The Phytotoxin Myrigalone A Triggers a Phased Detoxification Programme and Inhibits Lepidium sativum Seed Germination via Multiple Mechanisms including Interference with Auxin Homeostasis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
BB/M02203X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/M011178/1
Biotechnology and Biological Sciences Research Council - United Kingdom
CZ.02.1.01/0.0/0.0/16_019/000082
European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000738
Centre for Experimental Plant Biology
PubMed
35563008
PubMed Central
PMC9104956
DOI
10.3390/ijms23094618
PII: ijms23094618
Knihovny.cz E-zdroje
- Klíčová slova
- ATP-binding cassette (ABC) transporter, PIN auxin efflux carrier, WRKY transcription factors, allelochemical and allelopathy, aquaporin-mediated water transport, auxin transport and homeostasis, cis-(+)-12-oxophytodienoic acid (OPDA) reductase, gibberellin metabolism, phytotoxin detoxification programme, seed germination,
- MeSH
- chalkonoidy MeSH
- homeostáza MeSH
- hormony metabolismus MeSH
- klíčení * genetika MeSH
- kyseliny indoloctové metabolismus MeSH
- Lepidium sativum * metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus farmakologie MeSH
- semena rostlinná genetika MeSH
- semenáček metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chalkonoidy MeSH
- hormony MeSH
- kyseliny indoloctové MeSH
- myrigalone A MeSH Prohlížeč
- regulátory růstu rostlin MeSH
Molecular responses of plants to natural phytotoxins comprise more general and compound-specific mechanisms. How phytotoxic chalcones and other flavonoids inhibit seedling growth was widely studied, but how they interfere with seed germination is largely unknown. The dihydrochalcone and putative allelochemical myrigalone A (MyA) inhibits seed germination and seedling growth. Transcriptome (RNAseq) and hormone analyses of Lepidium sativum seed responses to MyA were compared to other bioactive and inactive compounds. MyA treatment of imbibed seeds triggered the phased induction of a detoxification programme, altered gibberellin, cis-(+)-12-oxophytodienoic acid and jasmonate metabolism, and affected the expression of hormone transporter genes. The MyA-mediated inhibition involved interference with the antioxidant system, oxidative signalling, aquaporins and water uptake, but not uncoupling of oxidative phosphorylation or p-hydroxyphenylpyruvate dioxygenase expression/activity. MyA specifically affected the expression of auxin-related signalling genes, and various transporter genes, including for auxin transport (PIN7, ABCG37, ABCG4, WAT1). Responses to auxin-specific inhibitors further supported the conclusion that MyA interferes with auxin homeostasis during seed germination. Comparative analysis of MyA and other phytotoxins revealed differences in the specific regulatory mechanisms and auxin transporter genes targeted to interfere with auxin homestasis. We conclude that MyA exerts its phytotoxic activity by multiple auxin-dependent and independent molecular mechanisms.
Department of Biological Sciences Royal Holloway University of London Egham TW20 0EX UK
National Center for Genome Resources 2935 Rodeo Park Dr E Santa Fe NM 87505 USA
Syngenta Crop Protection LLC Research Triangle Park NC 27709 USA
Syngenta Jealott's Hill International Research Centre Bracknell RG42 6EY UK
Zobrazit více v PubMed
Weitbrecht K., Müller K., Leubner-Metzger G. First off the mark: Early seed germination. J. Exp. Bot. 2011;62:3289–3309. doi: 10.1093/jxb/err030. PubMed DOI
Kong C.H., Xuan T.D., Khanh T.D., Tran H.D., Trung N.T. Allelochemicals and signaling chemicals in plants. Molecules. 2019;24:2737. doi: 10.3390/molecules24152737. PubMed DOI PMC
Nakabayashi K., Leubner-Metzger G. Seed dormancy and weed emergence: From simulating environmental change to understanding trait plasticity, adaptive evolution, and population fitness. J. Exp. Bot. 2021;72:4181–4185. doi: 10.1093/jxb/erab150. PubMed DOI PMC
Baerson S.R., Sanchez-Moreiras A., Pedrol-Bonjoch N., Schulz M., Kagan I.A., Agarwal A.K., Reigosa M.J., Duke S.O. Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one. J. Biol. Chem. 2005;280:21867–21881. doi: 10.1074/jbc.M500694200. PubMed DOI
Scavo A., Abbate C., Mauromicale G. Plant allelochemicals: Agronomic, nutritional and ecological relevance in the soil system. Plant Soil. 2019;442:23–48. doi: 10.1007/s11104-019-04190-y. DOI
Hu Y.F., Na X.F., Li J.L., Yang L.J., You J., Liang X.L., Wang J.F., Peng L., Bi Y.R. Narciclasine, a potential allelochemical, affects subcellular trafficking of auxin transporter proteins and actin cytoskeleton dynamics in Arabidopsis roots. Planta. 2015;242:1349–1360. doi: 10.1007/s00425-015-2373-6. PubMed DOI
Araniti F., Bruno L., Sunseri F., Pacenza M., Forgione I., Bitonti M.B., Abenavoli M.R. The allelochemical farnesene affects Arabidopsis thaliana root meristem altering auxin distribution. Plant Physiol. Biochem. 2017;121:14–20. doi: 10.1016/j.plaphy.2017.10.005. PubMed DOI
Gandia-Herrero F., Lorenz A., Larson T., Graham I.A., Bowles D.J., Rylott E.L., Bruce N.C. Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: Discovery of bifunctional O- and C-glucosyltransferases. Plant J. 2008;56:963–974. doi: 10.1111/j.1365-313X.2008.03653.x. PubMed DOI
Zhang J.J., Yang H. Metabolism and detoxification of pesticides in plants. Sci. Total Environ. 2021;790:148034. doi: 10.1016/j.scitotenv.2021.148034. PubMed DOI
Ramel F., Sulmon C., Serra A.A., Gouesbet G., Couee I. Xenobiotic sensing and signalling in higher plants. J. Exp. Bot. 2012;63:3999–4014. doi: 10.1093/jxb/ers102. PubMed DOI
Killeen D.P., Larsen L., Dayan F.E., Gordon K.C., Perry N.B., van Klink J.W. Nortriketones: Antimicrobial trimethylated acylphloroglucinols from manuka (Leptospermum scoparium) J. Nat. Prod. 2016;79:564–569. doi: 10.1021/acs.jnatprod.5b00968. PubMed DOI
Beaudegnies R., Edmunds A.J., Fraser T.E., Hall R.G., Hawkes T.R., Mitchell G., Schaetzer J., Wendeborn S., Wibley J. Herbicidal 4-hydroxyphenylpyruvate dioxygenase inhibitors—A review of the triketone chemistry story from a Syngenta perspective. Bioorg. Med. Chem. 2009;17:4134–4152. doi: 10.1016/j.bmc.2009.03.015. PubMed DOI
Skipsey M., Knight K.M., Brazier-Hicks M., Dixon D.P., Steel P.G., Edwards R. Xenobiotic responsiveness of Arabidopsis thaliana to a chemical series derived from a herbicide safener. J. Biol. Chem. 2011;286:32268–32276. doi: 10.1074/jbc.M111.252726. PubMed DOI PMC
Duke S.O., Pan Z.Q., Bajsa-Hirschel J. Proving the mode of action of phytotoxic phytochemicals. Plants. 2020;9:756. doi: 10.3390/plants9121756. PubMed DOI PMC
Westwood J.H., Charudattan R., Duke S.O., Fennimore S.A., Marrone P., Slaughter D.C., Swanton C., Zollinger R. Weed management in 2050: Perspectives on the future of weed science. Weed Sci. 2018;66:275–285. doi: 10.1017/wsc.2017.78. DOI
Chotsaeng N., Laosinwattana C., Charoenying P. Herbicidal activity of flavokawains and related trans-chalcones against Amaranthus tricolor L. and Echinochloa crus-galli (L.) Beauv. ACS Omega. 2019;4:20748–20755. doi: 10.1021/acsomega.9b03144. PubMed DOI PMC
Popovici J., Bertrand C., Jacquemoud D., Bellvert F., Fernandez M.P., Comte G., Piola F. An allelochemical from Myrica gale with strong phytotoxic activity against highly invasive Fallopia x bohemica taxa. Molecules. 2011;16:2323–2333. doi: 10.3390/molecules16032323. PubMed DOI PMC
Grana E., Diaz-Tielas C., Sanchez-Moreiras A.M., Reigosa M.J., Celeiro M., Abagyan R., Teijeira M., Duke M.V., Clerk T., Pan Z.Q., et al. Transcriptome and binding data indicate that citral inhibits single strand DNA-binding proteins. Physiol. Plant. 2020;169:99–109. doi: 10.1111/ppl.13055. PubMed DOI
Diaz-Tielas C., Grana E., Sanchez-Moreiras A.M., Reigosa M.J., Vaughn J.N., Pan Z.Q., Bajsa-Hirschel J., Duke M.V., Duke S.O. Transcriptome responses to the natural phytotoxin t-chalcone in Arabidopsis thaliana L. Pest Manag. Sci. 2019;75:2490–2504. doi: 10.1002/ps.5405. PubMed DOI
Cao X.N., Ma F., Xu T.T., Wang J.J., Liu S.C., Li G.H., Su Q., Qiao Z.J., Na X. Transcriptomic analysis reveals key early events of narciclasine signaling in Arabidopsis root apex. Plant Cell Rep. 2016;35:2381–2401. doi: 10.1007/s00299-016-2042-7. PubMed DOI
Vanholme B., El Houari I., Boerjan W. Bioactivity: Phenylpropanoids’ best kept secret. Curr. Opin. Biotechnol. 2019;56:156–162. doi: 10.1016/j.copbio.2018.11.012. PubMed DOI
Lohman D.J., McConnaughay K.D. Patterns of defensive chemical production in wild parsnip seedlings (Apiaceae: Pastinaca sativa L.) Chemoecology. 1998;8:195–200. doi: 10.1007/s000490050025. DOI
Nebo L., Varela R.M., Molinillo J.M.G., Sampaio O.M., Severino V.G.P., Cazal C.M., da Silva M.F.G.F., Fernandes J.B., Macias F.A. Phytotoxicity of alkaloids, coumarins and flavonoids isolated from 11 species belonging to the Rutaceae and Meliaceae families. Phytochem. Lett. 2014;8:226–232. doi: 10.1016/j.phytol.2014.02.010. DOI
Macias F.A., Molinillo J.M.G., Torres A., Varela R.M., Castellano D. Bioactive flavonoids from Helianthus annuus cultivars. Phytochemistry. 1997;45:683–687. doi: 10.1016/S0031-9422(97)00011-3. DOI
Diaz-Tielas C., Sotelo T., Grana E., Reigosa M.J., Sanchez-Moreiras A.M. Phytotoxic potential of trans-chalcone on crop plants and model species. J. Plant Growth Regul. 2014;33:181–194. doi: 10.1007/s00344-013-9360-6. DOI
Li P., Ding L., Zhang L., He J., Huan Z.W. Weisiensin B inhibits primary and lateral root development by interfering with polar auxin transport in Arabidopsis thaliana. Plant Physiol. Biochem. 2019;139:738–745. doi: 10.1016/j.plaphy.2019.04.020. PubMed DOI
De Martino L., Mancini E., de Almeida L.F., De Feo V. The antigerminative activity of twenty-seven monoterpenes. Molecules. 2010;15:6630–6637. doi: 10.3390/molecules15096630. PubMed DOI PMC
Lopez-Gonzalez D., Costas-Gil A., Reigosa M.J., Araniti F., Sanchez-Moreiras A.M. A natural indole alkaloid, norharmane, affects PIN expression patterns and compromises root growth in Arabidopsis thaliana. Plant Physiol. Biochem. 2020;151:378–390. doi: 10.1016/j.plaphy.2020.03.047. PubMed DOI
Hu Y.F., Yang L.J., Na X.F., You J., Hu W., Liang X.L., Liu J., Mao L.N., Wang X.M., Wang H.H., et al. Narciclasine inhibits the responses of Arabidopsis roots to auxin. Planta. 2012;236:597–612. doi: 10.1007/s00425-012-1632-z. PubMed DOI
Na X.F., Hu Y.F., Yue K., Lu H.X., Jia P.F., Wang H.H., Wang X.M., Bi Y.R. Concentration-dependent effects of narciclasine on cell cycle progression in Arabidopsis root tips. BMC Plant Biol. 2011;11:184. doi: 10.1186/1471-2229-11-184. PubMed DOI PMC
Bassel G.W., Fung P., Chow T.-F.F., Foong J.A., Provart N.J., Cutler S.R. Elucidating the germination transcriptional program using small molecules. Plant Physiol. 2008;147:143–155. doi: 10.1104/pp.107.110841. PubMed DOI PMC
Zhuang C.L., Zhang W., Sheng C.Q., Zhang W.N., Xing C.G., Miao Z.Y. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 2017;117:7762–7810. doi: 10.1021/acs.chemrev.7b00020. PubMed DOI PMC
Ndikuryayo F., Moosavi B., Yang W.C., Yang G.F. 4-Hydroxyphenylpyruvate dioxygenase inhibitors: From chemical biology to agrochemicals. J. Agric. Food Chem. 2017;65:8523–8537. doi: 10.1021/acs.jafc.7b03851. PubMed DOI
Mathiesen L., Malterud K.E., Sund R.B. Uncoupling of respiration and inhibition of ATP synthesis in mitochondria by C-methylated flavonoids from Myrica gale L. Eur. J. Pharm. Sci. 1996;4:373–379. doi: 10.1016/S0928-0987(96)00179-0. DOI
Mathiesen L., Malterud K.E., Sund R.B. Hydrogen bond formation as basis for radical scavenging activity: A structure-activity study of C-methylated dihydrochalcones from Myrica gale and structurally related acetophenones. Free Radic. Biol. Med. 1997;22:307–311. doi: 10.1016/S0891-5849(96)00277-8. PubMed DOI
Malterud K.E., Diep O.H., Sund R.B. C-methylated dihydrochalcones from Myrica gale L: Effects as antioxidants and as scavengers of 1,1-diphenyl-2-picrylhydrazyl. Pharmacol. Toxicol. 1996;78:111–116. doi: 10.1111/j.1600-0773.1996.tb00190.x. PubMed DOI
Oracz K., Voegele A., Tarkowska D., Jacquemoud D., Tureckova V., Urbanova T., Strnad M., Sliwinska E., Leubner-Metzger G. Myrigalone A inhibits Lepidium sativum seed germination by interference with gibberellin metabolism and apoplastic superoxide production required for embryo extension growth and endosperm rupture. Plant Cell Physiol. 2012;53:81–95. doi: 10.1093/pcp/pcr124. PubMed DOI
Voegele A., Graeber K., Oracz K., Tarkowska D., Jacquemoud D., Tureckova V., Urbanova T., Strnad M., Leubner-Metzger G. Embryo growth, testa permeability, and endosperm weakening are major targets for the environmentally regulated inhibition of Lepidium sativum seed germination by myrigalone A. J. Exp. Bot. 2012;63:5337–5350. doi: 10.1093/jxb/ers197. PubMed DOI PMC
Steinbrecher T., Leubner-Metzger G. The biomechanics of seed germination. J. Exp. Bot. 2017;68:765–783. doi: 10.1093/jxb/erw428. PubMed DOI
Scheler C., Weitbrecht K., Pearce S.P., Hampstead A., Buettner-Mainik A., Lee K., Voegele A., Oracz K., Dekkers B., Wang X., et al. Promotion of testa rupture during garden cress germination involves seed compartment-specific expression and activity of pectin methylesterases. Plant Physiol. 2015;167:200–215. doi: 10.1104/pp.114.247429. PubMed DOI PMC
Wasternack C., Strnad M. Jasmonates: News on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds. Int. J. Mol. Sci. 2018;19:2539. doi: 10.3390/ijms19092539. PubMed DOI PMC
Robinson M.D., McCarthy D.J., Smyth G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Graeber K., Linkies A., Steinbrecher T., Mummenhoff K., Tarkowská D., Turečková V., Ignatz M., Sperber K., Voegele A., de Jong H., et al. DELAY OF GERMINATION 1 mediates a conserved coat dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proc. Natl. Acad. Sci. USA. 2014;111:E3571–E3580. doi: 10.1073/pnas.1403851111. PubMed DOI PMC
Beynon E.R., Symons Z.C., Jackson R.G., Lorenz A., Rylott E.L., Bruce N.C. The role of oxophytodienoate reductases in the detoxification of the explosive 2,4,6-trinitrotoluene by Arabidopsis. Plant Physiol. 2009;151:253–261. doi: 10.1104/pp.109.141598. PubMed DOI PMC
Dixon D.P., Edwards R. Selective binding of glutathione conjugates of fatty acid derivatives by plant glutathione transferases. J. Biol. Chem. 2009;284:21249–21256. doi: 10.1074/jbc.M109.020107. PubMed DOI PMC
Walden N., German D.A., Wolf E.M., Kiefer M., Rigault P., Huang X.C., Kiefer C., Schmickl R., Franzke A., Neuffer B., et al. Nested whole-genome duplications coincide with diversification and high morphological disparity in Brassicaceae. Nat. Commun. 2020;11:3795. doi: 10.1038/s41467-020-17605-7. PubMed DOI PMC
Mueller S., Hilbert B., Dueckershoff K., Roitsch T., Krischke M., Mueller M.J., Berger S. General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell. 2008;20:768–785. doi: 10.1105/tpc.107.054809. PubMed DOI PMC
Wulff N., Ernst H.A., Jorgensen M.E., Lambertz S., Maierhofer T., Belew Z.M., Crocoll C., Motawia M.S., Geiger D., Jorgensen F.S., et al. An optimized screen reduces the number of GA transporters and provides insights into nitrate transporter 1/peptide transporter family sSubstrate determinants. Front. Plant Sci. 2019;10:1106. doi: 10.3389/fpls.2019.01106. PubMed DOI PMC
Gräfe K., Schmitt L. The ABC transporter G subfamily in Arabidopsis thaliana. J. Exp. Bot. 2021;72:92–106. doi: 10.1093/jxb/eraa260. PubMed DOI
Choi J., Eom S., Shin K., Lee R.A., Choi S., Lee J.H., Lee S., Soh M.S. Identification of lysine histidine transporter 2 as an 1-aminocyclopropane carboxylic acid transporter in Arabidopsis thaliana by transgenic complementation approach. Front. Plant Sci. 2019;10:1092. doi: 10.3389/fpls.2019.01092. PubMed DOI PMC
Xie Z., Wu F., Lin W.-C., Luo J. The utilization of photophosphorylation uncoupler to improve lipid production of Chlorella, a case study using transcriptome and functional gene expression analysis to reveal its mechanism. Biochem. Eng. J. 2022;178:108275. doi: 10.1016/j.bej.2021.108275. DOI
Jayasinghe U.L., Ratnayake R.M., Medawala M.M., Fujimoto Y. Dihydrochalcones with radical scavenging properties from the leaves of Syzygium jambos. Nat. Prod. Res. 2007;21:551–554. doi: 10.1080/14786410601132238. PubMed DOI
El-Maarouf-Bouteau H., Bailly C. Oxidative signaling in seed germination and dormancy. Plant Signal. Behav. 2008;3:175–182. doi: 10.4161/psb.3.3.5539. PubMed DOI PMC
Bailly C. Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 2004;14:93–107. doi: 10.1079/SSR2004159. DOI
Khedia J., Agarwal P., Agarwal P.K. Deciphering hydrogen peroxide-induced signalling towards stress tolerance in plants. 3 Biotech. 2019;9:395. doi: 10.1007/s13205-019-1924-0. PubMed DOI PMC
Podgorska A., Burian M., Szal B. Extra-cellular but extra-ordinarily important for cells: Apoplastic reactive oxygen species metabolism. Front. Plant Sci. 2017;8:1353. doi: 10.3389/fpls.2017.01353. PubMed DOI PMC
Liu Y., Ye N., Liu R., Chen M., Zhang J. H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J. Exp. Bot. 2010;61:2979–2990. doi: 10.1093/jxb/erq125. PubMed DOI PMC
Guo P.R., Li Z.H., Huang P.X., Li B.S., Fang S., Chu J.F., Guo H.W. A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. Plant Cell. 2017;29:2854–2870. doi: 10.1105/tpc.17.00438. PubMed DOI PMC
Zhang L.P., Chen L.G., Yu D.Q. Transcription factor WRKY75 interacts with DELLA proteins to affect flowering. Plant Physiol. 2018;176:790–803. doi: 10.1104/pp.17.00657. PubMed DOI PMC
Zhang H., Zhang L., Ji Y., Jing Y., Li L., Chen Y., Wang R., Zhang H., Yu D., Chen L. Arabidopsis SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2 inhibit WRKY75 function in abscisic acid-mediated leaf senescence and seed germination. J. Exp. Bot. 2022;73:182–196. doi: 10.1093/jxb/erab391. PubMed DOI PMC
Christianson J.A., Wilson I.W., Llewellyn D.J., Dennis E.S. The low-oxygen induced NAC domain transcription factor ANAC102 affects viability of Arabidopsis thaliana seeds following low-oxygen treatment. Plant Physiol. 2009;149:1724–1738. doi: 10.1104/pp.108.131912. PubMed DOI PMC
D’Alessandro S., Ksas B., Havaux M. Decoding beta-cyclocitral-mediated retrograde signaling reveals the role of a detoxification response in plant tolerance to photooxidative stress. Plant Cell. 2018;30:2495–2511. doi: 10.1105/tpc.18.00578. PubMed DOI PMC
Prat T., Hajny J., Grunewald W., Vasileva M., Molnar G., Tejos R., Schmid M., Sauer M., Friml J. WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity. PLoS Genet. 2018;14:e1007177. doi: 10.1371/journal.pgen.1007177. PubMed DOI PMC
Grunewald W., De Smet I., Lewis D.R., Lofke C., Jansen L., Goeminne G., Bossche R.V., Karimi M., De Rybel B., Vanholme B., et al. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc. Natl. Acad. Sci. USA. 2012;109:1554–1559. doi: 10.1073/pnas.1121134109. PubMed DOI PMC
Tzafestas K., Ahmad L., Dani M.P., Grogan G., Rylott E.L., Bruce N.C. Structure-guided mechanisms behind the metabolism of 2,4,6-trinitrotoluene by glutathione transferases U25 and U24 that lead to alternate product distribution. Front. Plant Sci. 2018;9:1846. doi: 10.3389/fpls.2018.01846. PubMed DOI PMC
Jemmat A.M., Ranocha P., Le Ru A., Neel M., Jauneau A., Raggi S., Ferrari S., Burlat V., Dunand C. Coordination of five class III peroxidase-encoding genes for early germination events of Arabidopsis thaliana. Plant Sci. 2020;298:110565. doi: 10.1016/j.plantsci.2020.110565. PubMed DOI
Linkies A., Schuster-Sherpa U., Tintelnot S., Leubner-Metzger G., Müller K. Peroxidases identified in a substractive cDNA library approach show tissue-specific transcript abundance and enzyme activity during seed germination of Lepidium sativum. J. Exp. Bot. 2010;61:491–502. doi: 10.1093/jxb/erp318. PubMed DOI PMC
Jiang A.L., Guo Z.L., Pan J.W., Yang Y.Z., Zhuang Y., Zuo D.Q., Hao C., Gao Z.X., Xin P.Y., Chu J.F., et al. The PIF1-miR408-PLANTACYANIN repression cascade regulates light-dependent seed germination. Plant Cell. 2021;33:1506–1529. doi: 10.1093/plcell/koab060. PubMed DOI PMC
Zhang G.Z., Jin S.H., Jiang X.Y., Dong R.R., Li P., Li Y.J., Hou B.K. Ectopic expression of UGT75D1, a glycosyltransferase preferring indole-3-butyric acid, modulates cotyledon development and stress tolerance in seed germination of Arabidopsis thaliana. Plant Mol. Biol. 2016;90:77–93. doi: 10.1007/s11103-015-0395-x. PubMed DOI
Simon C., Langlois-Meurinne M., Didierlaurent L., Chaouch S., Bellvert F., Massoud K., Garmier M., Thareau V., Comte G., Noctor G., et al. The secondary metabolism glycosyltransferases UGT73B3 and UGT73B5 are components of redox status in resistance of Arabidopsis to Pseudomonas syringae pv. tomato. Plant Cell Environ. 2014;37:1114–1129. doi: 10.1111/pce.12221. PubMed DOI
Tognetti V.B., Van Aken O., Morreel K., Vandenbroucke K., de Cotte B.V., De Clercq I., Chiwocha S., Fenske R., Prinsen E., Boerjan W., et al. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell. 2010;22:2660–2679. doi: 10.1105/tpc.109.071316. PubMed DOI PMC
Gardin J.A.C., Gouzy J., Carrere S., Delye C. ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass) BMC Genom. 2015;16:590. doi: 10.1186/s12864-015-1804-x. PubMed DOI PMC
Hofer R., Boachon B., Renault H., Gavira C., Miesch L., Iglesias J., Ginglinger J.F., Allouche L., Miesch M., Grec S., et al. Dual function of the cytochrome P450 CYP76 family from Arabidopsis thaliana in the metabolism of monoterpenols and phenylurea herbicides. Plant Physiol. 2014;166:1149. doi: 10.1104/pp.114.244814. PubMed DOI PMC
Niu G.Q., Zhao S., Wang L., Dong W., Liu L., He Y.K. Structure of the Arabidopsis thaliana NADPH-cytochrome P450 reductase 2 (ATR2) provides insight into its function. FEBS J. 2017;284:754–765. doi: 10.1111/febs.14017. PubMed DOI
Upadhyay N., Kar D., Mahajan B.D., Nanda S., Rahiman R., Panchakshari N., Bhagavatula L., Datta S. The multitasking abilities of MATE transporters in plants. J. Exp. Bot. 2019;70:4643–4656. doi: 10.1093/jxb/erz246. PubMed DOI
Miyauchi H., Moriyama S., Kusakizako T., Kumazaki K., Nakane T., Yamashita K., Hirata K., Dohmae N., Nishizawa T., Ito K., et al. Structural basis for xenobiotic extrusion by eukaryotic MATE transporter. Nat. Commun. 2017;8:1633. doi: 10.1038/s41467-017-01541-0. PubMed DOI PMC
Martinoia E. Vacuolar transporters—Companions on a longtime journey. Plant Physiol. 2018;176:1384–1407. doi: 10.1104/pp.17.01481. PubMed DOI PMC
Thompson E.P., Wilkins C., Demidchik V., Davies J.M., Glover B.J. An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development. J. Exp. Bot. 2010;61:439–451. doi: 10.1093/jxb/erp312. PubMed DOI PMC
Kovinich N., Wang Y.Q., Adegboye J., Chanoca A.A., Otegui M.S., Durkin P., Grotewold E. Arabidopsis MATE45 antagonizes local abscisic acid signaling to mediate development and abiotic stress responses. Plant Direct. 2018;2:e00087. doi: 10.1002/pld3.87. PubMed DOI PMC
Do T.H.T., Martinoia E., Lee Y., Hwang J.U. 2021 update on ATP-binding cassette (ABC) transporters: How they meet the needs of plants. Plant Physiol. 2021;187:1876–1892. doi: 10.1093/plphys/kiab193. PubMed DOI PMC
Zhang K.W., Novak O.R., Wei Z.Y., Gou M.Y., Zhang X.B., Yu Y., Yang H.J., Cai Y.H., Strnad M., Liu C.J. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat. Commun. 2014;5:3274. doi: 10.1038/ncomms4274. PubMed DOI
Geisler M., Aryal B., di Donato M., Hao P.C. A critical view on ABC transporters and their interacting partners in auxin transport. Plant Cell Physiol. 2017;58:1601–1614. doi: 10.1093/pcp/pcx104. PubMed DOI
Hao P.C., Xia J., Liu J., Di Donato M., Pakula K., Bailly A., Jasinski M., Geisler M. Auxin-transporting ABC transporters are defined by a conserved D/E-P motif regulated by a prolylisomerase. J. Biol. Chem. 2020;295:13094–13105. doi: 10.1074/jbc.RA120.014104. PubMed DOI PMC
Zhao C., Pratelli R., Yu S., Shelley B., Collakova E., Pilot G. Detailed characterization of the UMAMIT proteins provides insight into their evolution, amino acid transport properties, and role in the plant. J. Exp. Bot. 2021;72:6400–6417. doi: 10.1093/jxb/erab288. PubMed DOI
Yao X.H., Nie J., Bai R.X., Sui X.L. Amino acid transporters in plants: Identification and function. Plants. 2020;9:972. doi: 10.3390/plants9080972. PubMed DOI PMC
Besnard J., Zhao C.S., Avice J.C., Vitha S., Hyodo A., Pilot G., Okumoto S. Arabidopsis UMAMIT24 and 25 are amino acid exporters involved in seed loading. J. Exp. Bot. 2018;69:5221–5232. doi: 10.1093/jxb/ery302. PubMed DOI PMC
Tan P.P., Du X.H., Shang Y.J., Zhu K.K., Joshi S., Kaur K., Khare T., Kumar V. Ion transporters and their exploration for conferring abiotic stress tolerance in plants. Plant Growth Regul. 2022;96:1–23. doi: 10.1007/s10725-021-00762-0. DOI
Zhang M.L., Huang P.P., Ji Y., Wang S.W., Wang S.S., Li Z., Guo Y., Ding Z.J., Wu W.H., Wang Y. KUP9 maintains root meristem activity by regulating K+ and auxin homeostasis in response to low K. Embo Rep. 2020;21:e50164. doi: 10.15252/embr.202050164. PubMed DOI PMC
Hoai P.T.T., Tyerman S.D., Schnell N., Tucker M., McGaughey S.A., Qiu J.E., Groszmann M., Byrt C.S. Deciphering aquaporin regulation and roles in seed biology. J. Exp. Bot. 2020;71:1763–1773. doi: 10.1093/jxb/erz555. PubMed DOI
Sudhakaran S., Thakral V., Padalkar G., Rajora N., Dhiman P., Raturi G., Sharma Y., Tripathi D.K., Deshmukh R., Sharma T.R., et al. Significance of solute specificity, expression, and gating mechanism of tonoplast intrinsic protein during development and stress response in plants. Physiol. Plant. 2021;172:258–274. doi: 10.1111/ppl.13386. PubMed DOI
Footitt S., Clewes R., Feeney M., Finch-Savage W.E., Frigerio L. Aquaporins influence seed dormancy and germination in response to stress. Plant Cell Environ. 2019;42:2325–2339. doi: 10.1111/pce.13561. PubMed DOI PMC
Walker M., Perez M., Steinbrecher T., Gawthrop F., Pavlovic I., Novak O., Tarkowska D., Strnad M., Marone F., Nakabayashi K., et al. Molecular mechanisms and hormonal regulation underpinning morphological dormancy: A case study using Apium graveolens (Apiaceae) Plant J. 2021;108:1020–1036. doi: 10.1111/tpj.15489. PubMed DOI
Liu P.P., Montgomery T.A., Fahlgren N., Kasschau K.D., Nonogaki H., Carrington J.C. Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J. 2007;52:133–146. doi: 10.1111/j.1365-313X.2007.03218.x. PubMed DOI
Belin C., Megies C., Hauserova E., Lopez-Molina L. Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling. Plant Cell. 2009;21:2253–2268. doi: 10.1105/tpc.109.067702. PubMed DOI PMC
Marhava P. Recent developments in the understanding of PIN polarity. New Phytol. 2022;233:624–630. doi: 10.1111/nph.17867. PubMed DOI
Feraru E., Feraru M.I., Barbez E., Waidmann S., Sun L., Gaidora A., Kleine-Vehn J. PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2019;116:3893–3898. doi: 10.1073/pnas.1814015116. PubMed DOI PMC
Ranocha P., Dima O., Nagy R., Felten J., Corratge-Faillie C., Novak O., Morreel K., Lacombe B., Martinez Y., Pfrunder S., et al. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat. Commun. 2013;4:2625. doi: 10.1038/ncomms3625. PubMed DOI PMC
Teale W., Palme K. Naphthylphthalamic acid and the mechanism of polar auxin transport. J. Exp. Bot. 2018;69:303–312. doi: 10.1093/jxb/erx323. PubMed DOI
Hayashi K., Neve J., Hirose M., Kuboki A., Shimada Y., Kepinski S., Nozaki H. Rational design of an auxin antagonist of the SCF(TIR1) auxin receptor complex. ACS Chem. Biol. 2012;7:590–598. doi: 10.1021/cb200404c. PubMed DOI
Matilla A.J. Auxin: Hormonal signal required for seed development and dormancy. Plants. 2020;9:705. doi: 10.3390/plants9060705. PubMed DOI PMC
Emenecker R.J., Strader L.C. Auxin-abscisic acid interactions in plant growth and development. Biomolecules. 2020;10:281. doi: 10.3390/biom10020281. PubMed DOI PMC
Li T.T., Kang X.K., Lei W., Yao X.H., Zou L.J., Zhang D.W., Lin H.H. SHY2 as a node in the regulation of root meristem development by auxin, brassinosteroids, and cytokinin. J. Integr. Plant Biol. 2020;62:1500–1517. doi: 10.1111/jipb.12931. PubMed DOI
Kamimoto Y., Terasaka K., Hamamoto M., Takanashi K., Fukuda S., Shitan N., Sugiyama A., Suzuki H., Shibata D., Wang B.J., et al. Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. Plant Cell Physiol. 2012;53:2090–2100. doi: 10.1093/pcp/pcs149. PubMed DOI
Cho M., Lee Z.W., Cho H.T. ATP-binding cassette B4, an auxin-efflux transporter, stably associates with the plasma membrane and shows distinctive intracellular trafficking from that of PIN-FORMED proteins. Plant Physiol. 2012;159:642. doi: 10.1104/pp.112.196139. PubMed DOI PMC
Kubes M., Yang H.B., Richter G.L., Cheng Y., Mlodzinska E., Wang X., Blakeslee J.J., Carraro N., Petrasek J., Zazimalova E., et al. The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. Plant J. 2012;69:640–654. doi: 10.1111/j.1365-313X.2011.04818.x. PubMed DOI
Aryal B., Huynh J., Schneuwly J., Siffert A., Liu J., Alejandro S., Ludwig-Muller J., Martinoia E., Geisler M. ABCG36/PEN3/PDR8 is an exporter of the auxin precursor, indole-3-butyric acid, and involved in auxin-controlled development. Front. Plant Sci. 2019;10:889. doi: 10.3389/fpls.2019.00899. PubMed DOI PMC
Ruzicka K., Strader L.C., Bailly A., Yang H.B., Blakeslee J., Langowski L., Nejedla E., Fujita H., Itoh H., Syono K., et al. Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proc. Natl. Acad. Sci. USA. 2010;107:10749–10753. doi: 10.1073/pnas.1005878107. PubMed DOI PMC
Grana E., Diaz-Tielas C., Lopez-Gonzalez D., Martinez-Penalver A., Reigosa M.J., Sanchez-Moreiras A.M. The plant secondary metabolite citral alters water status and prevents seed formation in Arabidopsis thaliana. Plant Biol. 2016;18:423–432. doi: 10.1111/plb.12418. PubMed DOI
Taguchi G., Ubukata T., Nozue H., Kobayashi Y., Takahi M., Yamamoto H., Hayashida N. Malonylation is a key reaction in the metabolism of xenobiotic phenolic glucosides in Arabidopsis and tobacco. Plant J. 2010;63:1031–1041. doi: 10.1111/j.1365-313X.2010.04298.x. PubMed DOI
Park S.W., Li W., Viehhauser A., He B., Kim S., Nilsson A.K., Andersson M.X., Kittle J.D., Ambavaram M.M.R., Luan S., et al. Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. Proc. Natl. Acad. Sci. USA. 2013;110:9559–9564. doi: 10.1073/pnas.1218872110. PubMed DOI PMC
Ghosh A.K., Chauhan N., Rajakumari S., Daum G., Rajasekharan R. At4g24160, a soluble acyl-coenzyme A-dependent lysophosphatidic acid acyltransferase. Plant Physiol. 2009;151:869–881. doi: 10.1104/pp.109.144261. PubMed DOI PMC
De Giorgi J., Piskurewicz U., Loubery S., Utz-Pugin A., Bailly C., Mene-Saffrane L., Lopez-Molina L. An endosperm-associated cuticle is required for Arabidopsis seed viability, dormancy and early control of germination. PLoS Genet. 2015;11:e1005708. doi: 10.1371/journal.pgen.1005708. PubMed DOI PMC
Jeong S., Kim J.Y., Choi H., Kim H., Lee I., Soh M.S., Nam H.G., Chang Y.T., Lim P.O., Woo H.R. Rootin, a compound that inhibits root development through modulating PIN-mediated auxin distribution. Plant Sci. 2015;233:116–126. doi: 10.1016/j.plantsci.2015.01.007. PubMed DOI
Zhang W., Lu L.Y., Hu L.Y., Cao W., Sun K., Sun Q.B., Siddikee A., Shi R.H., Dai C.C. Evidence for the involvement of auxin, ethylene and ROS signaling during primary root inhibition of Arabidopsis by the allelochemical benzoic acid. Plant Cell Physiol. 2018;59:1889–1904. doi: 10.1093/pcp/pcy107. PubMed DOI
Urbanova T., Tarkowska D., Novak O., Hedden P., Strnad M. Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry. Talanta. 2013;112:85–94. doi: 10.1016/j.talanta.2013.03.068. PubMed DOI
Flokova K., Tarkowska D., Miersch O., Strnad M., Wasternack C., Novak O. UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014;105:147–157. doi: 10.1016/j.phytochem.2014.05.015. PubMed DOI
Kushiro T., Okamoto M., Nakabayashi K., Yamagishi K., Kitamura S., Asami T., Hirai N., Koshiba T., Kamiya Y., Nambara E. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8’-hydroxylases: Key enzymes in ABA catabolism. Eur. Mol. Biol. Organ. J. 2004;23:1647–1656. doi: 10.1038/sj.emboj.7600121. PubMed DOI PMC
Graeber K., Linkies A., Wood A.T., Leubner-Metzger G. A guideline to family-wide comparative state-of-the-art quantitative RT-PCR analysis exemplified with a Brassicaceae cross-species seed germination case study. Plant Cell. 2011;23:2045–2063. doi: 10.1105/tpc.111.084103. PubMed DOI PMC
Holloway T., Steinbrecher T., Perez M., Seville A., Stock D., Nakabayashi K., Leubner-Metzger G. Coleorhiza-enforced seed dormancy: A novel mechanism to control germination in grasses. New Phytol. 2021;229:2179–2191. doi: 10.1111/nph.16948. PubMed DOI
Simpson J.T., Wong K., Jackman S.D., Schein J.E., Jones S.J.M., Birol I. ABySS: A parallel assembler for short read sequence data. Genome Res. 2009;19:1117–1123. doi: 10.1101/gr.089532.108. PubMed DOI PMC
Cherveux B., Wetter T., Suhai S. Genome sequence assembly using trace signals and additional sequence information. Comput. Sci. Biol. Proc. Ger. Conf. Bioinf. 1999;99:45–56.
Li H., Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Anders S., Pyl P.T., Huber W. HTSeq-A Phyton framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–169. doi: 10.1093/bioinformatics/btu638. PubMed DOI PMC
Edgar R., Domrachev M., Lash A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC
Aethionema arabicum dimorphic seed trait resetting during transition to seedlings