The role of the testa during development and in establishment of dormancy of the legume seed

. 2014 ; 5 () : 351. [epub] 20140717

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid25101104

Timing of seed germination is one of the key steps in plant life cycles. It determines the beginning of plant growth in natural or agricultural ecosystems. In the wild, many seeds exhibit dormancy and will only germinate after exposure to certain environmental conditions. In contrast, crop seeds germinate as soon as they are imbibed usually at planting time. These domestication-triggered changes represent adaptations to cultivation and human harvesting. Germination is one of the common sets of traits recorded in different crops and termed the "domestication syndrome." Moreover, legume seed imbibition has a crucial role in cooking properties. Different seed dormancy classes exist among plant species. Physical dormancy (often called hardseededness), as found in legumes, involves the development of a water-impermeable seed coat, caused by the presence of phenolics- and suberin-impregnated layers of palisade cells. The dormancy release mechanism primarily involves seed responses to temperature changes in the habitat, resulting in testa permeability to water. The underlying genetic controls in legumes have not been identified yet. However, positive correlation was shown between phenolics content (e.g., pigmentation), the requirement for oxidation and the activity of catechol oxidase in relation to pea seed dormancy, while epicatechin levels showed a significant positive correlation with soybean hardseededness. myeloblastosis family of transcription factors, WD40 proteins and enzymes of the anthocyanin biosynthesis pathway were involved in seed testa color in soybean, pea and Medicago, but were not tested directly in relation to seed dormancy. These phenolic compounds play important roles in defense against pathogens, as well as affecting the nutritional quality of products, and because of their health benefits, they are of industrial and medicinal interest. In this review, we discuss the role of the testa in mediating legume seed germination, with a focus on structural and chemical aspects.

Zobrazit více v PubMed

Abbo S., Lev-Yadun S., Gopher A. (2012). Plant domestication and crop evolution in the Near East: on events and processes. DOI

Abbo S., Pinhasi van-Oss R., Gopher A., Saranga Y., Ofner I., Peleg Z. (2014). Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. PubMed DOI

Abbo S., Rachamim E., Zehavi Y., Zezak I., Lev-Yadun S., Gopher A. (2011). Experimental growing of wild pea in Israel and its bearing on Near Eastern plant domestication. PubMed DOI PMC

Abbo S., Saranga Y., Peleg Z., Lev-Yadun S., Kerem Z., Gopher A. (2009). Reconsidering domestication of legumes versus cereals in the ancient near east. PubMed DOI

Abbo S., Zezak I., Schwartz E., Lev-Yadun S., Gopher A. (2008). Experimental harvesting of wild peas in Israel: implications for the origins of near east farming. DOI

Agbo G. N., Hosfield M. A., Uebersax M. A., Klomparens K. (1987). Seed microstructure and its relationship to water uptake in isogenic lines and a cultivar of dry beans (

Algan G., Büyükkartal H. N. B. (2000). Ultrastructure of seed coat development in the natural tetraploid DOI

Andriunas F. A., Zhang H. M., Xia X., Patrick J. W., Offler C. E. (2013). Intersection of transfer cells with phloem biology-broad evolutionary trends, function, and induction. PubMed DOI PMC

Angosto T., Matilla A. J. (1993). Variations in seeds of three endemic leguminous species at different altitudes. DOI

Argel P., Paton C. (1999). “Overcoming legume hardseededness,” in

Ballard L. A. T. (1973). Physical barriers to germination.

Baskin C. C. (2003). Breaking physical dormancy in seeds – focussing on the lens. DOI

Baskin C. C., Baskin J. M. (2014).

Baskin C. C., Baskin J. M., Li X. (2000). Taxonomy, anatomy and evolution of physical dormancy in seeds. DOI

Baskin J. M., Baskin C. C. (1985). The annual dormancy cycle in buried weed seeds: a continuum. DOI

Baskin J. M., Baskin C. C. (1998).

Baskin J. M., Baskin C. C. (2000). Evolutionary considerations of claims for physical dormancy-break by microbial action and abrasion by soil particles. DOI

Baskin J. M., Baskin C. C., Dixon K. W. (2006). Physical dormancy in the endemic Australian genus DOI

Bassett M. J. (1994). The griseoalbus (gray–white) seed coat color is controlled by an allele (p

Bassett M. J. (1999). Allelism found between two common bean genes, hilum ring colour (D) and partly coloured seed coat pattern (Z), formerly assumed to be independent.

Bassett M. J. (2002). Inheritance of reverse margo seed coat pattern and allelism between the genes J for seed coat colour and L for partly coloured seed coat pattern in common bean.

Bassett M. J. (2007). Genetics of seed coat colour and pattern in common bean. DOI

Baudry A., Heim M. A., Dubreucq B., Caboche M., Weisshaar B., Lepiniec L. (2004). TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in PubMed DOI

Beeckman T., De Rycke R., Viane R., Inzé D. (2000). Histological study of seed coat development in DOI

Beisson F., Li Y., Bonaventure G., Pollard M., Ohlrogge J. B. (2007). The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of PubMed DOI PMC

Bernard R. L., Weiss M. G. (1973). “Qualitative genetics,” in

Bevilacqua L. R., Fossati F., Dondero G. (1987). ‘Callose’ in the impermeable seed coat of

Bewley J. D., Bradford K., Hilhorst H., Nonogaki H. (2013).

Bhalla P. L., Slattery H. D. (1984). Callose deposits make clover seeds impermeable towater.

Bhat J. L. (1968). Seed dormancy in

Bibbey R. O. (1948). Physiological studies of weed seed germination. PubMed DOI PMC

Boersma J. G., Buirchell J. B., Sivasithamparam K., Yang H. (2007). Development of a PCR marker tightly linked to mollis, the gene that controls seed dormancy in DOI

Bolingue W., Ly Vu B., Leprince O., Buitink J. (2010). Characterization of dormancy behaviour in seeds of the model legume DOI

Bonnemain J. L., Bourquin S., Renault S., Offler C., Fisher D. G. (1991). “Transfer cells structure and physiology,” in

Borisjuk L., Weber H., Panitz R., Manteuffel R., Wobus U. (1995). Embryogenesis of DOI

Bradford K., Nonogaki H. (2009).

Brune M., Rossander L., Halberg L. (1989). Iron absorption and phenolic compounds: importance of different phenolic structures. PubMed

Burrows G. E., Virgona J. M., Heady R. D. (2009). Effect of boiling water, seed coat structure and provenance on the germination of DOI

Butler E. A. (1988). “The SEM and seed identification, with particular reference to the Vicieae,” in

Büyükkartal H. N., Hatice Çölgeçen H., Pinar N. M., Erdoǧan N. (2013). Seed coat ultrastructure of hard-seeded and soft-seeded varieties of

Caldas G. V., Blair M. W. (2009). Inheritance of condensed tannin content and relationship with seed colour and pattern genes in common bean ( PubMed DOI

Chachalis D., Smith M. L. (2000). Imbibition behavior of soybean (

Chachalis D., Smith M. L. (2001). Seed coat regulation of water uptake during imbibition in soybeans (

Chernoff M., Plitmann U., Kislev M. E. (1992). Seed characters and testa texture in species of Vicieae: their taxonomic significance. DOI

Clarkson D. T., Robards K. (1975). “The endodermis, its structural development and physiological role,” in

Clements J. C., Buirchell B. J., Yang H., Smith P. M. C., Sweetingham M. W., Smith C. G. (2005). “Chapter 9 Lupin,” in

Corner E. J. H. (1951). The leguminous seed.

Dalling J. W., Davis A. S., Schutte B. J., Arnold A. E. (2011). Seed survival in soil: interacting effects of predation, dormancy and the soil microbial community. DOI

Dean G., Cao Y. G., Xiang D., Provart N. J., Ramsay L., Ahada A., et al. (2011). Analysis of gene expression patterns during seed coat development in PubMed DOI

Debeaujon I., Léon-Kloosterziel K. M., Koornneef M. (2000). Influence of the testa on seed dormancy, germination, and longevity in PubMed DOI PMC

Debeaujon I., Nesi N., Perez P., Devi M., Grandjean O., Caboche M., et al. (2003). Proanthocyanidin-accumulating cells in PubMed DOI PMC

de Candolle A. P. (1825).

Dell B. (1980). Structure and function of the strophiolar plug in seeds of DOI

Deshpande S. S., Cheryan M. (1986). Microstructure and water uptake of DOI

de Souza T. V., Voltolini C. H., Santos M., Silveira Paulilo M. T. (2012). Water absorption and dormancy-breaking requirements of physically dormant seeds of

Díaz A. M., Caldas G. V., Blair M. W. (2010). Concentrations of condensed tannins and anthocyanins in common bean seed coats. DOI

Dixon R. A., Xie D. Y., Sharma S. B. (2005). Proanthocyanidins – a final frontier in flavonoid research? PubMed DOI

Donnelly E. D., Watson J. E., McGuire J. A. (1972). Inheritance of hard seed in

Dorcey E., Urbez C., Blázquez M. A., Carbonell J., Perez-Amador M. A. (2009). Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in PubMed DOI

Dueberrn de Sousa F. H. D., Marcos-Filho J. (2001). The seed coat as a modulator of seed-environment relationship in Fabaceae. DOI

Dueñas M., Sun B., Hernández T., Estrella I., Spranger M. I. (2003). Proanthocyanidin composition in the seed coat of lentils ( PubMed DOI

Emery R. J., Ma Q., Atkins C. A. (2000). The forms and sources of cytokinins in developing white lupine seeds and fruits. PubMed DOI PMC

Esau K. (1965).

Fenner M., Thompson K. (2005). DOI

Finch-Savage W. E., Leubner-Metzger G. (2006). Seed dormancy and the control of germination. PubMed DOI

Foley M. E. (2001). Seed dormancy: an update on terminology, physiological genetics, and quantitative trait loci regulating germinability. DOI

Forbes I., Well H. D. (1968). Hard and soft seededness in blue lupine, DOI

Frey A., Godin B., Bonnet M., Sotta B., Marion-Poll A. (2004). Maternal synthesis of abscisic acid controls seed development and yield in PubMed DOI

Fuller D. Q., Allaby R. (2009). Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation.

Galbiati F., Sinha Roy D., Simonini S., Cucinotta M., Ceccato L., Cuesta C.et al. (2013). An integrative model of the control of ovule primordia formation. PubMed DOI

Gallardo K., Firnhaber C., Zuber H., Héricher D., Belghazi M., Henry C., et al. (2007). A combined proteome and transcriptome analysis of developing PubMed DOI

Gijzen M., Kuflu K., Qutob D., Chernys J. T. (2001). A class I chitinase from soybean seed coat. PubMed DOI

Gijzen M., Miller S. S., Kuflu K., Buzzell R. I., Miki B. L. (1999). Hydrophobic protein synthesized in the pod endocarp adheres to the seed surface. PubMed DOI PMC

Gillikin J. W., Graham J. S. (1991). Purification and developmental analysis of the major anionic peroxidases from the seed coat of PubMed DOI PMC

Gillman J. D., Tetlow A., Lee J. D., Shannon J. G., Bilyeu K. (2011). Loss-of-function mutations affecting a specific PubMed DOI PMC

Gogue G. J., Emino E. R. (1979). Seed coat scarification of Albizia julibrissin Durazz by natural mechanisms.

Gopinathan M. C., Babu C. R. (1985). Structural diversity and its adaptive significance in seeds of

Graeber K., Nakabayashi K., Miatton E., Leubner-Metzger G., Soppe W. J. J. (2012). Molecular mechanisms of seed dormancy. PubMed DOI

Güneş F. (2013). Seed characteristics and testa textures of DOI

Gunn C. R. (1981). Seed topography in the Fabaceae.

Gunn C. R. (1984).

Gunn C. R. (1991).

Guzmán-Maldonado H., Castellanos J., Gonzalez E. (1996). Relationship between theoretical and experimentally detected tannin content of common beans ( DOI

Halevy G. (1974). Effects of gazelles and seed beetles (Bruchidae) on germination and establishment of

Hamly D. H. (1932). Softening of the seeds of DOI

Hamly D. H. (1935). The light line in DOI

Hammer K. (1984). Das Domestikationssyndrom. DOI

Hamphry M. E., Lambrides C. J., Chapman S. C., Aitken E. A. B., Imrie B. C., Lawn R. J. (2005). Relationships between hardseededness and seed weight in mungbean ( DOI

Hancock J. F. (2012). DOI

Hanley M. E., Fenner M. (1998). Pre-germination temperature and the survivorship and onward growth of Mediterranean fire-following plant species. DOI

Hanna P. J. (1984). Anatomical features of the seed coat of DOI

Hardham A. R. (1976). Structural aspects of pathways of nutrient flow to developing embryo and cotyledons of DOI

Harlan J. R. (1971). Agricultural origins: centers and noncenters. PubMed DOI

Harper J. L. (1957). “The ecological significance of dormancy and its importance in weed control,” in

Harris W. M. (1983). On the development of macrosclereids in seed coats of DOI

Harris W. M. (1984). On the development of osteosclereids in seed coats of PubMed DOI

Harris W. M. (1987). Comparative ultrastructure of developing seed coats of ‘hard-seeded’ and ‘soft-seeded’ varieties of soybean, DOI

Hellens R. P., Moreau C., Lin-Wang K., Schwinn K. E. (2010). Identification of Mendel’s white flower character. PubMed DOI PMC

Hu X. W., Wanga Y. R., Wua Y. P., Baskin C. C. (2009). Role of the lens in controlling water uptake in seeds of two Fabaceae (Papilionoideae) species treated with sulphuric acid and hot water. DOI

Hyde E. O. C. (1954). The function of the hilum in some Papilionaceae in relation to ripening of the seed and the permeability of the testa.

Isemura T., Kaga A., Konishi S., Ando T., Tomooka H. O., Vaughan D. A. (2007). Genome dissection of traits related to domestication in azuki bean ( PubMed DOI PMC

Isemura T., Kaga A., Tabata S., Somta P., Srinives P., Shimizu T., et al. (2012). Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean ( PubMed DOI PMC

Isemura T., Kaga A., Tomooka N., Shimizu T., Vaughan D. A. (2010). The genetics of domestication of rice bean, PubMed DOI PMC

Kaga A., Isemura T., Tomooka N., Vaughan D. A. (2008). The genetics of domestication of the azuki bean ( PubMed DOI PMC

Kantar F. P., Hebblethwaite D., Pilbeam C. J. (1996). Factors influencing disease resistance in high and low tannin DOI

Karaki T., Watanabe Y., Kondo T., Koike T. (2012). Strophiole of seeds of the black locust acts as a water gap. DOI

Karssen C. M. (1982). “Seasonal patterns of dormancy in weed seeds,” in

Karssen C. M., Brinkhorst van der Swan D. L. C., Breekland A. E., Koornneef M. (1983). Induction of dormancy during seed development by endogenous abscisic-acid – studies on abscisic-acid deficient genotypes of PubMed DOI

Kikuchi K., Koizumi M., Ishida N., Kano H. (2006). Water uptake by dry beans observed by micro-magnetic resonance imaging. PubMed DOI PMC

Koinange E. M. K., Singh S. P., Gepts P. (1996). Genetic control of the domestication syndrome in common bean. DOI

Kongjaimun A., Kaga A., Tomooka N., Somta P., Vaughan D. A., Srinives P. (2012). The genetics of domestication of yardlong bean, PubMed DOI PMC

Korban S. S., Coyne D. P., Weihing J. L. (1981). Evaluation, variation, and genetic control of seed coat whiteness in dry beans (

Kovinich N., Saleem A., Arnason J. T., Miki B. (2011). Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean ( PubMed DOI PMC

Kurdyukov S., Song Y., Sheahan M. B., Rose R. J. (2014). Transcriptional regulation of early embryo development in the model legume PubMed DOI PMC

Lacerda D. R., Lemos-Filho J. P., Goulart M. F., Ribeiro R. A., Lovato M. B. (2004). Seed-dormancy variation in natural populations of two tropical leguminous tree species: DOI

Lackey J. A. (1981). Systematic significance of the epihilum in Phaseoleae (Fabaceae, Faboideae). DOI

Ladizinsky G. (1979). The origin of lentil and its wild genepool. DOI

Ladizinsky G. (1985). The genetics of hard seed coat in the genus DOI

Ladizinsky G. (1987). Pulse domestication before cultivation. DOI

Ladizinsky G. (1998). DOI

Lanfermeijer F. C., van Oene M. A., Borstlap A. C. (1992). Compartmental analysis of amino-acid release from attached and detached pea seed coats. PubMed DOI

Le B. H., Wagmaister J. A., Kawashima T., Bui A. Q., Harada J. J., Goldberg R. B. (2007). Using genomics to study legume seed development. PubMed DOI PMC

Legesse N., Powell A. A. (1996). Relationship between the development of seed coat pigmentation, seed coat adherence to the cotyledons and the rate of imbibition during the maturation of grain legumes.

Lepiniec L., Debeaujon I., Routaboul J. M., Baudry A., Pourcel L., Nesi N., et al. (2006). Genetics and biochemistry of seed flavonoids. PubMed DOI

Lersten N. R. (1982). Tracheid bar and vestured pits in legume seeds (Leguminosae: Papilionoideae). DOI

Lersten N. R., Gunn C. R. (1981). Seed morphology and testa topography in

Lersten N. R., Gunn C. R. (1982).

Lersten N. R., Gunn C. R., Brubaker C. L. (1992).

Lewis G., Schrire B., Mackinder B., Lock M. (2005).

Lhotská M., Chrtková A. (1978).

Li X., Buirchell B., Yan G., Yang H. (2012). A molecular marker linked to the mollis gene conferring soft-seediness for marker-assisted selection applicable to a wide range of crosses in lupin ( DOI

Liang M., Davis E., Gardner D., Cai X., Wu Y. (2006). Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of PubMed DOI

Liu B., Liu X., Wang C., Jin J., Herbert S. J. (2010). Endogenous hormones in seed, leaf, and pod wall and their relationship to seed filling in soybeans. DOI

Liu W., Peffley E. B., Powell R. J., Auld D. L., Hou A. (2007). Association of seedcoat colour with seed water uptake, germination, and seed components in guar ( DOI

Liu Y. H., Cao J. S., Li G. J., Wu X. H., Wang B. G., Xu P., et al. (2012). Genotypic differences in pod wall and seed growth relate to invertase activities and assimilate transport pathways in asparagus bean. PubMed DOI PMC

Lush W. M., Evans L. T. (1980). The seed coats of cowpeas and other grain legumes – structure in relation to function. DOI

Ma F., Cholewa E., Mohamed T., Peterson C. A., Gijzen M. (2004). Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. PubMed DOI PMC

Ma Y., Bliss F. A. (1978). Tannin content and inheritance in common bean. DOI

Mandal S. M., Chakraborty D., Dey S. (2010). Phenolic acids act as signalling molecules in plant-microbe symbioses. PubMed DOI PMC

Marbach I., Mayer A. M. (1974). Permeability of seed coats to water as related to drying conditions and metabolism of phenolics. PubMed DOI PMC

Marles S. M. A., Gruber M. Y. (2004). Histochemical characterization of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. DOI

Matilla A., Gallardo M., Puga-Hermida M. I. (2005). Structural, physiological and molecular aspects of heterogeneity in seeds: a review. DOI

McDonald M. B., Vertucci C. W., Roos E. E. (1988). Soybean seed imbibition: water absorption by seed parts. DOI

McKeon G. M., Mott J. J. (1982). The effect of temperature on the field softening of hard seed of DOI

Meyer C. J., Steudle E., Peterson C. A. (2007). Patterns and kinetics of water uptake by soybean seeds. PubMed DOI

Miao Z. H., Fortune J. A., Gallagher J. (2001). Anatomical structure and nutritive value of lupin seed coats. DOI

Miernyk J. A., Johnston M. L. (2013). Proteomic analysis of the testa from developing soybean seeds. PubMed DOI

Milberg P., Andersson L. (1997). Seasonal variation in dormancy and light sensitivity in buried seeds of eight annual weed species. DOI

Miller S. S., Bowman L. A., Gijzen M., Miki B. L. A. (1999). Early development of the seed coat of soybean ( DOI

Miller S. S., Jin Z., Schnell J. A., Romero M. C., Brown D. C. W., Johnson D. A. (2010). Hourglass cell development in the soybean seed coat. PubMed DOI PMC

Miranda M., Borisjuk L., Tewes A., Heim U., Sauer N., Wobus U., et al. (2001). Amino acid permeases in developing seeds of PubMed DOI

Mizzotti C., Mendes M. A., Caporali E., Schnittger A., Kater M. M., Battaglia R., et al. (2012). The MADS box genes SEEDSTICK and PubMed DOI

Mohamed-Yasseen Y., Barringer S. A., Splittstoesser W. E., Costanza S. (1994). The role of seed coats in seed viability. DOI

Moïse J. A., Han S., Gudynaite-Savitch L., Johnson D. A., Miki B. L. A. (2005). Seed coats: structure, development, composition, and biotechnology. DOI

Moreau C., Ambrose M. J., Turner L., Hill L., Ellis T. H., Hofer J. M. (2012). The B gene of pea encodes a defective flavonoid 3 PubMed DOI PMC

Moreno-Casasola P., Grime J. P., Martinez L. (1994). A comparative study of the effects of fluctuations in temperature and moisture supply on hard coat dormancy in seeds of coastal tropical legumes in Mexico. DOI

Morrison D. A., McClay K., Porter C., Rish S. (1998). The role of the lens in controlling heat-induced breakdown of testa-imposed dormancy and native Australian legumes. DOI

Murray D. R., Kennedy I. R. (1980). Changes in activities of enzymes of nitrogen-metabolism in seed coats and cotyledons during embryo development in pea seeds. PubMed DOI PMC

Nadeau C. D., Ozga J. A., Kurepin L. V., Jin A., Pharis R. P., Reinecke D. M. (2011). Tissue-specific regulation of gibberellin biosynthesis in developing pea seeds. PubMed DOI PMC

Nagai I. (1921). A genetico-physiological study on the formation of anthocyanin and brown pigments in plants.

Nawrath C. (2002). The biopolymers cutin and suberin. PubMed DOI PMC

Nikolaeva M. G. (1969).

Nikolaeva M. G. (1977). “Factors controlling the seed dormancy pattern,” in

Noodén L. D., Blakley K. A., Grzybowski J. M. (1985). Control of seed coat thickness and permeability in soybean: a possible adaptation to stress. PubMed DOI PMC

Nowack M. K., Ungru A., Bjerkan K. N., Grini P. E., Schnittger A. (2010). Reproductive cross-talk: seed development in flowering plants. PubMed DOI

Offler C. E., Nerlich S. M., Patrick J. W. (1989). Pathway of photosynthate transfer in the developing seed of DOI

Offler C. E., Patrick J. W. (1984). Cellular structures, plasma-membrane surface-areas and plasmodesmatal frequencies of seed coats of DOI

Offler C. E., Patrick J. W. (1993). Pathway of photosynthate transfer in the developing seed of DOI

Oliveira A. E. A., Sassaki G. L., Iacomini M., da Cunha M., Gomes V. M., Fernandes B. K. V. S., et al. (2001). Isolation and characterization of a galactorhamnan polysaccharide from the seed coat of DOI

Ozga J. A., Reinecke D. M., Ayele B. T., Ngo P., Nadeau C., Wickramarathna A. D. (2009). Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit. PubMed DOI PMC

Palmer R. G., Kilen T. C. (1987). “Quantitative genetics: Results relevant to soybean breeding,” in

Pammel L. H. (1899).

Pang Y. Z., Peel G. J., Wright E., Wang Z., Dixon R. A. (2007). Early steps in proanthocyanidin biosynthesis in the model legume PubMed DOI PMC

Pang Y. Z., Wenger J. P., Saathoff K., Peel G. J., Wen J., Huhman D., et al. (2009). A WD40 repeat protein from PubMed DOI PMC

Park S., Ozga J. A., Cohen J. D., Reinecke D. M. (2010). Evidence for 4-Cl-IAA and IAA bound to proteins in pea fruits and seeds. DOI

Paulsen T. R., Colville L., Kranner I., Daws M. I., Högstedt G., Vandvik V., et al. (2013). Physical dormancy in seeds: a game of hide and seek? PubMed DOI

Pellew R. A., Southgate B. J. (1984). The parasitism of DOI

Probert R. J. (2000). “The role of temperature in the regulation of seed dormancy and germination,” in DOI

Quesnelle P. E., Emery R. J. N. (2007). cis-Cytokinins that predominate in DOI

Quinlivan B. J. (1961). The effect of constant and fluctuating temperatures on the permeability of the hard seeds of some legume species. DOI

Quinlivan B. J. (1968). The softening of hard seeds of sand-plain lupin ( DOI

Quinlivan B. J. (1971). Seed coat impermeability in legumes.

Ramsay G. (1997). Inheritance and linkage of a gene for testa imposed seed dormancy in faba bean ( DOI

Ranathunge K., Shao S., Qutob D., Gijzen M., Peterson C. A., Bernards M. A. (2010). Properties of the soybean seed coat cuticle change during development. PubMed DOI

Reinecke D. M. (1999). 4-Chloroindole-3-acetic acid and plant growth. DOI

Reinprecht Y., Yadegari Z., Perry G. E., Siddiqua M., Wright L. C., McClean P. E., et al. (2013). In silico comparison of genomic regions containing genes coding for enzymes and transcription factors for the phenylpropanoid pathway in PubMed DOI PMC

Riggio Bevilacqua L., Roti-Mihelozzi G., Modenesi P. (1989). The watertight dormancy of DOI

Roberts H. A., Boddrell J. E. (1985). Seed survival and seasonal pattern of seedling emergence in some Leguminosae. DOI

Rochat C., Boutin J. P. (1992). Temporary storage compounds and sucrose-starch metabolism in seed coats during pea seed development ( DOI

Rolston M. P. (1978). Water impermeable seed dormancy. DOI

Russi L., Cocks P. S., Roberts E. H. (1992). Coat thickness and hard-seededness in some DOI

Sabiiti E. N., Wein R. W. (1987). Fire and DOI

Schlumbaum A., Mauch F., Vögeli U., Boller T. (1986). Plant chitinases are potent inhibitors of fungal growth. DOI

Schneitz K., Hülskamp M., Kopczak S. D., Pruitt R. E. (1997). Dissection of sexual organ ontogenesis: a genetic analysis of ovule development in PubMed

Serrato Valenti G., Cornara L., Ferrando M., Modenesi P. (1993). Structural and histochemical features of DOI

Serrato Valenti G., Melone L., Ferrando M., Bozzini A. (1989). Comparative studies on testa structure of hard-seeded and soft-seeded varieties of

Serrato Valenti G., Modenesi P., Roti-Mihelozzi G., Bevilacqua L. (1986). Structural and histochemical characters of the

Serrato-Valenti G., De Vries M., Cornara L. (1995). The hilar region in DOI

Shao S., Meyer C. J., Ma F., Peterson C. A., Bernards M. A. (2007). The outermost cuticle of soybean seeds: chemical composition and function during imbibition. PubMed DOI

Shen-Miller J., Mudgett M. B., Schopf J. W., Clarke R., Berger R. (1995). Exceptional seed longevity and robust growth: ancient Sacred Lotus from China. DOI

Simao Neto M., Jones R. M., Ratcliff D. (1987). Recovery of pasture seed ingested by ruminants. 1. Seed of six tropical pasture species fed to cattle, sheep and goats. DOI

Skinner D. J., Hill T. A., Gasser C. S. (2004). Regulation of ovule development. PubMed DOI PMC

Slater S. M., Yuan H. Y., Lulsdorf M. M., Vandenberg A., Zaharia L. I., Han X., et al. (2013). Comprehensive hormone profiling of the developing seeds of four grain legumes. PubMed DOI

Slattery H. D., Atwell B. J., Kuo J. (1982). Relationship between colour, phenolic content and impermeability in the seed coat of various

Smýkal P., Coyne C. J., Ambrose M. J., Maxted N., Schaefer H., Blair M., et al. (2014). Legume crops phylogeny and genetic diversity for science and breeding. DOI

Spurny M. (1963). Cell wall structure of epidermal cells of the pea seed coat (

Spurny M. (1964). Changes in the permeability of the seed coat in connection with the development of suberin adcrustations of the macrosclereids from the seed coat of the pea (

Stevenson T. M. (1937). Sweet clover studies on habit of growth, seed pigmentation and permeability of the seed coat.

Taylor G. B. (1981). Effect of constant temperature treatments followed by alternating temperatures on the softening of hard seeds of DOI

Taylor G. B. (2005). Hardseededness in Mediterranean annual pasture legumes in Australia: a review. DOI

Taylor G. B., Ewing M. A. (1996). Effects of extended (4–12 years) burial on seed softening in subterranean clover and annual medics. DOI

Taylor G. B., Revell C. K. (1999). Effect of pod burial, light, and temperature on seed softening in yellow serradella. DOI

Taylor G. B., Revell C. K. (2002). Seed softening, imbibition time, and seedling establishment in yellow serradella. DOI

Telewski F. W., Zeevaart J. A. (2002). The 120-yr period for Dr. Beal’s seed viability experiment. PubMed DOI

Thompson K., Ooi M. K. J. (2013). Germination and dormancy breaking: two different things. DOI

Thompson R., Burstin J., Gallardo K. (2009). Post-genomics studies of developmental processes in legume seeds. PubMed DOI PMC

Thompson R. D., Hueros G., Becker H., Maitz M. (2001). Development and functions of seed transfer cells. PubMed DOI

Thorne J. H. (1981). Morphology and ultrastructure of maternal seed tissues of soybean in relation to the import of photosynthate. PubMed DOI PMC

Thorne J. H., Rainbird R. M. (1983). An PubMed DOI PMC

Tuteja J. H., Clough S. J., Chan W. C., Vlodking L. O. (2004). Tissue specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in PubMed DOI PMC

Van Assche J. A., Debucquoy K. L. A., Rommens W. A. F. (2003). Seasonal cycles in the germination capacity of buried seeds of some Leguminosae (Fabaceae). DOI

Van Dongen J. T., Ammerlaan A. M., Wouterlood M., Van Aelst A. C., Borstlap A. C. (2003). Structure of the developing pea seed coat and the post-pholem transport pathway of nutrients. PubMed DOI PMC

van Klinken K. D., Goulier J. B. (2013). Habitat-specific seed dormancy-release mechanisms in four legume species. DOI

Van Staden J., Manning J. C., Kelly K. M. (1989). Legume seeds – the structure: function equation.

Vaughan D. A., Bernard R. L., Sinclair J. B., Kunwar I. K. (1987). Soybean seed coat development. DOI

Vázquez-Yanes C., Orozco-Segovia A. (1982). Seed germination of tropical rain forest pioneer tree ( DOI

Verdier J., Dessaint F., Schneider C., Abirached-Darmency M. (2013a). A combined histology and transcriptome analysis unravels novel questions on PubMed DOI PMC

Verdier J., Lalanne D., Pelletier S., Torres-Jerez I., Righetti K., Bandyopadhyay K., et al. (2013b). A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of PubMed DOI PMC

Verdier J., Kakar K., Gallardo K., Le Signor C., Aubert G., Schlereth A., et al. (2008). Gene expression profiling of PubMed DOI

Verdier J., Zhao J., Torres-Jerez I., Ge S., Liu C., He X., et al. (2012). MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in PubMed DOI PMC

Vleeshouwers L. M., Bouwmeester H. J., Karssen C. M. (1995). Redefining seed dormancy: an attempt to integrate physiology and ecology. DOI

Wang H. L., Grusak M. A. (2005). Structure and development of PubMed DOI PMC

Warrag E. I., Eltigani M. A. (2005). Breaking seed coat dormancy of

Weber H., Borisjuk L., Heim U., Sauer N., Wobus U. (1997). A role for sugar transporters during seed development: molecular characterization of a hexose and a sucrose carrier in fava bean seeds. PubMed DOI PMC

Weber H., Borisjuk L., Wobus U. (2005). Molecular physiology of legume seed development. PubMed DOI

Weeden N. F. (2007). Genetic changes accompanying the domestication of PubMed DOI PMC

Weiss E., Kislev M. E., Hartmann A. (2006). Autonomous cultivation before domestication. PubMed DOI

Werker E., Marbach I., Mayer A. M. (1979). Relation between the anatomy of the testa, water permeability and the presence of phenolics in the genus

White J. (1908). The occurrence of an impermeable cuticle on the exterior of certain seeds.

Winkel-Shirley B. (2001). Flavonoid biosynthesis. a colourful model for genetics, biochemistry, cell biology, and biotechnology. PubMed DOI PMC

Wolf W., Baker F. L., Bernard R. L. (1981). Soybean seed-coat structural features: pits, deposits and cracks.

Wyatt J. E. (1977). Seed coat and water absorption properties of seed of near-isogenic snap bean lines differing in seed coat color.

Yaklich R. W., Vigil E. L., Wergin W. P. (1986). Pore development and seed coat permeability in soybean. DOI

Yang K., Jeong N., Moon J. K., Lee Y. H., Lee S. H., Kim H. M., et al. (2010). Genetic analysis of genes controlling natural variation of seed coat and flower colours in soybean. PubMed DOI

Zabala G., Vodkin L. O. (2003). Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect structure and expression of the encoded flavonoid 3 hydroxylase. PubMed PMC

Zabala G., Vodkin L. O. (2005). The wp mutation of PubMed DOI PMC

Zabala G., Vodkin L. O. (2007). A rearrangement resulting in small tandem repeats in the F3 DOI

Zhao J., Dixon R. A. (2009). MATE transporters facilitate vacuolar uptake of epicatechin 3 PubMed DOI PMC

Zhao J., Pang Y., Dixon R. A. (2010). The mysteries of proanthocyanidin transport and polymerization. PubMed DOI PMC

Zhou S., Sekizaki H., Yang Z., Sawa S., Pan J. (2010). Phenolics in the seed coat of wild soybean ( PubMed DOI

Zohary D., Hopf M., Weiss E. (2012).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Biochemical Analysis of Recombinant Pea Seed Coat-Specific Polyphenol Oxidase (PeaPPO) in Relation to Various Phenolic Substrates

. 2025 Sep 03 ; 73 (35) : 21754-21768. [epub] 20250821

Genetic and transcriptomic analysis of lentil seed imbibition and dormancy in relation to its domestication

. 2025 Jun ; 18 (2) : e70021.

Phenylpropanoid Content of Chickpea Seed Coats in Relation to Seed Dormancy

. 2023 Jul 19 ; 12 (14) : . [epub] 20230719

Domestication has altered the ABA and gibberellin profiles in developing pea seeds

. 2023 Jun 23 ; 258 (2) : 25. [epub] 20230623

The Key to the Future Lies in the Past: Insights from Grain Legume Domestication and Improvement Should Inform Future Breeding Strategies

. 2022 Nov 22 ; 63 (11) : 1554-1572.

How Could the Use of Crop Wild Relatives in Breeding Increase the Adaptation of Crops to Marginal Environments?

. 2022 ; 13 () : 886162. [epub] 20220616

Anatomy and Histochemistry of Seed Coat Development of Wild (Pisum sativum subsp. elatius (M. Bieb.) Asch. et Graebn. and Domesticated Pea (Pisum sativum subsp. sativum L.)

. 2021 Apr 27 ; 22 (9) : . [epub] 20210427

Effect of Seed Coating and PEG-Induced Drought on the Germination Capacity of Five Clover Crops

. 2021 Apr 08 ; 10 (4) : . [epub] 20210408

Physical Dormancy Release in Medicago truncatula Seeds Is Related to Environmental Variations

. 2020 Apr 14 ; 9 (4) : . [epub] 20200414

The role of the testa during the establishment of physical dormancy in the pea seed

. 2019 May 20 ; 123 (5) : 815-829.

Variation in wild pea (Pisum sativum subsp. elatius) seed dormancy and its relationship to the environment and seed coat traits

. 2019 ; 7 () : e6263. [epub] 20190114

Molecular Evidence for Two Domestication Events in the Pea Crop

. 2018 Nov 06 ; 9 (11) : . [epub] 20181106

Genetic structure of wild pea (Pisum sativum subsp. elatius) populations in the northern part of the Fertile Crescent reflects moderate cross-pollination and strong effect of geographic but not environmental distance

. 2018 ; 13 (3) : e0194056. [epub] 20180326

Towards Better Understanding of Pea Seed Dormancy Using Laser Desorption/Ionization Mass Spectrometry

. 2017 Oct 21 ; 18 (10) : . [epub] 20171021

A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.)

. 2017 ; 8 () : 542. [epub] 20170425

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...