawala M.M., Fujimoto Y. Dihydrochalcones with radical scavenging properties from the leaves of Syzygium jambos. Nat. Prod. Res. 2007;21:551–554. doi: 10.1080/14786410601132238. PubMed DOI

El-Maarouf-Bouteau H., Bailly C. Oxidative signaling in seed germination and dormancy. Plant Signal. Behav. 2008;3:175–182. doi: 10.4161/psb.3.3.5539. PubMed DOI PMC

Bailly C. Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 2004;14:93–107. doi: 10.1079/SSR2004159. DOI

Khedia J., Agarwal P., Agarwal P.K. Deciphering hydrogen peroxide-induced signalling towards stress tolerance in plants. 3 Biotech. 2019;9:395. doi: 10.1007/s13205-019-1924-0. PubMed DOI PMC

Podgorska A., Burian M., Szal B. Extra-cellular but extra-ordinarily important for cells: Apoplastic reactive oxygen species metabolism. Front. Plant Sci. 2017;8:1353. doi: 10.3389/fpls.2017.01353. PubMed DOI PMC

Liu Y., Ye N., Liu R., Chen M., Zhang J. H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J. Exp. Bot. 2010;61:2979–2990. doi: 10.1093/jxb/erq125. PubMed DOI PMC

Guo P.R., Li Z.H., Huang P.X., Li B.S., Fang S., Chu J.F., Guo H.W. A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. Plant Cell. 2017;29:2854–2870. doi: 10.1105/tpc.17.00438. PubMed DOI PMC

Zhang L.P., Chen L.G., Yu D.Q. Transcription factor WRKY75 interacts with DELLA proteins to affect flowering. Plant Physiol. 2018;176:790–803. doi: 10.1104/pp.17.00657. PubMed DOI PMC

Zhang H., Zhang L., Ji Y., Jing Y., Li L., Chen Y., Wang R., Zhang H., Yu D., Chen L. Arabidopsis SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2 inhibit WRKY75 function in abscisic acid-mediated leaf senescence and seed germination. J. Exp. Bot. 2022;73:182–196. doi: 10.1093/jxb/erab391. PubMed DOI PMC

Christianson J.A., Wilson I.W., Llewellyn D.J., Dennis E.S. The low-oxygen induced NAC domain transcription factor ANAC102 affects viability of Arabidopsis thaliana seeds following low-oxygen treatment. Plant Physiol. 2009;149:1724–1738. doi: 10.1104/pp.108.131912. PubMed DOI PMC

D’Alessandro S., Ksas B., Havaux M. Decoding beta-cyclocitral-mediated retrograde signaling reveals the role of a detoxification response in plant tolerance to photooxidative stress. Plant Cell. 2018;30:2495–2511. doi: 10.1105/tpc.18.00578. PubMed DOI PMC

Prat T., Hajny J., Grunewald W., Vasileva M., Molnar G., Tejos R., Schmid M., Sauer M., Friml J. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genet. 2018;14:e1007177. doi: 10.1371/journal.pgen.1007177. PubMed DOI PMC

Grunewald W., De Smet I., Lewis D.R., Lofke C., Jansen L., Goeminne G., Bossche R.V., Karimi M., De Rybel B., Vanholme B., et al. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc. Natl. Acad. Sci. USA. 2012;109:1554–1559. doi: 10.1073/pnas.1121134109. PubMed DOI PMC

Tzafestas K., Ahmad L., Dani M.P., Grogan G., Rylott E.L., Bruce N.C. Structure-guided mechanisms behind the metabolism of 2,4,6-trinitrotoluene by glutathione transferases U25 and U24 that lead to alternate product distribution. Front. Plant Sci. 2018;9:1846. doi: 10.3389/fpls.2018.01846. PubMed DOI PMC

Jemmat A.M., Ranocha P., Le Ru A., Neel M., Jauneau A., Raggi S., Ferrari S., Burlat V., Dunand C. Coordination of five class III peroxidase-encoding genes for early germination events of Arabidopsis thaliana. Plant Sci. 2020;298:110565. doi: 10.1016/j.plantsci.2020.110565. PubMed DOI

Linkies A., Schuster-Sherpa U., Tintelnot S., Leubner-Metzger G., Müller K. Peroxidases identified in a substractive cDNA library approach show tissue-specific transcript abundance and enzyme activity during seed germination of Lepidium sativum. J. Exp. Bot. 2010;61:491–502. doi: 10.1093/jxb/erp318. PubMed DOI PMC

Jiang A.L., Guo Z.L., Pan J.W., Yang Y.Z., Zhuang Y., Zuo D.Q., Hao C., Gao Z.X., Xin P.Y., Chu J.F., et al. The PIF1-miR408-PLANTACYANIN repression cascade regulates light-dependent seed germination. Plant Cell. 2021;33:1506–1529. doi: 10.1093/plcell/koab060. PubMed DOI PMC

Zhang G.Z., Jin S.H., Jiang X.Y., Dong R.R., Li P., Li Y.J., Hou B.K. Ectopic expression of UGT75D1, a glycosyltransferase preferring indole-3-butyric acid, modulates cotyledon development and stress tolerance in seed germination of Arabidopsis thaliana. Plant Mol. Biol. 2016;90:77–93. doi: 10.1007/s11103-015-0395-x. PubMed DOI

Simon C., Langlois-Meurinne M., Didierlaurent L., Chaouch S., Bellvert F., Massoud K., Garmier M., Thareau V., Comte G., Noctor G., et al. The secondary metabolism glycosyltransferases UGT73B3 and UGT73B5 are components of redox status in resistance of Arabidopsis to Pseudomonas syringae pv. tomato. Plant Cell Environ. 2014;37:1114–1129. doi: 10.1111/pce.12221. PubMed DOI

Tognetti V.B., Van Aken O., Morreel K., Vandenbroucke K., de Cotte B.V., De Clercq I., Chiwocha S., Fenske R., Prinsen E., Boerjan W., et al. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell. 2010;22:2660–2679. doi: 10.1105/tpc.109.071316. PubMed DOI PMC

Gardin J.A.C., Gouzy J., Carrere S., Delye C. ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass) BMC Genom. 2015;16:590. doi: 10.1186/s12864-015-1804-x. PubMed DOI PMC

Hofer R., Boachon B., Renault H., Gavira C., Miesch L., Iglesias J., Ginglinger J.F., Allouche L., Miesch M., Grec S., et al. Dual function of the cytochrome P450 CYP76 family from Arabidopsis thaliana in the metabolism of monoterpenols and phenylurea herbicides. Plant Physiol. 2014;166:1149. doi: 10.1104/pp.114.244814. PubMed DOI PMC

Niu G.Q., Zhao S., Wang L., Dong W., Liu L., He Y.K. Structure of the Arabidopsis thaliana NADPH-cytochrome P450 reductase 2 (ATR2) provides insight into its function. FEBS J. 2017;284:754–765. doi: 10.1111/febs.14017. PubMed DOI

Upadhyay N., Kar D., Mahajan B.D., Nanda S., Rahiman R., Panchakshari N., Bhagavatula L., Datta S. The multitasking abilities of MATE transporters in plants. J. Exp. Bot. 2019;70:4643–4656. doi: 10.1093/jxb/erz246. PubMed DOI

Miyauchi H., Moriyama S., Kusakizako T., Kumazaki K., Nakane T., Yamashita K., Hirata K., Dohmae N., Nishizawa T., Ito K., et al. Structural basis for xenobiotic extrusion by eukaryotic MATE transporter. Nat. Commun. 2017;8:1633. doi: 10.1038/s41467-017-01541-0. PubMed DOI PMC

Martinoia E. Vacuolar transporters—Companions on a longtime journey. Plant Physiol. 2018;176:1384–1407. doi: 10.1104/pp.17.01481. PubMed DOI PMC

Thompson E.P., Wilkins C., Demidchik V., Davies J.M., Glover B.J. An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development. J. Exp. Bot. 2010;61:439–451. doi: 10.1093/jxb/erp312. PubMed DOI PMC

Kovinich N., Wang Y.Q., Adegboye J., Chanoca A.A., Otegui M.S., Durkin P., Grotewold E. Arabidopsis MATE45 antagonizes local abscisic acid signaling to mediate development and abiotic stress responses. Plant Direct. 2018;2:e00087. doi: 10.1002/pld3.87. PubMed DOI PMC

Do T.H.T., Martinoia E., Lee Y., Hwang J.U. 2021 update on ATP-binding cassette (ABC) transporters: How they meet the needs of plants. Plant Physiol. 2021;187:1876–1892. doi: 10.1093/plphys/kiab193. PubMed DOI PMC

Zhang K.W., Novak O.R., Wei Z.Y., Gou M.Y., Zhang X.B., Yu Y., Yang H.J., Cai Y.H., Strnad M., Liu C.J. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat. Commun. 2014;5:3274. doi: 10.1038/ncomms4274. PubMed DOI

Geisler M., Aryal B., di Donato M., Hao P.C. A critical view on ABC transporters and their interacting partners in auxin transport. Plant Cell Physiol. 2017;58:1601–1614. doi: 10.1093/pcp/pcx104. PubMed DOI

Hao P.C., Xia J., Liu J., Di Donato M., Pakula K., Bailly A., Jasinski M., Geisler M. Auxin-transporting ABC transporters are defined by a conserved D/E-P motif regulated by a prolylisomerase. J. Biol. Chem. 2020;295:13094–13105. doi: 10.1074/jbc.RA120.014104. PubMed DOI PMC

Zhao C., Pratelli R., Yu S., Shelley B., Collakova E., Pilot G. Detailed characterization of the UMAMIT proteins provides insight into their evolution, amino acid transport properties, and role in the plant. J. Exp. Bot. 2021;72:6400–6417. doi: 10.1093/jxb/erab288. PubMed DOI

Yao X.H., Nie J., Bai R.X., Sui X.L. Amino acid transporters in plants: Identification and function. Plants. 2020;9:972. doi: 10.3390/plants9080972. PubMed DOI PMC

Besnard J., Zhao C.S., Avice J.C., Vitha S., Hyodo A., Pilot G., Okumoto S. Arabidopsis UMAMIT24 and 25 are amino acid exporters involved in seed loading. J. Exp. Bot. 2018;69:5221–5232. doi: 10.1093/jxb/ery302. PubMed DOI PMC

Tan P.P., Du X.H., Shang Y.J., Zhu K.K., Joshi S., Kaur K., Khare T., Kumar V. Ion transporters and their exploration for conferring abiotic stress tolerance in plants. Plant Growth Regul. 2022;96:1–23. doi: 10.1007/s10725-021-00762-0. DOI

Zhang M.L., Huang P.P., Ji Y., Wang S.W., Wang S.S., Li Z., Guo Y., Ding Z.J., Wu W.H., Wang Y. KUP9 maintains root meristem activity by regulating K+ and auxin homeostasis in response to low K. Embo Rep. 2020;21:e50164. doi: 10.15252/embr.202050164. PubMed DOI PMC

Hoai P.T.T., Tyerman S.D., Schnell N., Tucker M., McGaughey S.A., Qiu J.E., Groszmann M., Byrt C.S. Deciphering aquaporin regulation and roles in seed biology. J. Exp. Bot. 2020;71:1763–1773. doi: 10.1093/jxb/erz555. PubMed DOI

Sudhakaran S., Thakral V., Padalkar G., Rajora N., Dhiman P., Raturi G., Sharma Y., Tripathi D.K., Deshmukh R., Sharma T.R., et al. Significance of solute specificity, expression, and gating mechanism of tonoplast intrinsic protein during development and stress response in plants. Physiol. Plant. 2021;172:258–274. doi: 10.1111/ppl.13386. PubMed DOI

Footitt S., Clewes R., Feeney M., Finch-Savage W.E., Frigerio L. Aquaporins influence seed dormancy and germination in response to stress. Plant Cell Environ. 2019;42:2325–2339. doi: 10.1111/pce.13561. PubMed DOI PMC

Walker M., Perez M., Steinbrecher T., Gawthrop F., Pavlovic I., Novak O., Tarkowska D., Strnad M., Marone F., Nakabayashi K., et al. Molecular mechanisms and hormonal regulation underpinning morphological dormancy: A case study using Apium graveolens (Apiaceae) Plant J. 2021;108:1020–1036. doi: 10.1111/tpj.15489. PubMed DOI

Liu P.P., Montgomery T.A., Fahlgren N., Kasschau K.D., Nonogaki H., Carrington J.C. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J. 2007;52:133–146. doi: 10.1111/j.1365-313X.2007.03218.x. PubMed DOI

Belin C., Megies C., Hauserova E., Lopez-Molina L. Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling. Plant Cell. 2009;21:2253–2268. doi: 10.1105/tpc.109.067702. PubMed DOI PMC

Marhava P. Recent developments in the understanding of PIN polarity. New Phytol. 2022;233:624–630. doi: 10.1111/nph.17867. PubMed DOI

Feraru E., Feraru M.I., Barbez E., Waidmann S., Sun L., Gaidora A., Kleine-Vehn J. PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2019;116:3893–3898. doi: 10.1073/pnas.1814015116. PubMed DOI PMC

Ranocha P., Dima O., Nagy R., Felten J., Corratge-Faillie C., Novak O., Morreel K., Lacombe B., Martinez Y., Pfrunder S., et al. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat. Commun. 2013;4:2625. doi: 10.1038/ncomms3625. PubMed DOI PMC

Teale W., Palme K. Naphthylphthalamic acid and the mechanism of polar auxin transport. J. Exp. Bot. 2018;69:303–312. doi: 10.1093/jxb/erx323. PubMed DOI

Hayashi K., Neve J., Hirose M., Kuboki A., Shimada Y., Kepinski S., Nozaki H. Rational design of an auxin antagonist of the SCF(TIR1) auxin receptor complex. ACS Chem. Biol. 2012;7:590–598. doi: 10.1021/cb200404c. PubMed DOI

Matilla A.J. Auxin: Hormonal signal required for seed development and dormancy. Plants. 2020;9:705. doi: 10.3390/plants9060705. PubMed DOI PMC

Emenecker R.J., Strader L.C. Auxin-abscisic acid interactions in plant growth and development. Biomolecules. 2020;10:281. doi: 10.3390/biom10020281. PubMed DOI PMC

Li T.T., Kang X.K., Lei W., Yao X.H., Zou L.J., Zhang D.W., Lin H.H. SHY2 as a node in the regulation of root meristem development by auxin, brassinosteroids, and cytokinin. J. Integr. Plant Biol. 2020;62:1500–1517. doi: 10.1111/jipb.12931. PubMed DOI

Kamimoto Y., Terasaka K., Hamamoto M., Takanashi K., Fukuda S., Shitan N., Sugiyama A., Suzuki H., Shibata D., Wang B.J., et al. Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. Plant Cell Physiol. 2012;53:2090–2100. doi: 10.1093/pcp/pcs149. PubMed DOI

Cho M., Lee Z.W., Cho H.T. ATP-binding cassette B4, an auxin-efflux transporter, stably associates with the plasma membrane and shows distinctive intracellular trafficking from that of PIN-FORMED proteins. Plant Physiol. 2012;159:642. doi: 10.1104/pp.112.196139. PubMed DOI PMC

Kubes M., Yang H.B., Richter G.L., Cheng Y., Mlodzinska E., Wang X., Blakeslee J.J., Carraro N., Petrasek J., Zazimalova E., et al. The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. Plant J. 2012;69:640–654. doi: 10.1111/j.1365-313X.2011.04818.x. PubMed DOI

Aryal B., Huynh J., Schneuwly J., Siffert A., Liu J., Alejandro S., Ludwig-Muller J., Martinoia E., Geisler M. ABCG36/PEN3/PDR8 is an exporter of the auxin precursor, indole-3-butyric acid, and involved in auxin-controlled development. Front. Plant Sci. 2019;10:889. doi: 10.3389/fpls.2019.00899. PubMed DOI PMC

Ruzicka K., Strader L.C., Bailly A., Yang H.B., Blakeslee J., Langowski L., Nejedla E., Fujita H., Itoh H., Syono K., et al. Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proc. Natl. Acad. Sci. USA. 2010;107:10749–10753. doi: 10.1073/pnas.1005878107. PubMed DOI PMC

Grana E., Diaz-Tielas C., Lopez-Gonzalez D., Martinez-Penalver A., Reigosa M.J., Sanchez-Moreiras A.M. The plant secondary metabolite citral alters water status and prevents seed formation in Arabidopsis thaliana. Plant Biol. 2016;18:423–432. doi: 10.1111/plb.12418. PubMed DOI

Taguchi G., Ubukata T., Nozue H., Kobayashi Y., Takahi M., Yamamoto H., Hayashida N. Malonylation is a key reaction in the metabolism of xenobiotic phenolic glucosides in Arabidopsis and tobacco. Plant J. 2010;63:1031–1041. doi: 10.1111/j.1365-313X.2010.04298.x. PubMed DOI

Park S.W., Li W., Viehhauser A., He B., Kim S., Nilsson A.K., Andersson M.X., Kittle J.D., Ambavaram M.M.R., Luan S., et al. Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proc. Natl. Acad. Sci. USA. 2013;110:9559–9564. doi: 10.1073/pnas.1218872110. PubMed DOI PMC

Ghosh A.K., Chauhan N., Rajakumari S., Daum G., Rajasekharan R. At4g24160, a soluble acyl-coenzyme A-dependent lysophosphatidic acid acyltransferase. Plant Physiol. 2009;151:869–881. doi: 10.1104/pp.109.144261. PubMed DOI PMC

De Giorgi J., Piskurewicz U., Loubery S., Utz-Pugin A., Bailly C., Mene-Saffrane L., Lopez-Molina L. An endosperm-associated cuticle is required for Arabidopsis seed viability, dormancy and early control of germination. PLoS Genet. 2015;11:e1005708. doi: 10.1371/journal.pgen.1005708. PubMed DOI PMC

Jeong S., Kim J.Y., Choi H., Kim H., Lee I., Soh M.S., Nam H.G., Chang Y.T., Lim P.O., Woo H.R. Rootin, a compound that inhibits root development through modulating PIN-mediated auxin distribution. Plant Sci. 2015;233:116–126. doi: 10.1016/j.plantsci.2015.01.007. PubMed DOI

Zhang W., Lu L.Y., Hu L.Y., Cao W., Sun K., Sun Q.B., Siddikee A., Shi R.H., Dai C.C. Evidence for the involvement of auxin, ethylene and ROS signaling during primary root inhibition of Arabidopsis by the allelochemical benzoic acid. Plant Cell Physiol. 2018;59:1889–1904. doi: 10.1093/pcp/pcy107. PubMed DOI

Urbanova T., Tarkowska D., Novak O., Hedden P., Strnad M. Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry. Talanta. 2013;112:85–94. doi: 10.1016/j.talanta.2013.03.068. PubMed DOI

Flokova K., Tarkowska D., Miersch O., Strnad M., Wasternack C., Novak O. UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014;105:147–157. doi: 10.1016/j.phytochem.2014.05.015. PubMed DOI

Kushiro T., Okamoto M., Nakabayashi K., Yamagishi K., Kitamura S., Asami T., Hirai N., Koshiba T., Kamiya Y., Nambara E. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8’-hydroxylases: Key enzymes in ABA catabolism. Eur. Mol. Biol. Organ. J. 2004;23:1647–1656. doi: 10.1038/sj.emboj.7600121. PubMed DOI PMC

Graeber K., Linkies A., Wood A.T., Leubner-Metzger G. A guideline to family-wide comparative state-of-the-art quantitative RT-PCR analysis exemplified with a Brassicaceae cross-species seed germination case study. Plant Cell. 2011;23:2045–2063. doi: 10.1105/tpc.111.084103. PubMed DOI PMC

Holloway T., Steinbrecher T., Perez M., Seville A., Stock D., Nakabayashi K., Leubner-Metzger G. Coleorhiza-enforced seed dormancy: A novel mechanism to control germination in grasses. New Phytol. 2021;229:2179–2191. doi: 10.1111/nph.16948. PubMed DOI

Simpson J.T., Wong K., Jackman S.D., Schein J.E., Jones S.J.M., Birol I. ABySS: A parallel assembler for short read sequence data. Genome Res. 2009;19:1117–1123. doi: 10.1101/gr.089532.108. PubMed DOI PMC

Cherveux B., Wetter T., Suhai S. Genome sequence assembly using trace signals and additional sequence information. Comput. Sci. Biol. Proc. Ger. Conf. Bioinf. 1999;99:45–56.

Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Anders S., Pyl P.T., Huber W. HTSeq-A Phyton framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–169. doi: 10.1093/bioinformatics/btu638. PubMed DOI PMC

Edgar R., Domrachev M., Lash A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Aethionema arabicum dimorphic seed trait resetting during transition to seedlings

. 2024 ; 15 () : 1358312. [epub] 20240308

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace