Dormancy heterogeneity among Arabidopsis thaliana seeds is linked to individual seed size
Jazyk angličtina Země Čína Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37828740
PubMed Central
PMC10873894
DOI
10.1016/j.xplc.2023.100732
PII: S2590-3462(23)00278-X
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, DOG1, dormancy, seed size,
- MeSH
- Arabidopsis * metabolismus MeSH
- klíčení genetika MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- semena rostlinná genetika MeSH
- vegetační klid genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DOG1 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku * MeSH
Production of morphologically and physiologically variable seeds is an important strategy that helps plants to survive in unpredictable natural conditions. However, the model plant Arabidopsis thaliana and most agronomically essential crops produce visually homogenous seeds. Using automated phenotype analysis, we observed that small seeds in Arabidopsis tend to have higher primary and secondary dormancy levels than large seeds. Transcriptomic analysis revealed distinct gene expression profiles between large and small seeds. Large seeds have higher expression of translation-related genes implicated in germination competence. By contrast, small seeds have elevated expression of many positive regulators of dormancy, including a key regulator of this process, the DOG1 gene. Differences in DOG1 expression are associated with differential production of its alternative cleavage and polyadenylation isoforms; in small seeds, the proximal poly(A) site is selected, resulting in a short mRNA isoform. Furthermore, single-seed RNA sequencing analysis demonstrated that large seeds resemble DOG1 knockout mutant seeds. Finally, on the single-seed level, expression of genes affected by seed size is correlated with expression of genes that position seeds on the path toward germination. Our results demonstrate an unexpected link between seed size and dormancy phenotypes in a species that produces highly homogenous seed pools, suggesting that the correlation between seed morphology and physiology is more widespread than initially assumed.
Zobrazit více v PubMed
Abley K., Formosa-Jordan P., Tavares H., Chan E.Y., Afsharinafar M., Leyser O., Locke J.C. An ABA-GA bistable switch can account for natural variation in the variability of Arabidopsis seed germination time. Elife. 2021;10 PubMed PMC
Baskin C.C., Baskin J.M. Variation in Seed Dormancy and Germination within and between Individuals and Populations of a Species. Seeds. 2014:277–373.
Batlla D., Malavert C., Farnocchia R.B.F., Footitt S., Benech-Arnold R.L., Finch-Savage W.E. A quantitative analysis of temperature-dependent seasonal dormancy cycling in buried Arabidopsis thaliana seeds can predict seedling emergence in a global warming scenario. J. Exp. Bot. 2022;73:2454–2468. PubMed
Bentsink L., Jowett J., Hanhart C.J., Koornneef M. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2006;103:17042–17047. PubMed PMC
Bhaskara G.B., Nguyen T.T., Verslues P.E. Unique drought resistance functions of the Highly ABA-Induced clade A protein phosphatase 2Cs. Plant Physiol. 2012;160:379–395. PubMed PMC
Bokota G., Sroka J., Basu S., Das N., Trzaskoma P., Yushkevich Y., Grabowska A., Magalska A., Plewczynski D. PartSeg: a tool for quantitative feature extraction from 3D microscopy images for dummies. BMC Bioinf. 2021;22:72. PubMed PMC
Bradford K.J. Interpreting biological variation: seeds, populations and sensitivity thresholds. Seed Sci. Res. 2018;28:158–167.
Buijs G. A Perspective on Secondary Seed Dormancy in Arabidopsis thaliana. Plants. 2020;9:749. PubMed PMC
Buijs G., Vogelzang A., Nijveen H., Bentsink L. Dormancy cycling: translation-related transcripts are the main difference between dormant and non-dormant seeds in the field. Plant J. 2020;102:327–339. PubMed PMC
Burghardt L.T., Edwards B.R., Donohue K. Multiple paths to similar germination behavior in Arabidopsis thaliana. New Phytol. 2016;209:1301–1312. PubMed
Chauffour F., Bailly M., Perreau F., Cueff G., Suzuki H., Collet B., Frey A., Clément G., Soubigou-Taconnat L., Balliau T., et al. Multi-omics analysis reveals sequential roles for ABA during seed maturation. Plant Physiol. 2019;180:1198–1218. PubMed PMC
Cheng L., Shafiq S., Xu W., Sun Q. EARLY FLOWERING IN SHORT DAYS (EFS) regulates the seed size in Arabidopsis. Sci. China Life Sci. 2018;61:214–224. PubMed
Chiang G.C.K., Bartsch M., Barua D., Nakabayashi K., Debieu M., Kronholm I., Koornneef M., Soppe W.J.J., Donohue K., De MEAUX J. DOG1 expression is predicted by the seed-maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana. Mol. Ecol. 2011;20:3336–3349. PubMed
Cyrek M., Fedak H., Ciesielski A., Guo Y., Sliwa A., Brzezniak L., Krzyczmonik K., Pietras Z., Kaczanowski S., Liu F., Swiezewski S. Seed dormancy in Arabidopsis is controlled by alternative polyadenylation of DOG1. Plant Physiol. 2016;170:947–955. PubMed PMC
Dekkers B.J.W., He H., Hanson J., Willems L.A.J., Jamar D.C.L., Cueff G., Rajjou L., Hilhorst H.W.M., Bentsink L. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development. Plant J. 2016;85:451–465. PubMed
Dolata J., Guo Y., Kołowerzo A., Smoliński D., Brzyżek G., Jarmołowski A., Świeżewski S. NTR1 is required for transcription elongation checkpoints at alternative exons in Arabidopsis. EMBO J. 2015;34:544–558. PubMed PMC
Doughty J., Aljabri M., Scott R.J. Flavonoids and the regulation of seed size in Arabidopsis. Biochem. Soc. Trans. 2014;42:364–369. PubMed
Elwell A.L., Gronwall D.S., Miller N.D., Spalding E.P., Brooks T.L.D. Separating parental environment from seed size effects on next generation growth and development in Arabidopsis: Effects of seed size and parental environment on Arabidopsis growth. Plant Cell Environ. 2011;34:291–301. PubMed
Fedak H., Palusinska M., Krzyczmonik K., Brzezniak L., Yatusevich R., Pietras Z., Kaczanowski S., Swiezewski S. Control of seed dormancy in Arabidopsis by a cis -acting noncoding antisense transcript. Proc. Natl. Acad. Sci. USA. 2016;113:E7846–E7855. PubMed PMC
Footitt S., Ölçer-Footitt H., Hambidge A.J., Finch-Savage W.E. A laboratory simulation of Arabidopsis seed dormancy cycling provides new insight into its regulation by clock genes and the dormancy-related genes DOG1, MFT, CIPK23 and PHYA: Dormancy cycling with mutants. Plant Cell Environ. 2017;40:1474–1486. PubMed PMC
Footitt S., Walley P.G., Lynn J.R., Hambidge A.J., Penfield S., Finch-Savage W.E. Trait analysis reveals DOG1 determines initial depth of seed dormancy, but not changes during dormancy cycling that result in seedling emergence timing. New Phytol. 2020;225:2035–2047. PubMed PMC
Fujii H., Verslues P.E., Zhu J.-K. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc. Natl. Acad. Sci. USA. 2011;108:1717–1722. PubMed PMC
Garcia D., Saingery V., Chambrier P., Mayer U., Jürgens G., Berger F. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol. 2003;131:1661–1670. PubMed PMC
Gianella M., Bradford K.J., Guzzon F. Ecological, (epi)genetic and physiological aspects of bet-hedging in angiosperms. Plant Reprod. 2021;34:21–36. PubMed PMC
Gnan S., Priest A., Kover P.X. The genetic basis of natural variation in seed size and seed number and their trade-off using Arabidopsis thaliana MAGIC lines. Genetics. 2014;198:1751–1758. PubMed PMC
Graeber K., Linkies A., Steinbrecher T., Mummenhoff K., Tarkowská D., Turečková V., Ignatz M., Sperber K., Voegele A., de Jong H., et al. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proc. Natl. Acad. Sci. USA. 2014;111:E3571–E3580. PubMed PMC
Gulden R.H., Thomas A.G., Shirtliffe S.J. Relative contribution of genotype, seed size and environment to secondary seed dormancy potential in Canadian spring oilseed rape (Brassica napus) Weed Res. 2004;44:97–106.
Hafemeister C., Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20:296. PubMed PMC
Hao Y., Hao S., Andersen-Nissen E., Mauck W.M., Zheng S., Butler A., Lee M.J., Wilk A.J., Darby C., Zager M., et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–3587.e29. PubMed PMC
Herridge R.P., Day R.C., Baldwin S., Macknight R.C. Rapid analysis of seed size in Arabidopsis for mutant and QTL discovery. Plant Methods. 2011;7:3. PubMed PMC
Ibarra S.E., Tognacca R.S., Dave A., Graham I.A., Sánchez R.A., Botto J.F. Molecular mechanisms underlying the entrance in secondary dormancy of Arabidopsis seeds: Mechanisms underlying secondary dormancy. Plant Cell Environ. 2016;39:213–221. PubMed
Jiang W.-B., Huang H.-Y., Hu Y.-W., Zhu S.-W., Wang Z.-Y., Lin W.-H. Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiol. 2013;162:1965–1977. PubMed PMC
Joosen R.V.L., Arends D., Willems L.A.J., Ligterink W., Jansen R.C., Hilhorst H.W.M. Visualizing the genetic landscape of Arabidopsis seed performance. Plant Physiol. 2012;158:570–589. PubMed PMC
Jurado E., Flores J. Is seed dormancy under environmental control or bound to plant traits? J. Veg. Sci. 2005;16:559–564.
Kanno Y., Jikumaru Y., Hanada A., Nambara E., Abrams S.R., Kamiya Y., Seo M. Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol. 2010;51:1988–2001. PubMed
Kendall S.L., Hellwege A., Marriot P., Whalley C., Graham I.A., Penfield S. Induction of Dormancy in Arabidopsis Summer Annuals Requires Parallel Regulation of DOG1 and Hormone Metabolism by Low Temperature and CBF Transcription Factors. Plant Cell. 2011;23:2568–2580. doi: 10.1105/tpc.111.087643. PubMed DOI PMC
Kerdaffrec E., Filiault D.L., Korte A., Sasaki E., Nizhynska V., Seren Ü., Nordborg M. Multiple alleles at a single locus control seed dormancy in Swedish Arabidopsis. Elife. 2016;5 PubMed PMC
Krannitz P.G., Aarssen L.W., Dow J.M. The effect of genetically based differences in seed size on seedling survival in Arabidopsis thaliana (Brassicaceae) Am. J. Bot. 1991;78:446–450.
Krzyszton M., Yatusevich R., Wrona M., Sacharowski S.P., Adamska D., Swiezewski S. Single seeds exhibit transcriptional heterogeneity during secondary dormancy induction. Plant Physiol. 2022;190:211–225. PubMed PMC
Kushiro T., Okamoto M., Nakabayashi K., Yamagishi K., Kitamura S., Asami T., Hirai N., Koshiba T., Kamiya Y., Nambara E. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8’-hydroxylases: key enzymes in ABA catabolism. EMBO J. 2004;23:1647–1656. PubMed PMC
Larios E., Búrquez A., Becerra J.X., Lawrence Venable D. Natural selection on seed size through the life cycle of a desert annual plant. Ecology. 2014;95:3213–3220.
Leon-Kloosterziel K.M., Keijzer C.J., Koornneef M. A seed shape mutant of Arabidopsis that is affected in integument development. Plant Cell. 1994;6:385–392. PubMed PMC
Li N., Li Y. Signaling pathways of seed size control in plants. Curr. Opin. Plant Biol. 2016;33:23–32. PubMed
Li C., Chen B., Yu H. Splicing-mediated activation of SHAGGY-like kinases underpinning carbon partitioning in Arabidopsis seeds. Plant Cell. 2022;34:2730–2746. PubMed PMC
Liu Y., Walck J.L., El-Kassaby Y.A. In: Advances in Seed Biology. Jimenez-Lopez J.C., editor. InTech; 2017. Roles of the Environment in Plant Life-History Trade-offs.
Liu R., Wang L., Tanveer M., Song J. Seed heteromorphism: An important adaptation of halophytes for habitat heterogeneity. Front. Plant Sci. 2018;9:1515. PubMed PMC
Liu Z., Zheng L., Pu L., Ma X., Wang X., Wu Y., Ming H., Wang Q., Zhang G. ENO2 affects the seed size and weight by adjusting cytokinin content and forming ENO2-bZIP75 complex in Arabidopsis thaliana. Front. Plant Sci. 2020;11 PubMed PMC
Liu H., Luo Q., Tan C., Song J., Zhang T., Men S. Biosynthesis- and transport-mediated dynamic auxin distribution during seed development controls seed size in Arabidopsis. Plant J. 2023;113:1259–1277. PubMed
Matilla A., Gallardo M., Puga-Hermida M.I. Structural, physiological and molecular aspects of heterogeneity in seeds: a review. Seed Sci. Res. 2005;15:63–76.
Meng L., Feldman L. A rapid TRIzol-based two-step method for DNA-free RNA extraction from Arabidopsis siliques and dry seeds. Biotechnol. J. 2010;5:183–186. PubMed
Mira S., Veiga-Barbosa L., Pérez-García F. Seed dormancy and longevity variability of Hirschfeldia incana L. during storage. Seed Sci. Res. 2019;29:97–103.
Montez M., Majchrowska M., Krzyszton M., Bokota G., Sacharowski S., Wrona M., Yatusevich R., Massana F., Plewczynski D., Swiezewski S. Promoter-pervasive transcription causes RNA polymerase II pausing to boost DOG1 expression in response to salt. EMBO J. 2023;42:e112443. PubMed PMC
Nakabayashi K., Bartsch M., Xiang Y., Miatton E., Pellengahr S., Yano R., Seo M., Soppe W.J.J. The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION1 protein levels in freshly harvested seeds. Plant Cell. 2012;24:2826–2838. PubMed PMC
Née G., Kramer K., Nakabayashi K., Yuan B., Xiang Y., Miatton E., Finkemeier I., Soppe W.J.J. DELAY OF GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nat. Commun. 2017;8:72. PubMed PMC
Nemati I., Sedghi M., Hosseini Salekdeh G., Tavakkol Afshari R., Naghavi M.R., Gholizadeh S. DELAY OF GERMINATION 1 ( DOG1) regulates dormancy in dimorphic seeds of Xanthium strumarium. Funct. Plant Biol. 2022;49:742–758. PubMed
Nishimura N., Yoshida T., Kitahata N., Asami T., Shinozaki K., Hirayama T. ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed: Arabidopsis ABA-hypersensitive mutant. Plant J. 2007;50:935–949. PubMed
Nonogaki H. Seed germination and dormancy: The classic story, new puzzles, and evolution. J. Integr. Plant Biol. 2019;61:541–563. PubMed
Orozco-Arroyo G., Paolo D., Ezquer I., Colombo L. Networks controlling seed size in Arabidopsis. Plant Reprod. 2015;28:17–32. PubMed
Raudvere U., Kolberg L., Kuzmin I., Arak T., Adler P., Peterson H., Vilo J. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists. Nucleic Acids Res. 2019;47:W191–W198. PubMed PMC
Ren D., Wang X., Yang M., Yang L., He G., Deng X.W. A new regulator of seed size control in Arabidopsis identified by a genome-wide association study. New Phytol. 2019;222:895–906. PubMed
Riefler M., Novak O., Strnad M., Schmülling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell. 2005;18:40–54. PubMed PMC
Robert C., Noriega A., Tocino Á., Cervantes E. Morphological analysis of seed shape in Arabidopsis thaliana reveals altered polarity in mutants of the ethylene signaling pathway. J. Plant Physiol. 2008;165:911–919. PubMed
Rubio De Casas R., Willis C.G., Pearse W.D., Baskin C.C., Baskin J.M., Cavender-Bares J. Global biogeography of seed dormancy is determined by seasonality and seed size: a case study in the legumes. New Phytol. 2017;214:1527–1536. PubMed
Sall K., Dekkers B.J.W., Nonogaki M., Katsuragawa Y., Koyari R., Hendrix D., Willems L.A.J., Bentsink L., Nonogaki H. DELAY OF GERMINATION1 - LIKE 4 acts as an inducer of seed reserve accumulation. Plant J. 2019;100:7–19. PubMed
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC
Smith T., Heger A., Sudbery I. UMI-tools: Modelling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 2016;27:491–499. PubMed PMC
Soppe W.J.J., Bentsink L. Seed dormancy back on track; its definition and regulation by DOG1. New Phytol. 2020;228:816–819. PubMed PMC
Venable D.L., Brown J.S. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. Am. Nat. 1988;131:360–384.
Vidigal D.S., Marques A.C.S.S., Willems L.A.J., Buijs G., Méndez-Vigo B., Hilhorst H.W.M., Bentsink L., Picó F.X., Alonso-Blanco C. Altitudinal and climatic associations of seed dormancy and flowering traits evidence adaptation of annual life cycle timing in Arabidopsis thaliana: Climatic adaptation of annual life cycles. Plant Cell Environ. 2016;39:1737–1748. PubMed
Volis S. Seed heteromorphism in Triticum dicoccoides: association between seed positions within a dispersal unit and dormancy. Oecologia. 2016;181:401–412. PubMed
Volis S., Bohrer G. Joint evolution of seed traits along an aridity gradient: seed size and dormancy are not two substitutable evolutionary traits in temporally heterogeneous environment. New Phytol. 2013;197:655–667. PubMed
Xi W., Liu C., Hou X., Yu H. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell. 2010;22:1733–1748. PubMed PMC
Xiang Y., Nakabayashi K., Ding J., He F., Bentsink L., Soppe W.J.J. REDUCED DORMANCY5 encodes a protein phosphatase 2C that is required for seed dormancy in Arabidopsis. Plant Cell. 2014;26:4362–4375. PubMed PMC
Xu Y., Zhao Y., Duan H., Sui N., Yuan F., Song J. Transcriptomic profiling of genes in matured dimorphic seeds of euhalophyte Suaeda salsa. BMC Genom. 2017;18:727. PubMed PMC
Yatusevich R., Fedak H., Ciesielski A., Krzyczmonik K., Kulik A., Dobrowolska G., Swiezewski S. Antisense transcription represses Arabidopsis seed dormancy QTL DOG 1 to regulate drought tolerance. EMBO Rep. 2017;18:2186–2196. PubMed PMC
Yoshida T., Nishimura N., Kitahata N., Kuromori T., Ito T., Asami T., Shinozaki K., Hirayama T. ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol. 2006;140:115–126. PubMed PMC
Yu B., He X., Tang Y., Chen Z., Zhou L., Li X., Zhang C., Huang X., Yang Y., Zhang W., et al. Photoperiod controls plant seed size in a CONSTANS-dependent manner. Nat. Plants. 2023;9:343–354. PubMed
Zhao H., Nie K., Zhou H., Yan X., Zhan Q., Zheng Y., Song C.P. ABI5 modulates seed germination via feedback regulation of the expression of the PYR/PYL/RCAR ABA receptor genes. New Phytol. 2020;228:596–608. PubMed
Zhou Y., Zhang X., Kang X., Zhao X., Zhang X., Ni M. SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. Plant Cell. 2009;21:106–117. PubMed PMC