Genetic and transcriptomic analysis of lentil seed imbibition and dormancy in relation to its domestication

. 2025 Jun ; 18 (2) : e70021.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40164967

Grantová podpora
PrF-2023-001 Palacky University Grant Agency
PrF-2024-001 Palacky University Grant Agency
LUAUS25035 Ministry of Education, Youth and Sports of the Czech Republic
GC1903 Western Grains Research Foundation
LSP18-16302 Genome Canada
20200026 Government of Saskatchewan

Seed dormancy is an adaptation that delays germination to prevent the start of this process during unsuitable conditions. It is crucial in wild species but its loss was selected during crop domestication to ensure a fast and uniform germination. Water uptake, or imbibition, is the first step of germination. In the Fabaceae family, seeds have physical dormancy, in which seed coats are impermeable to water. We used an interspecific cross between an elite lentil line (Lens culinaris) and a wild lentil (L. orientalis) to investigate the genetic basis of imbibition capacity through quantitative trait locus (QTL) mapping and by using RNA from embryos and seed coats at different development stages, and phenotypic data of seed coat thickness (SCT) and proportion of imbibed seeds (PIS). Both characteristics were consistent throughout different years and locations, suggesting a hereditary component. QTL results suggest that they are each controlled by relatively few loci. Differentially expressed genes (DEGs) within the QTL were considered candidate genes. Two glycosyl-hydrolase genes (a β-glucosidase and a β-galactosidase), which degrade complex polysaccharides in the cell wall, were found among the candidate genes, and one of them had a positive correlation (β-glucosidase) between gene expression and imbibition capacity, and the other gene (β-galactosidase) presented a negative correlation between gene expression and SCT.

Zobrazit více v PubMed

Abbo, S. , Pinhasi van‐Oss, R. , Gopher, A. , Saranga, Y. , Ofner, I. , & Peleg, Z. (2014). Plant domestication versus crop evolution: A conceptual framework for cereals and grain legumes. Trends in Plant Science, 19, 351–360. 10.1016/j.tplants.2013.12.002 PubMed DOI

Abbo, S. , Saranga, Y. , Peleg, Z. , Kerem, Z. , Lev‐Yadun, S. , & Gopher, A. (2009). Reconsidering domestication of legumes versus cereals in the ancient near east. The Quarterly Review of Biology, 84, 29–50. 10.1086/596462 PubMed DOI

Alexa, A. , & Rahnenfuhrer, J. (2022). topGO: Enrichment Analysis for Gene Ontology (R package version 2.50.0) [Computer software]. CRAN.

Arunraj, R. , Skori, L. , Kumar, A. , Hickerson, N. M. , Shoma, N. , & Samuel, M. A. (2020). Spatial regulation of alpha‐galactosidase activity and its influence on raffinose family oligosaccharides during seed maturation and germination in. Plant Signaling & Behavior, 15, 1709707. 10.1080/15592324.2019.1709707 PubMed DOI PMC

Balarynová, J. , Klčová, B. , Tarkowská, D. , Turečková, V. , Trněný, O. , Špundová, M. , Ochatt, S. , & Smýkal, P. (2023). Domestication has altered the ABA and gibberellin profiles in developing pea seeds. Planta, 258, Article 25. 10.1007/s00425-023-04184-2 PubMed DOI PMC

Balasubramanian, P. , Vandenberg, A. , & Hucl, P. (2004). Planting date and suboptimal seedbed temperature effects on dry bean establishment, phenology and yield. Canadian Journal of Plant Science [Revue canadienne de phytotechnie], 84, 31–36. 10.4141/p02-185 DOI

Bellucci, E. , Bitocchi, E. , Ferrarini, A. , Benazzo, A. , Biagetti, E. , Klie, S. , Minio, A. , Rau, D. , Rodriguez, M. , Panziera, A. , Venturini, L. , Attene, G. , Albertini, E. , Jackson, S. A. , Nanni, L. , Fernie, A. R. , Nikoloski, Z. , Bertorelle, G. , Delledonne, M. , & Papa, R. (2014). Decreased nucleotide and expression diversity and modified coexpression patterns characterize domestication in the common bean. The Plant Cell, 26, 1901–1912. 10.1105/tpc.114.124040 PubMed DOI PMC

Bewley, J. (1997). Seed germination and dormancy. The Plant Cell, 9, 1055–1066. 10.1105/tpc.9.7.1055 PubMed DOI PMC

Bewley, J. , & Black, M. (1994). Seeds: Physiology of development and germination. Springer US. 10.1007/978-1-4899-1002-8 DOI

Bolger, A. M. , Lohse, M. , & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC

Bradford, K. J. , & Nonogaki, H. (Eds.). (2007). Seed development, dormancy and germination. Blackwell Publishing Ltd.

Broman, K. W. , Gatti, D. M. , Simecek, P. , Furlotte, N. A. , Prins, P. , Sen, Ś. , Yandell, B. S. , & Churchill, G. A. (2019). R/qtl2: Software for mapping quantitative trait loci with high‐dimensional data and multiparent populations. Genetics, 211, 495–502. 10.1534/genetics.118.301595 PubMed DOI PMC

Buckeridge, M. S. , & Reid, J. S. (1994). Purification and properties of a novel beta‐galactosidase or exo‐(1→4)‐β‐D‐galactanase from the cotyledons of germinated Lupinus angustifolius L. seeds. Planta, 192, 502–511. 10.1007/BF00203588 PubMed DOI

Cao, Z. , Socquet‐Juglard, D. , Daba, K. , Vandenberg, A. , & Bett, K. E. (2024). Understanding genome structure facilitates the use of wild lentil germplasm for breeding: A case study with shattering loci. The Plant Genome, 17(2). 10.1002/tpg2.20455 PubMed DOI

Carlson, M. (2019). GO.db: A Set of Annotation Maps Describing the Entire Gene Ontology (R package version 3.8.2) [Computer software]. CRAN.

Chai, M. , Zhou, C. , Molina, I. , Fu, C. , Nakashima, J. , Li, G. , Zhang, W. , Park, J. , Tang, Y. , Jiang, Q. , & Wang, Z.‐Y. (2016). A class II KNOX gene, KNOX4, controls seed physical dormancy. Proceedings of the National Academy of Sciences of the United States of America, 113, 6997–7002. 10.1073/pnas.1601256113 PubMed DOI PMC

Chantarangsee, M. , Tanthanuch, W. , Fujimura, T. , Fry, S. C. , & Ketudat Cairns, J. (2007). Molecular characterization of β‐galactosidases from germinating rice (Oryza sativa). Plant Science: An International Journal of Experimental Plant Biology, 173, 118–134. 10.1016/j.plantsci.2007.04.009 DOI

Chen, N. , Wang, H. , Abdelmageed, H. , Veerappan, V. , Tadege, M. , & Allen, R. D. (2020). HSI2/VAL1 and HSL1/VAL2 function redundantly to repress DOG1 expression in Arabidopsis seeds and seedlings. The New Phytologist, 227, 840–856. 10.1111/nph.16559 PubMed DOI PMC

Chibani, K. , Ali‐Rachedi, S. , Job, C. , Job, D. , Jullien, M. , & Grappin, P. (2006). Proteomic analysis of seed dormancy in Arabidopsis. Plant Physiology, 142, 1493–1510. 10.1104/pp.106.087452 PubMed DOI PMC

Cichy, K. A. , Wiesinger, J. A. , Berry, M. , Nchimbi‐Msolla, S. , Fourie, D. , Porch, T. G. , Ambechew, D. , & Miklas, P. N. (2019). The role of genotype and production environment in determining the cooking time of dry beans (Phaseolus vulgaris L.). Legume Science, 1, e13. 10.1002/leg3.13 DOI

Cichy, K. A. , Wiesinger, J. A. , & Mendoza, F. A. (2015). Genetic diversity and genome‐wide association analysis of cooking time in dry bean (Phaseolus vulgaris L.). Theoretical and applied genetics [Theoretische und angewandte Genetik], 128, 1555–1567. 10.1007/s00122-015-2531-z PubMed DOI

Coyne, C. J. , Kumar, S. , Wettberg, E. J. B. , Marques, E. , Berger, J. D. , Redden, R. J. , Ellis, T. H. N. , Brus, J. , Zablatzká, L. , & Smýkal, P. (2020). Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement. Legume Science, 2, e36. 10.1002/leg3.36 DOI

Danecek, P. , Bonfield, J. K. , Liddle, J. , Marshall, J. , Ohan, V. , Pollard, M. O. , Whitwham, A. , Keane, T. , McCarthy, S. A. , Davies, R. M. , & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10, giab008. 10.1093/gigascience/giab008 PubMed DOI PMC

Dean, G. H. , Zheng, H. , Tewari, J. , Huang, J. , Young, D. S. , Hwang, Y. T. , Western, T. L. , Carpita, N. C. , McCann, M. C. , Mansfield, S. D. , & Haughn, G. W. (2007). The Arabidopsis MUM2 gene encodes a beta‐galactosidase required for the production of seed coat mucilage with correct hydration properties. The Plant Cell, 19, 4007–4021. 10.1105/tpc.107.050609 PubMed DOI PMC

De Giorgi, J. , Piskurewicz, U. , Loubery, S. , Utz‐Pugin, A. , Bailly, C. , Mène‐Saffrané, L. , & Lopez‐Molina, L. (2015). An endosperm‐associated cuticle is required for arabidopsis seed viability, dormancy and early control of germination. PLoS Genetics, 11, e1005708. 10.1371/journal.pgen.1005708 PubMed DOI PMC

Fedi, F. , O'Neill, C. M. , Menard, G. , Trick, M. , Dechirico, S. , Corbineau, F. , Bailly, C. , Eastmond, P. J. , & Penfield, S. (2017). Awake1, an ABC‐type transporter, reveals an essential role for suberin in the control of seed dormancy. Plant Physiology, 174, 276–283. 10.1104/pp.16.01556 PubMed DOI PMC

Feldmann, K. A. (2001). Cytochrome P450s as genes for crop improvement. Current Opinion in Plant Biology, 4, 162–167. 10.1016/s1369-5266(00)00154-0 PubMed DOI

Figueiredo, J. , Sousa Silva, M. , & Figueiredo, A. (2018). Subtilisin‐like proteases in plant defence: The past, the present and beyond. Molecular Plant Pathology, 19, 1017–1028. 10.1111/mpp.12567 PubMed DOI PMC

Finch‐Savage, W. E. , & Leubner‐Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501–523. 10.1111/j.1469-8137.2006.01787.x PubMed DOI

Frazee, A. C. , Pertea, G. , Jaffe, A. E. , Langmead, B. , Salzberg, S. L. , & Leek, J. T. (2015). Ballgown bridges the gap between transcriptome assembly and expression analysis. Nature Biotechnology, 33, 243–246. 10.1038/nbt.3172 PubMed DOI PMC

Fry, S. C. (2004). Primary cell wall metabolism: Tracking the careers of wall polymers in living plant cells. The New Phytologist, 161, 641–675. 10.1111/j.1469-8137.2004.00980.x PubMed DOI

Gazzarrini, S. , & Tsai, A. Y.‐L. (2015). Hormone cross‐talk during seed germination. Essays in Biochemistry, 58, 151–164. 10.1042/bse0580151 PubMed DOI

Giannakouros, T. , Karagiorgos, A. , & Simos, G. (1991). Expression of β‐galactosidase multiple forms during barley (Hordeum vulgare) seed germination. Separation and characterization of enzyme isoforms. Physiologia Plantarum, 82, 413–418. 10.1111/j.1399-3054.1991.tb02926.x DOI

Graeber, K. , Linkies, A. , Steinbrecher, T. , Mummenhoff, K. , Tarkowská, D. , Turečková, V. , Ignatz, M. , Sperber, K. , Voegele, A. , de Jong, H. , Urbanová, T. , Strnad, M. , & Leubner‐Metzger, G. (2014). DELAY OF GERMINATION 1 mediates a conserved coat‐dormancy mechanism for the temperature‐ and gibberellin‐dependent control of seed germination. Proceedings of the National Academy of Sciences of the United States of America, 111, E3571–E3580. 10.1073/pnas.1403851111 PubMed DOI PMC

Graeber, K. , Nakabayashi, K. , Miatton, E. , Leubner‐Metzger, G. , & Soppe, W. J. J. (2012). Molecular mechanisms of seed dormancy. Plant, Cell & Environment, 35, 1769–1786. 10.1111/j.1365-3040.2012.02542.x PubMed DOI

Guan, M. , Shi, X. , Chen, S. , Wan, Y. , Tang, Y. , Zhao, T. , Gao, L. , Sun, F. , Yin, N. , Zhao, H. , Lu, K. , Li, J. , & Qu, C. (2023). Comparative transcriptome analysis identifies candidate genes related to seed coat color in rapeseed. Frontiers in Plant Science, 14, 1154208. 10.3389/fpls.2023.1154208 PubMed DOI PMC

Guerra‐García, A. , Gioia, T. , von Wettberg, E. , Logozzo, G. , Papa, R. , Bitocchi, E. , & Bett, K. E. (2021). Intelligent characterization of lentil genetic resources: Evolutionary history, genetic diversity of germplasm, and the need for well‐represented collections. Current Protocols, 1, e134. 10.1002/cpz1.134 PubMed DOI

Guerra‐Garcia, A. , Haile, T. , Ogutcen, E. , Bett, K. E. , & von Wettberg, E. J. (2022). An evolutionary look into the history of lentil reveals unexpected diversity. Evolutionary Applications, 15, 1313–1325. 10.1111/eva.13467 PubMed DOI PMC

Guerra‐García, A. , Trněný, O. , Brus, J. , Renzi, J. P. , Kumar, S. , Bariotakis, M. , Coyne, C. J. , Chitikineni, A. , Bett, K. E. , Varshney, R. , Pirintsos, S. , Berger, J. , von Wettberg, E. J. B. , & Smýkal, P. (2024). Genetic structure and ecological niche space of lentil's closest wild relative, Lens orientalis (Boiss.) Schmalh. Plant Biology, 26(2), 232–244. 10.1111/plb.13615 PubMed DOI

Hammer, K. (1984). Das Domestikationssyndrom. In Böhme H., Rieth A., Müller‐Stoll W., Rieger R., Rieth A., Sagromsky H., & Stubbe H. (Eds.), Band 32 (pp. 269–294). De Gruyter. 10.1515/9783112642641-045 DOI

Hemmerlin, A. , Huchelmann, A. , Tritsch, D. , Schaller, H. , & Bach, T. J. (2019). The specific molecular architecture of plant 3‐hydroxy‐3‐methylglutaryl‐CoA lyase. The Journal of Biological Chemistry, 294, 16186–16197. 10.1074/jbc.RA119.008839 PubMed DOI PMC

Henriksen, A. , Mirza, O. , Indiani, C. , Teilum, K. , Smulevich, G. , Welinder, K. G. , & Gajhede, M. (2001). Structure of soybean seed coat peroxidase: A plant peroxidase with unusual stability and haem‐apoprotein interactions. Protein Science: A Publication of the Protein Society, 10, 108–115. 10.1110/ps.37301 PubMed DOI PMC

Holland, C. , Ryden, P. , Edwards, C. H. , & Grundy, M. M.‐L. (2020). Plant cell walls: Impact on nutrient bioaccessibility and digestibility. Foods, 9(2), 201. 10.3390/foods9020201 PubMed DOI PMC

Hradilová, I. , Duchoslav, M. , Brus, J. , Pechanec, V. , Hýbl, M. , Kopecký, P. , Smržová, L. , Štefelová, N. , Vaclávek, T. , Bariotakis, M. , Machalová, J. , Hron, K. , Pirintsos, S. , & Smýkal, P. (2019). Variation in wild pea (Pisum sativum subsp. elatius) seed dormancy and its relationship to the environment and seed coat traits. PeerJ, 7, e6263. 10.7717/peerj.6263 PubMed DOI PMC

Hradilová, I. , Trněný, O. , Válková, M. , Cechová, M. , Janská, A. , Prokešová, L. , Aamir, K. , Krezdorn, N. , Rotter, B. , Winter, P. , Varshney, R. K. , Soukup, A. , Bednář, P. , Hanáček, P. , & Smýkal, P. (2017). A combined comparative transcriptomic, metabolomic, and anatomical analyses of two key domestication traits: Pod dehiscence and seed dormancy in pea (Pisum sp.). Frontiers in Plant Science, 8, 542. 10.3389/fpls.2017.00542 PubMed DOI PMC

Isemura, T. , Kaga, A. , Tabata, S. , Somta, P. , Srinives, P. , Shimizu, T. , Jo, U. , Vaughan, D. A. , & Tomooka, N. (2012). Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS One, 7, e41304. 10.1371/journal.pone.0041304 PubMed DOI PMC

Jang, S.‐J. , Sato, M. , Sato, K. , Jitsuyama, Y. , Fujino, K. , Mori, H. , Takahashi, R. , Benitez, E. R. , Liu, B. , Yamada, T. , & Abe, J. (2015). A single‐nucleotide polymorphism in an endo‐1,4‐β‐glucanase gene controls seed coat permeability in soybean. PLoS One, 10, e0128527. 10.1371/journal.pone.0128527 PubMed DOI PMC

Janská, A. , Pecková, E. , Sczepaniak, B. , Smýkal, P. , & Soukup, A. (2019). The role of the testa during the establishment of physical dormancy in the pea seed. Annals of Botany, 123, 815–829. 10.1093/aob/mcy213 PubMed DOI PMC

Kannenberg, L. W. , & Allard, R. W. (1964). An association between pigment and lignin formation in the seed coat of the lima bean. Crop Science, 4, 621–622. 10.2135/cropsci1964.0011183X000400060021x DOI

Ketudat Cairns, J. R. , & Esen, A. (2010). β‐Glucosidases. Cellular and Molecular Life Sciences, 67, 3389–3405. 10.1007/s00018-010-0399-2 PubMed DOI PMC

Kim, D. , Paggi, J. M. , Park, C. , Bennett, C. , & Salzberg, S. L. (2019). Graph‐based genome alignment and genotyping with HISAT2 and HISAT‐genotype. Nature Biotechnology, 37, 907–915. 10.1038/s41587-019-0201-4 PubMed DOI PMC

Kishore, D. , & Kayastha, A. M. (2012). A β‐galactosidase from chick pea (Cicer arietinum) seeds: Its purification, biochemical properties and industrial applications. Food Chemistry, 134, 1113–1122. 10.1016/j.foodchem.2012.03.032 PubMed DOI

Kissing Kucek, L. , Azevedo, M. D. , Eagen, S. S. , Ehlke, N. J. , Hayes, R. J. , Mirsky, S. B. , Reberg‐Horton, C. , Ryan, M. R. , Wayman, S. , Wiering, N. P. , & Riday, H. (2020). Seed dormancy in hairy vetch (Vicia villosa Roth) is influenced by genotype and environment. Agronomy, 10, 1804. 10.3390/agronomy10111804 DOI

Klčová, B. , Balarynová, J. , Trněný, O. , Krejčí, P. , Cechová, M. Z. , Leonova, T. , Gorbach, D. , Frolova, N. , Kysil, E. , Orlova, A. , Ihling, С. , Frolov, A. , Bednář, P. , & Smýkal, P. (2024). Domestication has altered gene expression and secondary metabolites in pea seed coat. The Plant Journal: For Cell and Molecular Biology, 118, 2269–2295. 10.1111/tpj.16734 PubMed DOI

Kongjaimun, A. , Kaga, A. , Tomooka, N. , Somta, P. , Vaughan, D. A. , & Srinives, P. (2012). The genetics of domestication of yardlong bean, Vigna unguiculata (L.) Walp. ssp. unguiculata cv.‐gr. sesquipedalis . Annals of Botany, 109, 1185–1200. 10.1093/aob/mcs048 PubMed DOI PMC

Kovaka, S. , Zimin, A. V. , Pertea, G. M. , Razaghi, R. , Salzberg, S. L. , & Pertea, M. (2019). Transcriptome assembly from long‐read RNA‐seq alignments with StringTie2. Genome Biology, 20, Article 278. 10.1186/s13059-019-1910-1 PubMed DOI PMC

Ladizinsky, G. , Cohen, D. , & Muehlbauer, F. J. (1985). Hybridization in the genus Lens by means of embryo culture. Theoretical and Applied Genetics, 70(1), 97–101. 10.1007/bf00264489 PubMed DOI

Lamont, B. B. , & Pausas, J. G. (2023). Seed dormancy revisited: Dormancy‐release pathways and environmental interactions. Functional Ecology, 37(4), 1106–1125. 10.1111/1365-2435.14269 DOI

Langfelder, P. , & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9(1). 10.1186/1471-2105-9-559 PubMed DOI PMC

Laosatit, K. , Amkul, K. , Chen, J. , Lin, Y. , Yuan, X. , Wang, L. , Chen, X. , & Somta, P. (2022). A Class II KNOX Gene, KNAT7‐1, regulates physical seed dormancy in mungbean [Vigna radiata (L.) Wilczek]. Frontiers in Plant Science, 13, 852373. 10.3389/fpls.2022.852373 PubMed DOI PMC

Leah, R. , Kigel, J. , Svendsen, I. , & Mundy, J. (1995). Biochemical and molecular characterization of a barley seed beta‐glucosidase. The Journal of Biological Chemistry, 270, 15789–15797. 10.1074/jbc.270.26.15789 PubMed DOI

Leubner‐Metzger, G. (2005). beta‐1,3‐Glucanase gene expression in low‐hydrated seeds as a mechanism for dormancy release during tobacco after‐ripening. The Plant Journal: For Cell and Molecular Biology, 41, 133–145. 10.1111/j.1365-313X.2004.02284.x PubMed DOI

Li, Q. , Chen, X. , Zhang, S. , Shan, S. , & Xiang, Y. (2022). DELAY OF GERMINATION 1, the master regulator of seed dormancy, integrates the regulatory network of phytohormones at the transcriptional level to control seed dormancy. Current Issues in Molecular Biology, 44, 6205–6217. 10.3390/cimb44120423 PubMed DOI PMC

Liu, G. , Pei, W. , Li, D. , Ma, J. , Cui, Y. , Wang, N. , Song, J. , Wu, M. , Li, L. , Zang, X. , Yu, S. , Zhang, J. , & Yu, J. (2019). A targeted QTL analysis for fiber length using a genetic population between two introgressed backcrossed inbred lines in upland cotton (Gossypium hirsutum). The Crop Journal, 7(3), 273–282. 10.1016/j.cj.2018.11.005 DOI

Lopes, N. D. S. , Santos, A. S. , de Novais, D. P. S. , Pirovani, C. P. , & Micheli, F. (2023). Pathogenesis‐related protein 10 in resistance to biotic stress: Progress in elucidating functions, regulation and modes of action. Frontiers in Plant Science, 14, 1193873. 10.3389/fpls.2023.1193873 PubMed DOI PMC

Meyer, R. S. , & Purugganan, M. D. (2013). Evolution of crop species: Genetics of domestication and diversification. Nature Reviews Genetics, 14, 840–852. 10.1038/nrg3605 PubMed DOI

Murphy, C. , & Fuller, D. Q. (2017). Seed coat thinning during horsegram (Macrotyloma uniflorum) domestication documented through synchrotron tomography of archaeological seeds. Scientific Reports, 7, Article 5369. 10.1038/s41598-017-05244-w PubMed DOI PMC

Née, G. , Xiang, Y. , & Soppe, W. J. J. (2017). The release of dormancy, a wake‐up call for seeds to germinate. Current Opinion in Plant Biology, 35, 8–14. 10.1016/j.pbi.2016.09.002 PubMed DOI

Nekrasov, V. , Ludwig, A. A. , & Jones, J. D. G. (2006). CITRX thioredoxin is a putative adaptor protein connecting Cf‐9 and the ACIK1 protein kinase during the Cf‐9/Avr9‐ induced defence response. FEBS Letters, 580, 4236–4241. 10.1016/j.febslet.2006.06.077 PubMed DOI

Nguyen, B. D. , Bett, K. E. , & Noble, S. D. (2021). Optical coherence tomography applied to non‐destructive seed coat thickness measurement. Research Square. 10.21203/rs.3.rs-723240/v1 DOI

Noodén, L. D. , Blakley, K. A. , & Grzybowski, J. M. (1985). Control of seed coat thickness and permeability in soybean : A possible adaptation to stress. Plant Physiology, 79, 543–545. 10.1104/pp.79.2.543 PubMed DOI PMC

Olivoto, T. , & Lúcio, A. D. (2020). metan: An R package for multi‐environment trial analysis. Methods in Ecology and Evolution, 11, 783–789. 10.1111/2041-210x.13384 DOI

Panikashvili, D. , Shi, J. X. , Schreiber, L. , & Aharoni, A. (2009). The Arabidopsis DCR encoding a soluble BAHD acyltransferase is required for cutin polyester formation and seed hydration properties. Plant Physiology, 151, 1773–1789. 10.1104/pp.109.143388 PubMed DOI PMC

Penfield, S. , & MacGregor, D. R. (2017). Effects of environmental variation during seed production on seed dormancy and germination. Journal of Experimental Botany, 68, 819–825. 10.1093/jxb/erw436 PubMed DOI

Petruzzelli, L. , Kunz, C. , Waldvogel, R. , Meins, F., Jr. , & Leubner‐Metzger, G. (1999). Distinct ethylene‐ and tissue‐specific regulation of beta‐1,3‐glucanases and chitinases during pea seed germination. Planta, 209, 195–201. 10.1007/s004250050622 PubMed DOI

Pollard, M. , Beisson, F. , Li, Y. , & Ohlrogge, J. B. (2008). Building lipid barriers: Biosynthesis of cutin and suberin. Trends in Plant Science, 13, 236–246. 10.1016/j.tplants.2008.03.003 PubMed DOI

R Core Team . (2021). R: A language and environment for statistical computing . R Foundation for Statistical Computing. https://www.R‐project.org/

Ramsay, L. , Koh, C. S. , Kagale, S. , Gao, D. , Kaur, S. , Haile, T. , Gela, T. S. , Chen, L.‐A. , Cao, Z. , Konkin, D. J. , Toegelová, H. , Doležel, J. , Rosen, B. D. , Stonehouse, R. , Humann, J. L. , Main, D. , Coyne, C. J. , McGee, R. J. , Cook, D. R. , … Bett, K. E. (2021). Genomic rearrangements have consequences for introgression breeding as revealed by genome assemblies of wild and cultivated lentil species. BioRxiv. 10.1101/2021.07.23.453237 DOI

Ranathunge, K. , Shao, S. , Qutob, D. , Gijzen, M. , Peterson, C. A. , & Bernards, M. A. (2010). Properties of the soybean seed coat cuticle change during development. Planta, 231, 1171–1188. 10.1007/s00425-010-1118-9 PubMed DOI

Renard, J. , Martínez‐Almonacid, I. , Queralta Castillo, I. , Sonntag, A. , Hashim, A. , Bissoli, G. , Campos, L. , Muñoz‐Bertomeu, J. , Niñoles, R. , Roach, T. , Sánchez‐León, S. , Ozuna, C. V. , Gadea, J. , Lisón, P. , Kranner, I. , Barro, F. , Serrano, R. , Molina, I. , & Bueso, E. (2021). Apoplastic lipid barriers regulated by conserved homeobox transcription factors extend seed longevity in multiple plant species. The New Phytologist, 231, 679–694. 10.1111/nph.17399 PubMed DOI

Renzi, J. P. , Duchoslav, M. , Brus, J. , Hradilová, I. , Pechanec, V. , Václavek, T. , Machalová, J. , Hron, K. , Verdier, J. , & Smýkal, P. (2020). Physical dormancy release in seeds is related to environmental variations. Plants, 9(4), 503. 10.3390/plants9040503 PubMed DOI PMC

Robert, H. S. (2019). Molecular communication for coordinated seed and fruit development: What can we learn from auxin and sugars? International Journal of Molecular Sciences, 20(4), 936. 10.3390/ijms20040936 PubMed DOI PMC

Romeis, T. , Tang, S. , Hammond‐Kosack, K. , Piedras, P. , Blatt, M. , & Jones, J. D. (2000). Early signalling events in the Avr9/Cf‐9‐dependent plant defence response. Molecular Plant Pathology, 1, 3–8. 10.1046/j.1364-3703.2000.00001.x PubMed DOI

Rowland, O. , Ludwig, A. A. , Merrick, C. J. , Baillieul, F. , Tracy, F. E. , Durrant, W. E. , Fritz‐Laylin, L. , Nekrasov, V. , Sjölander, K. , Yoshioka, H. , & Jones, J. D. G. (2005). Functional analysis of Avr9/Cf‐9 rapidly elicited genes identifies a protein kinase, ACIK1, that is essential for full Cf‐9‐dependent disease resistance in tomato. The Plant Cell, 17, 295–310. 10.1105/tpc.104.026013 PubMed DOI PMC

Russi, L. , Cocks, P. S. , & Roberts, E. H. (1992). Coat thickness and hard‐seededness in some Medicago and Trifolium species. Seed Science Research, 2, 243–249. 10.1017/s0960258500001434 DOI

Sahoo, B. , Nayak, I. , Parameswaran, C. , Kesawat, M. S. , Sahoo, K. K. , Subudhi, H. N. , Balasubramaniasai, C. , Prabhukarthikeyan, S. R. , Katara, J. L. , Dash, S. K. , Chung, S.‐M. , Siddiqui, M. H. , Alamri, S. , & Samantaray, S. (2023). A comprehensive genome‐wide investigation of the cytochrome 71 (OsCYP71P6) gene family: Revealing the impact of promoter and gene variants (Ser33Leu) of OsCYP71P6 on yield‐related traits in Indica rice (Oryza sativa L.). Plants, 12(17), 3035. 10.3390/plants12173035 PubMed DOI PMC

Sauvage, C. , Rau, A. , Aichholz, C. , Chadoeuf, J. , Sarah, G. , Ruiz, M. , Santoni, S. , Causse, M. , David, J. , & Glémin, S. (2017). Domestication rewired gene expression and nucleotide diversity patterns in tomato. The Plant Journal: For Cell and Molecular Biology, 91, 631–645. 10.1111/tpj.13592 PubMed DOI

Sedivy, E. J. , Wu, F. , & Hanzawa, Y. (2017). Soybean domestication: The origin, genetic architecture and molecular bases. The New Phytologist, 214, 539–553. 10.1111/nph.14418 PubMed DOI

Sedláková, V. , Hanáček, P. , Grulichová, M. , Zablatzká, L. , & Smýkal, P. (2021). Evaluation of seed dormancy, one of the key domestication traits in chickpea. Agronomy, 11, 2292. 10.3390/agronomy11112292 DOI

Sedláková, V. , Zeljković, S. Ć. , Štefelová, N. , Smýkal, P. , & Hanáček, P. (2023). Phenylpropanoid content of chickpea seed coats in relation to seed dormancy. Plants, 12, 2687. 10.3390/plants12142687 PubMed DOI PMC

Shao, S. , Meyer, C. J. , Ma, F. , Peterson, C. A. , & Bernards, M. A. (2007). The outermost cuticle of soybean seeds: Chemical composition and function during imbibition. Journal of Experimental Botany, 58, 1071–1082. 10.1093/jxb/erl268 PubMed DOI

Shu, K. , Meng, Y. J. , Shuai, H. W. , Liu, W. G. , Du, J. B. , Liu, J. , & Yang, W. Y. (2016). Dormancy and germination: How does the crop seed decide?. Plant Biology, 17, 1104–1112. 10.1111/plb.12356 PubMed DOI

Simos, G. , Panagiotidis, C. A. , Skoumbas, A. , Choli, D. , Ouzounis, C. , & Georgatsos, J. G. (1994). Barley beta‐glucosidase: Expression during seed germination and maturation and partial amino acid sequences. Biochimica et biophysica acta, 1199, 52–58. 10.1016/0304-4165(94)90095-7 PubMed DOI

Singh, B. , Singh, J. P. , Kaur, A. , & Singh, N. (2017). Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International, 101, 1–16. 10.1016/j.foodres.2017.09.026 PubMed DOI

Smýkal, P. , Nelson, M. , Berger, J. , & Von Wettberg, E. (2018). The impact of genetic changes during crop domestication. Agronomy, 8, 119. 10.3390/agronomy8070119 DOI

Smýkal, P. , Vernoud, V. , Blair, M. W. , Soukup, A. , & Thompson, R. D. (2014). The role of the testa during development and in establishment of dormancy of the legume seed. Frontiers in Plant Science, 5, 351. 10.3389/fpls.2014.00351 PubMed DOI PMC

Šola, K. , Gilchrist, E. J. , Ropartz, D. , Wang, L. , Feussner, I. , Mansfield, S. D. , Ralet, M.‐C. , & Haughn, G. W. (2019). RUBY, a putative galactose oxidase, influences pectin properties and promotes cell‐to‐cell adhesion in the seed coat epidermis of Arabidopsis. The Plant cell, 31, 809–831. 10.1105/tpc.18.00954 PubMed DOI PMC

Soltani, A. , Walter, K. A. , Wiersma, A. T. , Santiago, J. P. , Quiqley, M. , Chitwood, D. , Porch, T. G. , Miklas, P. , McClean, P. E. , Osorno, J. M. , & Lowry, D. B. (2021). The genetics and physiology of seed dormancy, a crucial trait in common bean domestication. BMC Plant Biology, 21, Article 58. 10.1186/s12870-021-02837-6 PubMed DOI PMC

Sun, Y. , & Gong, Y. (2024). Research advances on the hard seededness trait of soybean and the underlying regulatory mechanisms. Frontiers in Plant Science, 15, 1419962. 10.3389/fpls.2024.1419962 PubMed DOI PMC

Tenenbaum, D. , & Maintainer, B. (2022). KEGGREST: Client‐side REST access to the Kyoto Encyclopedia of Genes and Genomes (KEGG) (R package version 1.38.0) [Computer software]. CRAN.

Tornero, P. , Conejero, V. , & Vera, P. (1997). Identification of a new pathogen‐induced member of the subtilisin‐like processing protease family from plants. The Journal of Biological Chemistry, 272, 14412–14419. 10.1074/jbc.272.22.14412 PubMed DOI

Vartapetian, A. B. , Tuzhikov, A. I. , Chichkova, N. V. , Taliansky, M. , & Wolpert, T. J. (2011). A plant alternative to animal caspases: Subtilisin‐like proteases. Cell Death and Differentiation, 18, 1289–1297. 10.1038/cdd.2011.49 PubMed DOI PMC

Verma, S. K. , Mittal, S. , Gayacharan, Wankhede, D. P. , Parida, S. K. , Chattopadhyay, D. , Prasad, G. , Mishra, D. C. , Joshi, D. C. , Singh, M. , Singh, K. , & Singh, A. K. (2021). Transcriptome analysis reveals key pathways and candidate genes controlling seed development and size in ricebean (Vigna umbellata). Frontiers in Genetics, 12, 791355. 10.3389/fgene.2021.791355 PubMed DOI PMC

Wang, K. , Nan, L.‐L. , Xia, J. , Yao, Y.‐H. , Cheng, J. , & Chen, J.‐R. (2024). Transcriptome analysis reveals candidate genes for different root types of alfalfa (Medicago sativa) after water stress induced by PEG‐6000. Chemical and Biological Technologies in Agriculture, 11(1), Article 107. 10.1186/s40538-024-00640-7 DOI

Wang, W. , Xiong, H. , Sun, K. , Zhang, B. , & Sun, M.‐X. (2022). New insights into cell‐cell communications during seed development in flowering plants. Journal of Integrative Plant Biology, 64, 215–229. 10.1111/jipb.13170 PubMed DOI

Werker, E. , Marbach, I. , & Mayer, A. M. (1979). Relation between the anatomy of the testa, water permeability and the presence of phenolics in the genus Pisum . Annals of Botany, 43, 765–771. 10.1093/oxfordjournals.aob.a085691 DOI

Williams, O. R. , Vander Schoor, J. K. , Butler, J. B. , Hecht, V. F. G. , & Weller, J. L. (2024). Physical seed dormancy in pea is genetically separable from seed coat thickness and roughness. Frontiers in Plant Science, 15, 1359226. 10.3389/fpls.2024.1359226 PubMed DOI PMC

Willis, C. G. , Baskin, C. C. , Baskin, J. M. , Auld, J. R. , Lawrence Venable, D. , Cavender‐Bares, J. , Donohue, K. , & de Casas, R. R. (2014). The evolution of seed dormancy: Environmental cues, evolutionary hubs, and diversification of the seed plants. The New Phytologist, 203, 300–309. 10.1111/nph.12782 PubMed DOI

Wyatt, J. E. (1977). Seed coat and water absorption properties of seed of near‐isogenic snap bean lines differing in seed coat color. Journal of the American Society for Horticultural Science, 102, 478–480. 10.21273/JASHS.102.4.478 DOI

Wyse, S. V. , & Dickie, J. B. (2018). Ecological correlates of seed dormancy differ among dormancy types: A case study in the legumes. The New Phytologist, 217, 477–479. 10.1111/nph.14777 PubMed DOI

Xu, B. J. , Yuan, S. H. , & Chang, S. K. C. (2007). Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. Journal of Food Science, 72, S167–S177. 10.1111/j.1750-3841.2006.00261.x PubMed DOI

Yamagata, H. , Uesugi, M. , Saka, K. , Iwasaki, T. , & Aizono, Y. (2000). Molecular cloning and characterization of a cDNA and a gene for subtilisin‐like serine proteases from rice (Oryza sativa L.) and Arabidopsis thaliana . Bioscience, Biotechnology, and Biochemistry, 64, 1947–1957. 10.1271/bbb.64.1947 PubMed DOI

Yow, A. G. , Laosuntisuk, K. , Young, R. A. , Doherty, C. J. , Gillitt, N. , Perkins‐Veazie, P. , Jenny Xiang, Q.‐Y. , & Iorizzo, M. (2023). Comparative transcriptome analysis reveals candidate genes for cold stress response and early flowering in pineapple. Scientific Reports, 13, Article 18890. 10.1038/s41598-023-45722-y PubMed DOI PMC

Yu, B. , Gao, P. , Song, J. , Yang, H. , Qin, L. , Yu, X. , Song, H. , Coulson, J. , Bekkaoui, Y. , Akhov, L. , Han, X. , Cram, D. , Wei, Y. , Zaharia, L. I. , Zou, J. , Konkin, D. , Quilichini, T. D. , Fobert, P. , Patterson, N. , … Xiang, D. (2023). Spatiotemporal transcriptomics and metabolic profiling provide insights into gene regulatory networks during lentil seed development. The Plant Journal: For Cell and Molecular Biology, 115, 253–274. 10.1111/tpj.16205 PubMed DOI

Zablatzká, L. , Balarynová, J. , Klčová, B. , Kopecký, P. , & Smýkal, P. (2021). Anatomy and histochemistry of seed coat development of wild (Pisum sativum subsp. elatius (M. Bieb.) Asch. et Graebn. and domesticated pea (Pisum sativum subsp. sativum L.). International Journal of Molecular Sciences, 22(9), 4602. 10.3390/ijms22094602 PubMed DOI PMC

Zhao, J. , Shi, X. , Chen, L. , Chen, Q. , Tian, X. , Ai, L. , Zhao, H. , Yang, C. , Yan, L. , & Zhang, M. (2022). Genetic and transcriptome analyses reveal the candidate genes and pathways involved in the inactive shade‐avoidance response enabling high‐density planting of soybean. Frontiers in Plant Science, 13, 973643. 10.3389/fpls.2022.973643 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...