DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25114251
PubMed Central
PMC4151772
DOI
10.1073/pnas.1403851111
PII: 1403851111
Knihovny.cz E-zdroje
- Klíčová slova
- Lepidium sativum, cell-wall remodelling, dormancy gene DOG1, germination temperature, gibberellin metabolism,
- MeSH
- Arabidopsis genetika růst a vývoj fyziologie MeSH
- biomechanika MeSH
- diploidie MeSH
- geneticky modifikované rostliny MeSH
- gibereliny metabolismus MeSH
- klíčení genetika fyziologie MeSH
- konzervovaná sekvence MeSH
- Lepidium sativum genetika růst a vývoj fyziologie MeSH
- molekulární sekvence - údaje MeSH
- mutace MeSH
- proteiny huseníčku genetika MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny MeSH
- semena rostlinná růst a vývoj MeSH
- teplota MeSH
- vegetační klid genetika fyziologie MeSH
- vývojová regulace genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DOG1 protein, Arabidopsis MeSH Prohlížeč
- gibereliny MeSH
- proteiny huseníčku MeSH
Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the delay of germination 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination.
Department of Botany Faculty of Biology University of Osnabrück D 49069 Osnabrück Germany;
Plant Genetics and Cytogenetics Wageningen University NL 6708 Wageningen The Netherlands
Zobrazit více v PubMed
Kronholm I, Picó FX, Alonso-Blanco C, Goudet J, de Meaux J. Genetic basis of adaptation in Arabidopsis thaliana: Local adaptation at the seed dormancy QTL DOG1. Evolution. 2012;66(7):2287–2302. PubMed
Chiang GCK, et al. DOG1 expression is predicted by the seed-maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana. Mol Ecol. 2011;20(16):3336–3349. PubMed
Alonso-Blanco C, et al. What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell. 2009;21(7):1877–1896. PubMed PMC
Kendall SL, et al. Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. Plant Cell. 2011;23(7):2568–2580. PubMed PMC
Nakabayashi K, et al. The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION1 protein levels in freshly harvested seeds. Plant Cell. 2012;24(7):2826–2838. PubMed PMC
Footitt S, Douterelo-Soler I, Clay H, Finch-Savage WE. Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proc Natl Acad Sci USA. 2011;108(50):20236–20241. PubMed PMC
Footitt S, Huang Z, Clay HA, Mead A, Finch-Savage WE. Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes. Plant J. 2013;74(6):1003–1015. PubMed PMC
Finch-Savage WE, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol. 2006;171(3):501–523. PubMed
Holdsworth MJ, Bentsink L, Soppe WJJ. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol. 2008;179(1):33–54. PubMed
Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJJ. Molecular mechanisms of seed dormancy. Plant Cell Environ. 2012;35(10):1769–1786. PubMed
Bentsink L, Jowett J, Hanhart CJ, Koornneef M. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA. 2006;103(45):17042–17047. PubMed PMC
Bentsink L, et al. Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proc Natl Acad Sci USA. 2010;107(9):4264–4269. PubMed PMC
Horton MW, et al. Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat Genet. 2012;44(2):212–216. PubMed PMC
Silady RA, Effgen S, Koornneef M, Reymond M. Variation in seed dormancy quantitative trait loci in Arabidopsis thaliana originating from one site. PLoS ONE. 2011;6(6):e20886. PubMed PMC
Barua D, Butler C, Tisdale TE, Donohue K. Natural variation in germination responses of Arabidopsis to seasonal cues and their associated physiological mechanisms. Ann Bot (Lond) 2012;109(1):209–226. PubMed PMC
Heisenberg C-P, Bellaïche Y. Forces in tissue morphogenesis and patterning. Cell. 2013;153(5):948–962. PubMed
Linkies A, Leubner-Metzger G. Beyond gibberellins and abscisic acid: How ethylene and jasmonates control seed germination. Plant Cell Rep. 2012;31(2):253–270. PubMed
Keller R. Mechanisms of elongation in embryogenesis. Development. 2006;133(12):2291–2302. PubMed
Nonogaki H. Seed germination - the biochemical and molecular mechanisms. Breed Sci. 2006;56(2):93–105.
Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F. Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiol. 2009;150(2):1006–1021. PubMed PMC
Linkies A, et al. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: A comparative approach using Lepidium sativum and Arabidopsis thaliana. Plant Cell. 2009;21(12):3803–3822. PubMed PMC
Dekkers BJW, et al. Transcriptional dynamics of two seed compartments with opposing roles in Arabidopsis seed germination. Plant Physiol. 2013;163(1):205–215. PubMed PMC
Graeber K, et al. Cross-species approaches to seed dormancy and germination: Conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes. Plant Mol Biol. 2010;73(1-2):67–87. PubMed
Graeber K, et al. Spatiotemporal seed development analysis provides insight into primary dormancy induction and evolution of the Lepidium Delay of Germination1 genes. Plant Physiol. 2013;161(4):1903–1917. PubMed PMC
Sugimoto K, et al. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci USA. 2010;107(13):5792–5797. PubMed PMC
Ashikawa I, Abe F, Nakamura S. Ectopic expression of wheat and barley DOG1-like genes promotes seed dormancy in Arabidopsis. Plant Sci. 2010;179(5):536–542. PubMed
Ashikawa I, Abe F, Nakamura S. DOG1-like genes in cereals: Investigation of their function by means of ectopic expression in Arabidopsis. Plant Sci. 2013;208:1–9. PubMed
Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K. Cabbage family affairs: The evolutionary history of Brassicaceae. Trends Plant Sci. 2011;16(2):108–116. PubMed
Schranz ME, Mohammadin S, Edger PP. Ancient whole genome duplications, novelty and diversification: The WGD radiation lag-time model. Curr Opin Plant Biol. 2012;15(2):147–153. PubMed
Haudry A, et al. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat Genet. 2013;45(8):891–898. PubMed
Dierschke T, Mandáková T, Lysak MA, Mummenhoff K. A bicontinental origin of polyploid Australian/New Zealand Lepidium species (Brassicaceae)? Evidence from genomic in situ hybridization. Ann Bot (Lond) 2009;104(4):681–688. PubMed PMC
Müller K, Tintelnot S, Leubner-Metzger G. Endosperm-limited Brassicaceae seed germination: Abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol. 2006;47(7):864–877. PubMed
Voegele A, et al. Embryo growth, testa permeability, and endosperm weakening are major targets for the environmentally regulated inhibition of Lepidium sativum seed germination by myrigalone A. J Exp Bot. 2012;63(14):5337–5350. PubMed PMC
Hedden P, Thomas SG. Gibberellin biosynthesis and its regulation. Biochem J. 2012;444(1):11–25. PubMed
Voegele A, Linkies A, Müller K, Leubner-Metzger G. Members of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination. J Exp Bot. 2011;62(14):5131–5147. PubMed PMC
Huang X, et al. The earliest stages of adaptation in an experimental plant population: Strong selection on QTLs for seed dormancy. Mol Ecol. 2010;19(7):1335–1351. PubMed
Bewley JD. Breaking down the walls - a role for endo-β-mannanase in release from seed dormancy? Trends Plant Sci. 1997;2(12):464–469.
Ogawa M, et al. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell. 2003;15(7):1591–1604. PubMed PMC
Fukazawa J, et al. bZIP transcription factor RSG controls the feedback regulation of NtGA20ox1 via intracellular localization and epigenetic mechanism. Plant Signal Behav. 2011;6(1):26–28. PubMed PMC
Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci USA. 2001;98(4):2065–2070. PubMed PMC
Toh S, et al. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol. 2008;146(3):1368–1385. PubMed PMC
Chen F, Bradford KJ. Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol. 2000;124(3):1265–1274. PubMed PMC
Carrera E, et al. Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant J. 2008;53(2):214–224. PubMed PMC
Yamauchi Y, et al. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell. 2004;16(2):367–378. PubMed PMC
Graeber K, Linkies A, Wood ATA, Leubner-Metzger G. A guideline to family-wide comparative state-of-the-art quantitative RT-PCR analysis exemplified with a Brassicaceae cross-species seed germination case study. Plant Cell. 2011;23(6):2045–2063. PubMed PMC
Aethionema arabicum dimorphic seed trait resetting during transition to seedlings
Dormancy heterogeneity among Arabidopsis thaliana seeds is linked to individual seed size
Molecular mechanisms of seed dormancy release by gas plasma-activated water technology
Cold-induced secondary dormancy and its regulatory mechanisms in Beta vulgaris
Aethionema arabicum: a novel model plant to study the light control of seed germination
GENBANK
KF501341