gibberellin metabolism Dotaz Zobrazit nápovědu
- MeSH
- Ascomycota * MeSH
- farmakologie * MeSH
- gibereliny * MeSH
- Glycine max * MeSH
- metabolismus * MeSH
- výzkum * MeSH
- Publikační typ
- časopisecké články MeSH
The plant-specific receptor-like cytoplasmic kinases (RLCKs) form a large, poorly characterized family. Members of the RLCK VI_A class of dicots have a unique characteristic: their activity is regulated by Rho-of-plants (ROP) GTPases. The biological function of one of these kinases was investigated using a T-DNA insertion mutant and RNA interference. Loss of RLCK VI_A2 function resulted in restricted cell expansion and seedling growth. Although these phenotypes could be rescued by exogenous gibberellin, the mutant did not exhibit lower levels of active gibberellins nor decreased gibberellin sensitivity. Transcriptome analysis confirmed that gibberellin is not the direct target of the kinase; its absence rather affected the metabolism and signalling of other hormones such as auxin. It is hypothesized that gibberellins and the RLCK VI_A2 kinase act in parallel to regulate cell expansion and plant growth. Gene expression studies also indicated that the kinase might have an overlapping role with the transcription factor circuit (PIF4-BZR1-ARF6) controlling skotomorphogenesis-related hypocotyl/cotyledon elongation. Furthermore, the transcriptomic changes revealed that the loss of RLCK VI_A2 function alters cellular processes that are associated with cell membranes, take place at the cell periphery or in the apoplast, and are related to cellular transport and/or cell wall reorganisation.
- MeSH
- Arabidopsis účinky léků enzymologie genetika růst a vývoj MeSH
- DNA bakterií genetika metabolismus MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- geneticky modifikované rostliny MeSH
- gibereliny metabolismus farmakologie MeSH
- hypokotyl účinky léků enzymologie genetika růst a vývoj MeSH
- inzerční mutageneze MeSH
- kotyledon účinky léků enzymologie genetika růst a vývoj MeSH
- kyseliny indoloctové metabolismus farmakologie MeSH
- protein-serin-threoninkinasy genetika metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin * MeSH
- regulátory růstu rostlin farmakologie MeSH
- semenáček účinky léků enzymologie genetika růst a vývoj MeSH
- stanovení celkové genové exprese MeSH
- transkripční faktory bHLH genetika metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- transkriptom MeSH
- vývojová regulace genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the delay of germination 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination.
- MeSH
- Arabidopsis genetika růst a vývoj fyziologie MeSH
- biomechanika MeSH
- diploidie MeSH
- geneticky modifikované rostliny MeSH
- gibereliny metabolismus MeSH
- klíčení genetika fyziologie MeSH
- konzervovaná sekvence MeSH
- Lepidium sativum genetika růst a vývoj fyziologie MeSH
- molekulární sekvence - údaje MeSH
- mutace MeSH
- proteiny huseníčku genetika MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny MeSH
- semena rostlinná růst a vývoj MeSH
- teplota MeSH
- vegetační klid genetika fyziologie MeSH
- vývojová regulace genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Potato represents the third most important crop worldwide and therefore to understand regulations of tuber onset is crucial from both theoretical and practical points of view. Photosynthesis and related carbohydrate status along with phytohormone balance belong to the essential factors in regulation of plant development including storage organ formation. In our work we used potato (Solanum tuberosum) cv. Lada and its spontaneously tuberizing mutant (ST plants) grown in vitro under low carbohydrate availability (non-inductive conditions). Small plant phenotype and readiness to tuberization of ST plants was, however, not accompanied by lower gibberellins levels, as determined by UHPLC-MS/MS. Therefore, we focused on the other inducing factor, carbohydrate status. Using HPLC, we followed changes in carbohydrate distribution under mixotrophic (2.5% sucrose in medium) and photoautotrophic conditions (no sucrose addition and higher gas and light availability) and observed changes in soluble carbohydrate allocation and starch deposition, favouring basal stem part in mutants. In addition, the determination of tuber-inducing marker gene expressions revealed increased levels of StSP6A in ST leaves. Collectively these data point towards the possibility of two parallel cross-talking pathways (carbohydrate - and gibberellin- dependent ones) with the power of both to outcompete the other one when its signal is for some reason extraordinary strong.
- MeSH
- geneticky modifikované rostliny genetika metabolismus MeSH
- gibereliny metabolismus MeSH
- hlízy rostlin genetika metabolismus MeSH
- metabolismus sacharidů genetika fyziologie MeSH
- regulace genové exprese u rostlin genetika fyziologie MeSH
- rostlinné proteiny genetika metabolismus MeSH
- Solanum tuberosum genetika metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- Publikační typ
- časopisecké články MeSH
The plastid-localized phosphoglucose isomerase isoform PGI1 is an important determinant of growth in Arabidopsis thaliana, likely due to its involvement in the biosynthesis of plastidial isoprenoid-derived hormones. Here, we investigated whether PGI1 also influences seed yields. PGI1 is strongly expressed in maturing seed embryos and vascular tissues. PGI1-null pgi1-2 plants had ∼60% lower seed yields than wild-type plants, with reduced numbers of inflorescences and thus fewer siliques and seeds per plant. These traits were associated with low bioactive gibberellin (GA) contents. Accordingly, wild-type phenotypes were restored by exogenous GA application. pgi1-2 seeds were lighter and accumulated ∼50% less fatty acids (FAs) and ∼35% less protein than wild-type seeds. Seeds of cytokinin-deficient plants overexpressing CYTOKININ OXIDASE/DEHYDROGENASE1 (35S:AtCKX1) and GA-deficient ga20ox1 ga20ox2 mutants did not accumulate low levels of FAs, and exogenous application of the cytokinin 6-benzylaminopurine and GAs did not rescue the reduced weight and FA content of pgi1-2 seeds. Seeds from reciprocal crosses between pgi1-2 and wild-type plants accumulated wild-type levels of FAs and proteins. Therefore, PGI1 is an important determinant of Arabidopsis seed yield due to its involvement in two processes: GA-mediated reproductive development and the metabolic conversion of plastidial glucose-6-phosphate to storage reserves in the embryo.
- MeSH
- Arabidopsis enzymologie metabolismus MeSH
- gibereliny metabolismus MeSH
- glukosa-6-fosfát metabolismus MeSH
- glukosa-6-fosfátisomerasa genetika metabolismus MeSH
- membránové proteiny genetika metabolismus MeSH
- oxidoreduktasy působící na CH-NH vazby genetika metabolismus MeSH
- plastidy metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- semena rostlinná enzymologie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We studied the effect of reducing the levels of the mitochondrial electron carrier cytochrome c (CYTc) in Arabidopsis thaliana. Plants with CYTc deficiency have delayed growth and development, and reach flowering several days later than the wild-type but with the same number of leaves. CYTc-deficient plants accumulate starch and glucose during the day, and contain lower levels of active gibberellins (GA) and higher levels of DELLA proteins, involved in GA signaling. GA treatment abolishes the developmental delay and reduces glucose accumulation in CYTc-deficient plants, which also show a lower raise in ATP levels in response to glucose. Treatment of wild-type plants with inhibitors of mitochondrial energy production limits plant growth and increases the levels of DELLA proteins, thus mimicking the effects of CYTc deficiency. In addition, an increase in the amount of CYTc decreases DELLA protein levels and expedites growth, and this depends on active GA synthesis. We conclude that CYTc levels impinge on the activity of the GA pathway, most likely through changes in mitochondrial energy production. In this way, hormone-dependent growth would be coupled to the activity of components of the mitochondrial respiratory chain.
- MeSH
- Arabidopsis růst a vývoj metabolismus MeSH
- cytochromy c nedostatek metabolismus fyziologie MeSH
- energetický metabolismus MeSH
- gibereliny metabolismus fyziologie MeSH
- glukosa metabolismus MeSH
- homeostáza MeSH
- mitochondrie metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- škrob metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Improving yield, nutritional value and tolerance to abiotic stress are major targets of current breeding and biotechnological approaches that aim at increasing crop production and ensuring food security. Metabolic engineering of carotenoids, the precursor of vitamin-A and plant hormones that regulate plant growth and response to adverse growth conditions, has been mainly focusing on provitamin A biofortification or the production of high-value carotenoids. Here, we show that the introduction of a single gene of the carotenoid biosynthetic pathway in different tomato cultivars induced profound metabolic alterations in carotenoid, apocarotenoid and phytohormones pathways. Alterations in isoprenoid- (abscisic acid, gibberellins, cytokinins) and non-isoprenoid (auxin and jasmonic acid) derived hormones together with enhanced xanthophyll content influenced biomass partitioning and abiotic stress tolerance (high light, salt, and drought), and it caused an up to 77% fruit yield increase and enhanced fruit's provitamin A content. In addition, metabolic and hormonal changes led to accumulation of key primary metabolites (e.g. osmoprotectants and antiaging agents) contributing with enhanced abiotic stress tolerance and fruit shelf life. Our findings pave the way for developing a new generation of crops that combine high productivity and increased nutritional value with the capability to cope with climate change-related environmental challenges.
The fine tuning of hormone (e.g., auxin and gibberellin) levels and hormone signaling is required for maintaining normal embryogenesis. Embryo polarity, for example, is ensured by the directional movement of auxin that is controlled by various types of auxin transporters. Here, we present pieces of evidence for the auxin-gibberellic acid (GA) hormonal crosstalk during embryo development and the regulatory role of the Arabidopsis thaliana Calcium-Dependent Protein Kinase-Related Kinase 5 (AtCRK5) in this regard. It is pointed out that the embryogenesis of the Atcrk5-1 mutant is delayed in comparison to the wild type. This delay is accompanied with a decrease in the levels of GA and auxin, as well as the abundance of the polar auxin transport (PAT) proteins PIN1, PIN4, and PIN7 in the mutant embryos. We have previously showed that AtCRK5 can regulate the PIN2 and PIN3 proteins either directly by phosphorylation or indirectly affecting the GA level during the root gravitropic and hypocotyl hook bending responses. In this manuscript, we provide evidence that the AtCRK5 protein kinase can in vitro phosphorylate the hydrophilic loops of additional PIN proteins that are important for embryogenesis. We propose that AtCRK5 can govern embryo development in Arabidopsis through the fine tuning of auxin-GA level and the accumulation of certain polar auxin transport proteins.
- MeSH
- Arabidopsis růst a vývoj metabolismus MeSH
- ELISA MeSH
- gibereliny analýza metabolismus MeSH
- klíčení * MeSH
- kyseliny indoloctové metabolismus MeSH
- membránové transportní proteiny genetika metabolismus MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- receptory buněčného povrchu metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- semena rostlinná anatomie a histologie růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
MAIN CONCLUSION: The present review summarizes current knowledge of the biosynthesis and biological importance of isoprenoid-derived plant signaling compounds. Cellular organisms use chemical signals for intercellular communication to coordinate their growth, development, and responses to environmental cues. The skeletons of majority of plant signaling molecules, mediators of plant intercellular 'broadcasting', are built from C5 units of isoprene and therefore belong to a huge and diverse group of natural substances called isoprenoids (terpenoids). They fill many important roles in nature. This review summarizes current knowledge of the biosynthesis and biological importance of a group of isoprenoid-derived plant signaling compounds.
- MeSH
- brassinosteroidy biosyntéza MeSH
- cytokininy biosyntéza MeSH
- gibereliny biosyntéza MeSH
- kyselina abscisová biosyntéza MeSH
- metabolické sítě a dráhy MeSH
- regulátory růstu rostlin biosyntéza MeSH
- rostliny metabolismus MeSH
- signální transdukce * MeSH
- terpeny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Semidwarfing genes have improved crop yield by reducing height, improving lodging resistance, and allowing plants to allocate more assimilates to grain growth. In wheat (Triticum aestivum), the Rht18 semidwarfing gene was identified and deployed in durum wheat before it was transferred into bread wheat, where it was shown to have agronomic potential. Rht18, a dominant and gibberellin (GA) responsive mutant, is genetically and functionally distinct from the widely used GA-insensitive semidwarfing genes Rht-B1b and Rht-D1b In this study, the Rht18 gene was identified by mutagenizing the semidwarf durum cultivar Icaro (Rht18) and generating mutants with a range of tall phenotypes. Isolating and sequencing chromosome 6A of these "overgrowth" mutants showed that they contained independent mutations in the coding region of GA2oxA9GA2oxA9 is predicted to encode a GA 2-oxidase that metabolizes GA biosynthetic intermediates into inactive products, effectively reducing the amount of bioactive GA (GA1). Functional analysis of the GA2oxA9 protein demonstrated that GA2oxA9 converts the intermediate GA12 to the inactive metabolite GA110 Furthermore, Rht18 showed higher expression of GA2oxA9 and lower GA content compared with its tall parent. These data indicate that the increased expression of GA2oxA9 in Rht18 results in a reduction of both bioactive GA content and plant height. This study describes a height-reducing mechanism that can generate new genetic diversity for semidwarfism in wheat by combining increased expression with mutations of specific amino acid residues in GA2oxA9.
- MeSH
- centromera genetika MeSH
- chromozomy rostlin MeSH
- gibereliny genetika metabolismus MeSH
- mapování chromozomů MeSH
- mutageneze MeSH
- oxygenasy se smíšenou funkcí genetika metabolismus MeSH
- polyploidie MeSH
- promotorové oblasti (genetika) MeSH
- pšenice genetika růst a vývoj metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH