Dormancy heterogeneity among Arabidopsis thaliana seeds is linked to individual seed size

. 2024 Feb 12 ; 5 (2) : 100732. [epub] 20231012

Jazyk angličtina Země Čína Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37828740
Odkazy

PubMed 37828740
PubMed Central PMC10873894
DOI 10.1016/j.xplc.2023.100732
PII: S2590-3462(23)00278-X
Knihovny.cz E-zdroje

Production of morphologically and physiologically variable seeds is an important strategy that helps plants to survive in unpredictable natural conditions. However, the model plant Arabidopsis thaliana and most agronomically essential crops produce visually homogenous seeds. Using automated phenotype analysis, we observed that small seeds in Arabidopsis tend to have higher primary and secondary dormancy levels than large seeds. Transcriptomic analysis revealed distinct gene expression profiles between large and small seeds. Large seeds have higher expression of translation-related genes implicated in germination competence. By contrast, small seeds have elevated expression of many positive regulators of dormancy, including a key regulator of this process, the DOG1 gene. Differences in DOG1 expression are associated with differential production of its alternative cleavage and polyadenylation isoforms; in small seeds, the proximal poly(A) site is selected, resulting in a short mRNA isoform. Furthermore, single-seed RNA sequencing analysis demonstrated that large seeds resemble DOG1 knockout mutant seeds. Finally, on the single-seed level, expression of genes affected by seed size is correlated with expression of genes that position seeds on the path toward germination. Our results demonstrate an unexpected link between seed size and dormancy phenotypes in a species that produces highly homogenous seed pools, suggesting that the correlation between seed morphology and physiology is more widespread than initially assumed.

Zobrazit více v PubMed

Abley K., Formosa-Jordan P., Tavares H., Chan E.Y., Afsharinafar M., Leyser O., Locke J.C. An ABA-GA bistable switch can account for natural variation in the variability of Arabidopsis seed germination time. Elife. 2021;10 PubMed PMC

Baskin C.C., Baskin J.M. Variation in Seed Dormancy and Germination within and between Individuals and Populations of a Species. Seeds. 2014:277–373.

Batlla D., Malavert C., Farnocchia R.B.F., Footitt S., Benech-Arnold R.L., Finch-Savage W.E. A quantitative analysis of temperature-dependent seasonal dormancy cycling in buried Arabidopsis thaliana seeds can predict seedling emergence in a global warming scenario. J. Exp. Bot. 2022;73:2454–2468. PubMed

Bentsink L., Jowett J., Hanhart C.J., Koornneef M. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2006;103:17042–17047. PubMed PMC

Bhaskara G.B., Nguyen T.T., Verslues P.E. Unique drought resistance functions of the Highly ABA-Induced clade A protein phosphatase 2Cs. Plant Physiol. 2012;160:379–395. PubMed PMC

Bokota G., Sroka J., Basu S., Das N., Trzaskoma P., Yushkevich Y., Grabowska A., Magalska A., Plewczynski D. PartSeg: a tool for quantitative feature extraction from 3D microscopy images for dummies. BMC Bioinf. 2021;22:72. PubMed PMC

Bradford K.J. Interpreting biological variation: seeds, populations and sensitivity thresholds. Seed Sci. Res. 2018;28:158–167.

Buijs G. A Perspective on Secondary Seed Dormancy in Arabidopsis thaliana. Plants. 2020;9:749. PubMed PMC

Buijs G., Vogelzang A., Nijveen H., Bentsink L. Dormancy cycling: translation-related transcripts are the main difference between dormant and non-dormant seeds in the field. Plant J. 2020;102:327–339. PubMed PMC

Burghardt L.T., Edwards B.R., Donohue K. Multiple paths to similar germination behavior in Arabidopsis thaliana. New Phytol. 2016;209:1301–1312. PubMed

Chauffour F., Bailly M., Perreau F., Cueff G., Suzuki H., Collet B., Frey A., Clément G., Soubigou-Taconnat L., Balliau T., et al. Multi-omics analysis reveals sequential roles for ABA during seed maturation. Plant Physiol. 2019;180:1198–1218. PubMed PMC

Cheng L., Shafiq S., Xu W., Sun Q. EARLY FLOWERING IN SHORT DAYS (EFS) regulates the seed size in Arabidopsis. Sci. China Life Sci. 2018;61:214–224. PubMed

Chiang G.C.K., Bartsch M., Barua D., Nakabayashi K., Debieu M., Kronholm I., Koornneef M., Soppe W.J.J., Donohue K., De MEAUX J. DOG1 expression is predicted by the seed-maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana. Mol. Ecol. 2011;20:3336–3349. PubMed

Cyrek M., Fedak H., Ciesielski A., Guo Y., Sliwa A., Brzezniak L., Krzyczmonik K., Pietras Z., Kaczanowski S., Liu F., Swiezewski S. Seed dormancy in Arabidopsis is controlled by alternative polyadenylation of DOG1. Plant Physiol. 2016;170:947–955. PubMed PMC

Dekkers B.J.W., He H., Hanson J., Willems L.A.J., Jamar D.C.L., Cueff G., Rajjou L., Hilhorst H.W.M., Bentsink L. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development. Plant J. 2016;85:451–465. PubMed

Dolata J., Guo Y., Kołowerzo A., Smoliński D., Brzyżek G., Jarmołowski A., Świeżewski S. NTR1 is required for transcription elongation checkpoints at alternative exons in Arabidopsis. EMBO J. 2015;34:544–558. PubMed PMC

Doughty J., Aljabri M., Scott R.J. Flavonoids and the regulation of seed size in Arabidopsis. Biochem. Soc. Trans. 2014;42:364–369. PubMed

Elwell A.L., Gronwall D.S., Miller N.D., Spalding E.P., Brooks T.L.D. Separating parental environment from seed size effects on next generation growth and development in Arabidopsis: Effects of seed size and parental environment on Arabidopsis growth. Plant Cell Environ. 2011;34:291–301. PubMed

Fedak H., Palusinska M., Krzyczmonik K., Brzezniak L., Yatusevich R., Pietras Z., Kaczanowski S., Swiezewski S. Control of seed dormancy in Arabidopsis by a cis -acting noncoding antisense transcript. Proc. Natl. Acad. Sci. USA. 2016;113:E7846–E7855. PubMed PMC

Footitt S., Ölçer-Footitt H., Hambidge A.J., Finch-Savage W.E. A laboratory simulation of Arabidopsis seed dormancy cycling provides new insight into its regulation by clock genes and the dormancy-related genes DOG1, MFT, CIPK23 and PHYA: Dormancy cycling with mutants. Plant Cell Environ. 2017;40:1474–1486. PubMed PMC

Footitt S., Walley P.G., Lynn J.R., Hambidge A.J., Penfield S., Finch-Savage W.E. Trait analysis reveals DOG1 determines initial depth of seed dormancy, but not changes during dormancy cycling that result in seedling emergence timing. New Phytol. 2020;225:2035–2047. PubMed PMC

Fujii H., Verslues P.E., Zhu J.-K. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc. Natl. Acad. Sci. USA. 2011;108:1717–1722. PubMed PMC

Garcia D., Saingery V., Chambrier P., Mayer U., Jürgens G., Berger F. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol. 2003;131:1661–1670. PubMed PMC

Gianella M., Bradford K.J., Guzzon F. Ecological, (epi)genetic and physiological aspects of bet-hedging in angiosperms. Plant Reprod. 2021;34:21–36. PubMed PMC

Gnan S., Priest A., Kover P.X. The genetic basis of natural variation in seed size and seed number and their trade-off using Arabidopsis thaliana MAGIC lines. Genetics. 2014;198:1751–1758. PubMed PMC

Graeber K., Linkies A., Steinbrecher T., Mummenhoff K., Tarkowská D., Turečková V., Ignatz M., Sperber K., Voegele A., de Jong H., et al. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proc. Natl. Acad. Sci. USA. 2014;111:E3571–E3580. PubMed PMC

Gulden R.H., Thomas A.G., Shirtliffe S.J. Relative contribution of genotype, seed size and environment to secondary seed dormancy potential in Canadian spring oilseed rape (Brassica napus) Weed Res. 2004;44:97–106.

Hafemeister C., Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019;20:296. PubMed PMC

Hao Y., Hao S., Andersen-Nissen E., Mauck W.M., Zheng S., Butler A., Lee M.J., Wilk A.J., Darby C., Zager M., et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–3587.e29. PubMed PMC

Herridge R.P., Day R.C., Baldwin S., Macknight R.C. Rapid analysis of seed size in Arabidopsis for mutant and QTL discovery. Plant Methods. 2011;7:3. PubMed PMC

Ibarra S.E., Tognacca R.S., Dave A., Graham I.A., Sánchez R.A., Botto J.F. Molecular mechanisms underlying the entrance in secondary dormancy of Arabidopsis seeds: Mechanisms underlying secondary dormancy. Plant Cell Environ. 2016;39:213–221. PubMed

Jiang W.-B., Huang H.-Y., Hu Y.-W., Zhu S.-W., Wang Z.-Y., Lin W.-H. Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiol. 2013;162:1965–1977. PubMed PMC

Joosen R.V.L., Arends D., Willems L.A.J., Ligterink W., Jansen R.C., Hilhorst H.W.M. Visualizing the genetic landscape of Arabidopsis seed performance. Plant Physiol. 2012;158:570–589. PubMed PMC

Jurado E., Flores J. Is seed dormancy under environmental control or bound to plant traits? J. Veg. Sci. 2005;16:559–564.

Kanno Y., Jikumaru Y., Hanada A., Nambara E., Abrams S.R., Kamiya Y., Seo M. Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol. 2010;51:1988–2001. PubMed

Kendall S.L., Hellwege A., Marriot P., Whalley C., Graham I.A., Penfield S. Induction of Dormancy in Arabidopsis Summer Annuals Requires Parallel Regulation of DOG1 and Hormone Metabolism by Low Temperature and CBF Transcription Factors. Plant Cell. 2011;23:2568–2580. doi: 10.1105/tpc.111.087643. PubMed DOI PMC

Kerdaffrec E., Filiault D.L., Korte A., Sasaki E., Nizhynska V., Seren Ü., Nordborg M. Multiple alleles at a single locus control seed dormancy in Swedish Arabidopsis. Elife. 2016;5 PubMed PMC

Krannitz P.G., Aarssen L.W., Dow J.M. The effect of genetically based differences in seed size on seedling survival in Arabidopsis thaliana (Brassicaceae) Am. J. Bot. 1991;78:446–450.

Krzyszton M., Yatusevich R., Wrona M., Sacharowski S.P., Adamska D., Swiezewski S. Single seeds exhibit transcriptional heterogeneity during secondary dormancy induction. Plant Physiol. 2022;190:211–225. PubMed PMC

Kushiro T., Okamoto M., Nakabayashi K., Yamagishi K., Kitamura S., Asami T., Hirai N., Koshiba T., Kamiya Y., Nambara E. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8’-hydroxylases: key enzymes in ABA catabolism. EMBO J. 2004;23:1647–1656. PubMed PMC

Larios E., Búrquez A., Becerra J.X., Lawrence Venable D. Natural selection on seed size through the life cycle of a desert annual plant. Ecology. 2014;95:3213–3220.

Leon-Kloosterziel K.M., Keijzer C.J., Koornneef M. A seed shape mutant of Arabidopsis that is affected in integument development. Plant Cell. 1994;6:385–392. PubMed PMC

Li N., Li Y. Signaling pathways of seed size control in plants. Curr. Opin. Plant Biol. 2016;33:23–32. PubMed

Li C., Chen B., Yu H. Splicing-mediated activation of SHAGGY-like kinases underpinning carbon partitioning in Arabidopsis seeds. Plant Cell. 2022;34:2730–2746. PubMed PMC

Liu Y., Walck J.L., El-Kassaby Y.A. In: Advances in Seed Biology. Jimenez-Lopez J.C., editor. InTech; 2017. Roles of the Environment in Plant Life-History Trade-offs.

Liu R., Wang L., Tanveer M., Song J. Seed heteromorphism: An important adaptation of halophytes for habitat heterogeneity. Front. Plant Sci. 2018;9:1515. PubMed PMC

Liu Z., Zheng L., Pu L., Ma X., Wang X., Wu Y., Ming H., Wang Q., Zhang G. ENO2 affects the seed size and weight by adjusting cytokinin content and forming ENO2-bZIP75 complex in Arabidopsis thaliana. Front. Plant Sci. 2020;11 PubMed PMC

Liu H., Luo Q., Tan C., Song J., Zhang T., Men S. Biosynthesis- and transport-mediated dynamic auxin distribution during seed development controls seed size in Arabidopsis. Plant J. 2023;113:1259–1277. PubMed

Matilla A., Gallardo M., Puga-Hermida M.I. Structural, physiological and molecular aspects of heterogeneity in seeds: a review. Seed Sci. Res. 2005;15:63–76.

Meng L., Feldman L. A rapid TRIzol-based two-step method for DNA-free RNA extraction from Arabidopsis siliques and dry seeds. Biotechnol. J. 2010;5:183–186. PubMed

Mira S., Veiga-Barbosa L., Pérez-García F. Seed dormancy and longevity variability of Hirschfeldia incana L. during storage. Seed Sci. Res. 2019;29:97–103.

Montez M., Majchrowska M., Krzyszton M., Bokota G., Sacharowski S., Wrona M., Yatusevich R., Massana F., Plewczynski D., Swiezewski S. Promoter-pervasive transcription causes RNA polymerase II pausing to boost DOG1 expression in response to salt. EMBO J. 2023;42:e112443. PubMed PMC

Nakabayashi K., Bartsch M., Xiang Y., Miatton E., Pellengahr S., Yano R., Seo M., Soppe W.J.J. The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION1 protein levels in freshly harvested seeds. Plant Cell. 2012;24:2826–2838. PubMed PMC

Née G., Kramer K., Nakabayashi K., Yuan B., Xiang Y., Miatton E., Finkemeier I., Soppe W.J.J. DELAY OF GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nat. Commun. 2017;8:72. PubMed PMC

Nemati I., Sedghi M., Hosseini Salekdeh G., Tavakkol Afshari R., Naghavi M.R., Gholizadeh S. DELAY OF GERMINATION 1 ( DOG1) regulates dormancy in dimorphic seeds of Xanthium strumarium. Funct. Plant Biol. 2022;49:742–758. PubMed

Nishimura N., Yoshida T., Kitahata N., Asami T., Shinozaki K., Hirayama T. ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed: Arabidopsis ABA-hypersensitive mutant. Plant J. 2007;50:935–949. PubMed

Nonogaki H. Seed germination and dormancy: The classic story, new puzzles, and evolution. J. Integr. Plant Biol. 2019;61:541–563. PubMed

Orozco-Arroyo G., Paolo D., Ezquer I., Colombo L. Networks controlling seed size in Arabidopsis. Plant Reprod. 2015;28:17–32. PubMed

Raudvere U., Kolberg L., Kuzmin I., Arak T., Adler P., Peterson H., Vilo J. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists. Nucleic Acids Res. 2019;47:W191–W198. PubMed PMC

Ren D., Wang X., Yang M., Yang L., He G., Deng X.W. A new regulator of seed size control in Arabidopsis identified by a genome-wide association study. New Phytol. 2019;222:895–906. PubMed

Riefler M., Novak O., Strnad M., Schmülling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell. 2005;18:40–54. PubMed PMC

Robert C., Noriega A., Tocino Á., Cervantes E. Morphological analysis of seed shape in Arabidopsis thaliana reveals altered polarity in mutants of the ethylene signaling pathway. J. Plant Physiol. 2008;165:911–919. PubMed

Rubio De Casas R., Willis C.G., Pearse W.D., Baskin C.C., Baskin J.M., Cavender-Bares J. Global biogeography of seed dormancy is determined by seasonality and seed size: a case study in the legumes. New Phytol. 2017;214:1527–1536. PubMed

Sall K., Dekkers B.J.W., Nonogaki M., Katsuragawa Y., Koyari R., Hendrix D., Willems L.A.J., Bentsink L., Nonogaki H. DELAY OF GERMINATION1 - LIKE 4 acts as an inducer of seed reserve accumulation. Plant J. 2019;100:7–19. PubMed

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC

Smith T., Heger A., Sudbery I. UMI-tools: Modelling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 2016;27:491–499. PubMed PMC

Soppe W.J.J., Bentsink L. Seed dormancy back on track; its definition and regulation by DOG1. New Phytol. 2020;228:816–819. PubMed PMC

Venable D.L., Brown J.S. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. Am. Nat. 1988;131:360–384.

Vidigal D.S., Marques A.C.S.S., Willems L.A.J., Buijs G., Méndez-Vigo B., Hilhorst H.W.M., Bentsink L., Picó F.X., Alonso-Blanco C. Altitudinal and climatic associations of seed dormancy and flowering traits evidence adaptation of annual life cycle timing in Arabidopsis thaliana: Climatic adaptation of annual life cycles. Plant Cell Environ. 2016;39:1737–1748. PubMed

Volis S. Seed heteromorphism in Triticum dicoccoides: association between seed positions within a dispersal unit and dormancy. Oecologia. 2016;181:401–412. PubMed

Volis S., Bohrer G. Joint evolution of seed traits along an aridity gradient: seed size and dormancy are not two substitutable evolutionary traits in temporally heterogeneous environment. New Phytol. 2013;197:655–667. PubMed

Xi W., Liu C., Hou X., Yu H. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell. 2010;22:1733–1748. PubMed PMC

Xiang Y., Nakabayashi K., Ding J., He F., Bentsink L., Soppe W.J.J. REDUCED DORMANCY5 encodes a protein phosphatase 2C that is required for seed dormancy in Arabidopsis. Plant Cell. 2014;26:4362–4375. PubMed PMC

Xu Y., Zhao Y., Duan H., Sui N., Yuan F., Song J. Transcriptomic profiling of genes in matured dimorphic seeds of euhalophyte Suaeda salsa. BMC Genom. 2017;18:727. PubMed PMC

Yatusevich R., Fedak H., Ciesielski A., Krzyczmonik K., Kulik A., Dobrowolska G., Swiezewski S. Antisense transcription represses Arabidopsis seed dormancy QTL DOG 1 to regulate drought tolerance. EMBO Rep. 2017;18:2186–2196. PubMed PMC

Yoshida T., Nishimura N., Kitahata N., Kuromori T., Ito T., Asami T., Shinozaki K., Hirayama T. ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol. 2006;140:115–126. PubMed PMC

Yu B., He X., Tang Y., Chen Z., Zhou L., Li X., Zhang C., Huang X., Yang Y., Zhang W., et al. Photoperiod controls plant seed size in a CONSTANS-dependent manner. Nat. Plants. 2023;9:343–354. PubMed

Zhao H., Nie K., Zhou H., Yan X., Zhan Q., Zheng Y., Song C.P. ABI5 modulates seed germination via feedback regulation of the expression of the PYR/PYL/RCAR ABA receptor genes. New Phytol. 2020;228:596–608. PubMed

Zhou Y., Zhang X., Kang X., Zhao X., Zhang X., Ni M. SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. Plant Cell. 2009;21:106–117. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...