The role of the testa during development and in establishment of dormancy of the legume seed
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
25101104
PubMed Central
PMC4102250
DOI
10.3389/fpls.2014.00351
Knihovny.cz E-zdroje
- Klíčová slova
- domestication, dormancy, hardseededness, legumes, proanthocyanidins, seed coat, testa, water permeability,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Timing of seed germination is one of the key steps in plant life cycles. It determines the beginning of plant growth in natural or agricultural ecosystems. In the wild, many seeds exhibit dormancy and will only germinate after exposure to certain environmental conditions. In contrast, crop seeds germinate as soon as they are imbibed usually at planting time. These domestication-triggered changes represent adaptations to cultivation and human harvesting. Germination is one of the common sets of traits recorded in different crops and termed the "domestication syndrome." Moreover, legume seed imbibition has a crucial role in cooking properties. Different seed dormancy classes exist among plant species. Physical dormancy (often called hardseededness), as found in legumes, involves the development of a water-impermeable seed coat, caused by the presence of phenolics- and suberin-impregnated layers of palisade cells. The dormancy release mechanism primarily involves seed responses to temperature changes in the habitat, resulting in testa permeability to water. The underlying genetic controls in legumes have not been identified yet. However, positive correlation was shown between phenolics content (e.g., pigmentation), the requirement for oxidation and the activity of catechol oxidase in relation to pea seed dormancy, while epicatechin levels showed a significant positive correlation with soybean hardseededness. myeloblastosis family of transcription factors, WD40 proteins and enzymes of the anthocyanin biosynthesis pathway were involved in seed testa color in soybean, pea and Medicago, but were not tested directly in relation to seed dormancy. These phenolic compounds play important roles in defense against pathogens, as well as affecting the nutritional quality of products, and because of their health benefits, they are of industrial and medicinal interest. In this review, we discuss the role of the testa in mediating legume seed germination, with a focus on structural and chemical aspects.
Department of Agricultural and Environmental Sciences Tennessee State University Nashville TN USA
Department of Botany Faculty of Sciences Palacký University in Olomouc Olomouc Czech Republic
Department of Experimental Plant Biology Charles University Prague Czech Republic
Zobrazit více v PubMed
Abbo S., Lev-Yadun S., Gopher A. (2012). Plant domestication and crop evolution in the Near East: on events and processes. Crit. Rev. Plant Sci. 31 241–257 10.1080/07352689.2011.645428 DOI
Abbo S., Pinhasi van-Oss R., Gopher A., Saranga Y., Ofner I., Peleg Z. (2014). Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci. 19 351–360 10.1016/j.tplants.2013.12.002 PubMed DOI
Abbo S., Rachamim E., Zehavi Y., Zezak I., Lev-Yadun S., Gopher A. (2011). Experimental growing of wild pea in Israel and its bearing on Near Eastern plant domestication. Ann. Bot. 107 1399–1404 10.1093/aob/mcr081 PubMed DOI PMC
Abbo S., Saranga Y., Peleg Z., Lev-Yadun S., Kerem Z., Gopher A. (2009). Reconsidering domestication of legumes versus cereals in the ancient near east. Q. Rev. Biol. 84 29–50 10.1086/596462 PubMed DOI
Abbo S., Zezak I., Schwartz E., Lev-Yadun S., Gopher A. (2008). Experimental harvesting of wild peas in Israel: implications for the origins of near east farming. J. Arch. Sci. 35 922–929 10.1016/j.jas.2007.06.016 DOI
Agbo G. N., Hosfield M. A., Uebersax M. A., Klomparens K. (1987). Seed microstructure and its relationship to water uptake in isogenic lines and a cultivar of dry beans (Phaseolus vulgaris L.). Food Microstruct. 6 91–102
Algan G., Büyükkartal H. N. B. (2000). Ultrastructure of seed coat development in the natural tetraploid Trifolium pratense L. J. Agron. Crop Sci. 184 205–213 10.1046/j.1439-037x.2000.00373.x DOI
Andriunas F. A., Zhang H. M., Xia X., Patrick J. W., Offler C. E. (2013). Intersection of transfer cells with phloem biology-broad evolutionary trends, function, and induction. Front. Plant Sci. 4:221 10.3389/fpls.2013.00221 PubMed DOI PMC
Angosto T., Matilla A. J. (1993). Variations in seeds of three endemic leguminous species at different altitudes. Physiol. Plant. 87 329–334 10.1111/j.1399-3054.1993.tb01738.x DOI
Argel P., Paton C. (1999). “Overcoming legume hardseededness,” in Forage Seed Production: Tropical and Subtropical Species Vol. 2 eds Loch D. S., Ferguson J. E. (Wallingford: CAB International; ) 247–265
Ballard L. A. T. (1973). Physical barriers to germination. Seed Sci. Technol. 1 285–303
Baskin C. C. (2003). Breaking physical dormancy in seeds – focussing on the lens. New Phytol. 158 229–232 10.1046/j.1469-8137.2003.00751.x DOI
Baskin C. C., Baskin J. M. (2014). Seeds: Ecology, Biogeography and Evolution of Dormancy and Germination 2nd Edn New York: Academic Press
Baskin C. C., Baskin J. M., Li X. (2000). Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol. 15 139–152 10.1046/j.1442-1984.2000.00034.x DOI
Baskin J. M., Baskin C. C. (1985). The annual dormancy cycle in buried weed seeds: a continuum. Bioscience 35 492–498 10.2307/1309817 DOI
Baskin J. M., Baskin C. C. (1998). Seeds. Ecology, Biogeography and Evolution of Dormancy and Germination. New York: Academic Press
Baskin J. M., Baskin C. C. (2000). Evolutionary considerations of claims for physical dormancy-break by microbial action and abrasion by soil particles. Seed Sci. Res. 10 409–413 10.1017/S0960258500000453 DOI
Baskin J. M., Baskin C. C., Dixon K. W. (2006). Physical dormancy in the endemic Australian genus Stylobasium, a first report for the family Surinaceae (Fabales). Seed Sci. Rep. 16 229–232 10.1079/SSR2006248 DOI
Bassett M. J. (1994). The griseoalbus (gray–white) seed coat color is controlled by an allele (pgri) a the P locus in common bean. Hortscience 29 1178–1179
Bassett M. J. (1999). Allelism found between two common bean genes, hilum ring colour (D) and partly coloured seed coat pattern (Z), formerly assumed to be independent. J. Am. Soc. Hortic. Sci. 124 649–653
Bassett M. J. (2002). Inheritance of reverse margo seed coat pattern and allelism between the genes J for seed coat colour and L for partly coloured seed coat pattern in common bean. J. Am. Soc. Hortic. Sci. 127 56–61
Bassett M. J. (2007). Genetics of seed coat colour and pattern in common bean. Plant Breed. Rev. 28 239–315 10.1002/9780470168028.ch8 DOI
Baudry A., Heim M. A., Dubreucq B., Caboche M., Weisshaar B., Lepiniec L. (2004). TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J. 39 366–380 10.1111/j.1365-313X.2004.02138.x PubMed DOI
Beeckman T., De Rycke R., Viane R., Inzé D. (2000). Histological study of seed coat development in Arabidopsis thaliana. J. Plant Res. 113 139–148 10.1007/PL00013924 DOI
Beisson F., Li Y., Bonaventure G., Pollard M., Ohlrogge J. B. (2007). The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis. Plant Cell 19 351–368 10.1105/tpc.106.048033 PubMed DOI PMC
Bernard R. L., Weiss M. G. (1973). “Qualitative genetics,” in Soybeans: Improvement, Production, and Uses, 1st Edn ed. Caldwell B. E. (Madison, WI: American Society of Agronomy; ) 117–154
Bevilacqua L. R., Fossati F., Dondero G. (1987). ‘Callose’ in the impermeable seed coat of Sesbania punicea. Ann. Bot. 59 335–341
Bewley J. D., Bradford K., Hilhorst H., Nonogaki H. (2013). Seeds: Physiology of Development, Germination and Dormancy 3rd Edn New York: Springer-Verlag
Bhalla P. L., Slattery H. D. (1984). Callose deposits make clover seeds impermeable towater. Ann. Bot. 53 125–128
Bhat J. L. (1968). Seed dormancy in Indigofera glandulosa Willd. Trop. Ecol. 9 42–51
Bibbey R. O. (1948). Physiological studies of weed seed germination. Plant Physiol. 23 467–484 10.1104/pp.23.4.467 PubMed DOI PMC
Boersma J. G., Buirchell J. B., Sivasithamparam K., Yang H. (2007). Development of a PCR marker tightly linked to mollis, the gene that controls seed dormancy in Lupinus angustifolius L. Plant Breed. 126 612–616 10.1111/j.1439-0523.2007.01417.x DOI
Bolingue W., Ly Vu B., Leprince O., Buitink J. (2010). Characterization of dormancy behaviour in seeds of the model legume Medicago truncatula. Seed Sci. Res. 20 97–107 10.1017/S0960258510000061 DOI
Bonnemain J. L., Bourquin S., Renault S., Offler C., Fisher D. G. (1991). “Transfer cells structure and physiology,” in Phloem Transport and Assimilate Compartmentation eds Bonnemain J. L., Delrot S., Lucas W. J., Dainty J. (Nantes: Quest Editions; ) 178–186
Borisjuk L., Weber H., Panitz R., Manteuffel R., Wobus U. (1995). Embryogenesis of Vicia faba L: histodifferentiation in relation to starch and storage protein synthesis. J. Plant Physiol. 147 203–218 10.1016/S0176-1617(11)81507-5 DOI
Bradford K., Nonogaki H. (2009). Seed Development, Dormancy and Germination. Annual Plant Reviews Vol. 27 Oxford: Blackwell
Brune M., Rossander L., Halberg L. (1989). Iron absorption and phenolic compounds: importance of different phenolic structures. Eur. J. Clin. Nutr. 43 547–558 PubMed
Burrows G. E., Virgona J. M., Heady R. D. (2009). Effect of boiling water, seed coat structure and provenance on the germination of Acacia melanoxylon seeds. Aust. J. Bot. 57 139–147 10.1071/BT08194 DOI
Butler E. A. (1988). “The SEM and seed identification, with particular reference to the Vicieae,” in Scanning Electron Microscopy in Archeology Vol. 452 ed. Olsen S. L. (Oxford: BAR International Series; ) 215–224
Büyükkartal H. N., Hatice Çölgeçen H., Pinar N. M., Erdoǧan N. (2013). Seed coat ultrastructure of hard-seeded and soft-seeded varieties of Vicia sativa. Turk. J. Bot. 37 270–275
Caldas G. V., Blair M. W. (2009). Inheritance of condensed tannin content and relationship with seed colour and pattern genes in common bean (Phaseolus vulgaris L.). Theor. Appl. Genet. 119 131–142 10.1007/s00122-009-1023-4 PubMed DOI
Chachalis D., Smith M. L. (2000). Imbibition behavior of soybean (Glycine max (L.) Merrill) accessions with different testa characteristics. Seed Sci. Technol. 28 321–331
Chachalis D., Smith M. L. (2001). Seed coat regulation of water uptake during imbibition in soybeans (Glycine max (L.) Merr.). Seed Sci. Technol. 29 401–412
Chernoff M., Plitmann U., Kislev M. E. (1992). Seed characters and testa texture in species of Vicieae: their taxonomic significance. Isr. J. Bot. 41 167–186 10.1080/0021213X.1992.10677225 DOI
Clarkson D. T., Robards K. (1975). “The endodermis, its structural development and physiological role,” in Structure and Function of Roots eds Torrey J. G., Clarkson D. T. (London: Academic Press; ) 415–436
Clements J. C., Buirchell B. J., Yang H., Smith P. M. C., Sweetingham M. W., Smith C. G. (2005). “Chapter 9 Lupin,” in Genetic Resources, Chromosome Engineering, Crop Improvement Vol. 1 Grain legumes eds Singh R. J., Jauhar P. P. (Florida: CRC Press; ) 231–323
Corner E. J. H. (1951). The leguminous seed. Phytomorphology 1 117–150
Dalling J. W., Davis A. S., Schutte B. J., Arnold A. E. (2011). Seed survival in soil: interacting effects of predation, dormancy and the soil microbial community. J. Ecol. 99 89–95 10.1111/j.1365-2745.2010.01739.x DOI
Dean G., Cao Y. G., Xiang D., Provart N. J., Ramsay L., Ahada A., et al. (2011). Analysis of gene expression patterns during seed coat development in Arabidopsis. Mol. Plant 4 1074–1091 10.1093/mp/ssr040 PubMed DOI
Debeaujon I., Léon-Kloosterziel K. M., Koornneef M. (2000). Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 122 403–414 10.1104/pp.122.2.403 PubMed DOI PMC
Debeaujon I., Nesi N., Perez P., Devi M., Grandjean O., Caboche M., et al. (2003). Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15 2514–2531 10.1105/tpc.014043 PubMed DOI PMC
de Candolle A. P. (1825). Mémoires sur la Famille des Légumineuses. Paris: A. Belin
Dell B. (1980). Structure and function of the strophiolar plug in seeds of Albizia lophantha. Am. J. Bot. 67 556–563 10.2307/2442296 DOI
Deshpande S. S., Cheryan M. (1986). Microstructure and water uptake of Phaseolus and winged beans. J. Food Sci. 51 1218–1223 10.1111/j.1365-2621.1986.tb13089.x DOI
de Souza T. V., Voltolini C. H., Santos M., Silveira Paulilo M. T. (2012). Water absorption and dormancy-breaking requirements of physically dormant seeds of Schizolobium parahyba (Fabaceae – Caesalpinioideae). Seed Sci. Res. 22 169–176
Díaz A. M., Caldas G. V., Blair M. W. (2010). Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Res. Int. 43 595–601 10.1016/j.foodres.2009.07.014 DOI
Dixon R. A., Xie D. Y., Sharma S. B. (2005). Proanthocyanidins – a final frontier in flavonoid research? New Phytol. 165 9–28 10.1111/j.1469-8137.2004.01217.x PubMed DOI
Donnelly E. D., Watson J. E., McGuire J. A. (1972). Inheritance of hard seed in Vicia. J. Hered. 63 361–365
Dorcey E., Urbez C., Blázquez M. A., Carbonell J., Perez-Amador M. A. (2009). Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J. 58 318–332 10.1111/j.1365-313X.2008.03781.x PubMed DOI
Dueberrn de Sousa F. H. D., Marcos-Filho J. (2001). The seed coat as a modulator of seed-environment relationship in Fabaceae. Braz. J. Bot. 24 365–375 10.1590/S0100-84042001000400002 DOI
Dueñas M., Sun B., Hernández T., Estrella I., Spranger M. I. (2003). Proanthocyanidin composition in the seed coat of lentils (Lens culinaris L.). J. Agric. Food Chem. 51 7999–8004 10.1021/jf0303215 PubMed DOI
Emery R. J., Ma Q., Atkins C. A. (2000). The forms and sources of cytokinins in developing white lupine seeds and fruits. Plant Physiol. 123 1593–1604 10.1104/pp.123.4.1593 PubMed DOI PMC
Esau K. (1965). Plant Anatomy 2nd Edn. New York: John Wiley
Fenner M., Thompson K. (2005). The Ecology of Seeds. Cambridge: Cambridge University Press; 10.1017/CBO9780511614101 DOI
Finch-Savage W. E., Leubner-Metzger G. (2006). Seed dormancy and the control of germination. New Phytol. 171 501–523 10.1111/j.1469-8137.2006.01787.x PubMed DOI
Foley M. E. (2001). Seed dormancy: an update on terminology, physiological genetics, and quantitative trait loci regulating germinability. Weed Sci. 49 305–317 10.1614/0043-1745(2001)049[0305:SDAUOT]2.0.CO;2 DOI
Forbes I., Well H. D. (1968). Hard and soft seededness in blue lupine, Lupinus angustifolius L.: inheritance and phenotype classification. Crop Sci. 4 195–197 10.2135/cropsci1968.0011183X000800020018x DOI
Frey A., Godin B., Bonnet M., Sotta B., Marion-Poll A. (2004). Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia. Planta 218 958–964 10.1007/s00425-003-1180-7 PubMed DOI
Fuller D. Q., Allaby R. (2009). Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation. Ann. Plant Rev. 38 238–295
Galbiati F., Sinha Roy D., Simonini S., Cucinotta M., Ceccato L., Cuesta C.et al. (2013). An integrative model of the control of ovule primordia formation. Plant J. 76 446–455 10.1111/tpj.12309 PubMed DOI
Gallardo K., Firnhaber C., Zuber H., Héricher D., Belghazi M., Henry C., et al. (2007). A combined proteome and transcriptome analysis of developing Medicago truncatula seeds. Mol. Cell. Proteomics 6 2165–2179 10.1074/mcp.M700171-MCP200 PubMed DOI
Gijzen M., Kuflu K., Qutob D., Chernys J. T. (2001). A class I chitinase from soybean seed coat. J. Exp. Bot. 52 2283–2289 10.1093/jexbot/52.365.2283 PubMed DOI
Gijzen M., Miller S. S., Kuflu K., Buzzell R. I., Miki B. L. (1999). Hydrophobic protein synthesized in the pod endocarp adheres to the seed surface. Plant Physiol. 120 951–960 10.1104/pp.120.4.951 PubMed DOI PMC
Gillikin J. W., Graham J. S. (1991). Purification and developmental analysis of the major anionic peroxidases from the seed coat of Glycine max. Plant Physiol. 96 214–220 10.1104/pp.96.1.214 PubMed DOI PMC
Gillman J. D., Tetlow A., Lee J. D., Shannon J. G., Bilyeu K. (2011). Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats. BMC Plant Biol. 11:155 10.1186/1471-2229-11-155 PubMed DOI PMC
Gogue G. J., Emino E. R. (1979). Seed coat scarification of Albizia julibrissin Durazz by natural mechanisms. J. Am. Soc. Hortic. Sci. 104 421–423
Gopinathan M. C., Babu C. R. (1985). Structural diversity and its adaptive significance in seeds of Vigna minima (Roxb.) Ohwi and Ohashi and allies (Leguminosae-Papilionoideae). Ann. Bot. 56 723–732
Graeber K., Nakabayashi K., Miatton E., Leubner-Metzger G., Soppe W. J. J. (2012). Molecular mechanisms of seed dormancy. Plant Cell Environ. 35 1769–1786 10.1111/j.1365-3040.2012.02542.x PubMed DOI
Güneş F. (2013). Seed characteristics and testa textures of Pratensis, Orobon, Lathyrus, Orobastrum and Cicercula sections from Lathyrus (Fabaceae) in Turkey. Plant Syst. Evol. 299 1935–1953 10.1007/s00606-013-0849-z DOI
Gunn C. R. (1981). Seed topography in the Fabaceae. Seed Sci. Technol. 9 737–757
Gunn C. R. (1984). Fruits and Seeds of Genera in Subfamily Mimosoideae (Fabaceae). (Technical Bulletin No. 1681) (Washington, DC: United States Department of Agriculture; ) 1–194
Gunn C. R. (1991). Fruits and seeds of genera in subfamily Caesalpinioideae (Fabaceae). (Technical Bulletin No. 1755) (Washington, DC: United States Department of Agriculture; ) 1–408
Guzmán-Maldonado H., Castellanos J., Gonzalez E. (1996). Relationship between theoretical and experimentally detected tannin content of common beans (Phaseolus vulgaris L.). Food Chem. 55 333–335 10.1016/0308-8146(95)00106-9 DOI
Halevy G. (1974). Effects of gazelles and seed beetles (Bruchidae) on germination and establishment of Acacia species. Isr. J. Bot. 23 120–123
Hamly D. H. (1932). Softening of the seeds of Melilotus alba. Bot. Gaz. 93 345–375 10.1086/334269 DOI
Hamly D. H. (1935). The light line in Melilotus alba. Bot. Gaz. 96 753–757 10.1086/334521 DOI
Hammer K. (1984). Das Domestikationssyndrom. Kulturpflanze 11 11–34 10.1007/BF02098682 DOI
Hamphry M. E., Lambrides C. J., Chapman S. C., Aitken E. A. B., Imrie B. C., Lawn R. J. (2005). Relationships between hardseededness and seed weight in mungbean (Vigna radiata) assessed by QTL analysis. Plant Breed. 124 292–298 10.1111/j.1439-0523.2005.01084.x DOI
Hancock J. F. (2012). Plant Evolution and Origin of Species 3rd Edn Wallingford: CABI; 10.1079/9781845938017.0000 DOI
Hanley M. E., Fenner M. (1998). Pre-germination temperature and the survivorship and onward growth of Mediterranean fire-following plant species. Acta Oecol. 19 181–187 10.1016/S1146-609X(98)80022-2 DOI
Hanna P. J. (1984). Anatomical features of the seed coat of Acacia kempeana (Mueller) which relate to increased germination rate induced by heat treatment. New Phytol. 96 23–29 10.1111/j.1469-8137.1984.tb03539.x DOI
Hardham A. R. (1976). Structural aspects of pathways of nutrient flow to developing embryo and cotyledons of Pisum sativum L. Aust. J. Bot. 24 711–721 10.1071/BT9760711 DOI
Harlan J. R. (1971). Agricultural origins: centers and noncenters. Science 174 468–474 10.1126/science.174.4008.468 PubMed DOI
Harper J. L. (1957). “The ecological significance of dormancy and its importance in weed control,” in Proceedings of the Fourth International Congress of Crop Protection Hamburg: 415–420
Harris W. M. (1983). On the development of macrosclereids in seed coats of Pisum sativum L. Am. J. Bot. 70 1528–1535 10.2307/2443351 DOI
Harris W. M. (1984). On the development of osteosclereids in seed coats of Pisum sativum L. New Phytol. 98 135–141 10.1111/j.1469-8137.1984.tb06103.x PubMed DOI
Harris W. M. (1987). Comparative ultrastructure of developing seed coats of ‘hard-seeded’ and ‘soft-seeded’ varieties of soybean, Glycine max (L.) Merr. Bot. Gaz. 148 324–331 10.1086/337660 DOI
Hellens R. P., Moreau C., Lin-Wang K., Schwinn K. E. (2010). Identification of Mendel’s white flower character. PLoS ONE 5:e13230 10.1371/journal.pone.0013230 PubMed DOI PMC
Hu X. W., Wanga Y. R., Wua Y. P., Baskin C. C. (2009). Role of the lens in controlling water uptake in seeds of two Fabaceae (Papilionoideae) species treated with sulphuric acid and hot water. Seed Sci. Res. 19 73 10.1017/S0960258509301099 DOI
Hyde E. O. C. (1954). The function of the hilum in some Papilionaceae in relation to ripening of the seed and the permeability of the testa. Ann. Bot. 18 241–256
Isemura T., Kaga A., Konishi S., Ando T., Tomooka H. O., Vaughan D. A. (2007). Genome dissection of traits related to domestication in azuki bean (Vigna angularis) and comparison with other warm-season legumes. Ann. Bot. 100 1053–1071 10.1093/aob/mcm155 PubMed DOI PMC
Isemura T., Kaga A., Tabata S., Somta P., Srinives P., Shimizu T., et al. (2012). Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS ONE 7:e41304 10.1371/journal.pone.0041304 PubMed DOI PMC
Isemura T., Kaga A., Tomooka N., Shimizu T., Vaughan D. A. (2010). The genetics of domestication of rice bean, Vigna umbellata. Ann. Bot. 106 927–944 10.1093/aob/mcq188 PubMed DOI PMC
Kaga A., Isemura T., Tomooka N., Vaughan D. A. (2008). The genetics of domestication of the azuki bean (Vigna angularis). Genetics 178 1013–1036 10.1534/genetics.107.078451 PubMed DOI PMC
Kantar F. P., Hebblethwaite D., Pilbeam C. J. (1996). Factors influencing disease resistance in high and low tannin Vicia faba. J. Agric. Sci. 127 83–88 10.1017/S002185960007739X DOI
Karaki T., Watanabe Y., Kondo T., Koike T. (2012). Strophiole of seeds of the black locust acts as a water gap. Plant Species Biol. 27 226–232 10.1111/j.1442-1984.2011.00343.x DOI
Karssen C. M. (1982). “Seasonal patterns of dormancy in weed seeds,” in The Physiology and Biochemistry of Seed Development, Dormancy and Germination ed. Khan A. A. (Amsterdam: Elsevier Biomedical Press; ) 243–270
Karssen C. M., Brinkhorst van der Swan D. L. C., Breekland A. E., Koornneef M. (1983). Induction of dormancy during seed development by endogenous abscisic-acid – studies on abscisic-acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157 158–165 10.1007/BF00393650 PubMed DOI
Kikuchi K., Koizumi M., Ishida N., Kano H. (2006). Water uptake by dry beans observed by micro-magnetic resonance imaging. Ann. Bot. 98 545–553 10.1093/aob/mcl145 PubMed DOI PMC
Koinange E. M. K., Singh S. P., Gepts P. (1996). Genetic control of the domestication syndrome in common bean. Crop Sci. 36 1037–1045 10.2135/cropsci1996.0011183X003600040037x DOI
Kongjaimun A., Kaga A., Tomooka N., Somta P., Vaughan D. A., Srinives P. (2012). The genetics of domestication of yardlong bean, Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis. Ann. Bot. 109 1185–1200 10.1093/aob/mcs048 PubMed DOI PMC
Korban S. S., Coyne D. P., Weihing J. L. (1981). Evaluation, variation, and genetic control of seed coat whiteness in dry beans (Phaseolus vulgaris L.). J. Am. Soc. Hortic. Sci. 166 575–579
Kovinich N., Saleem A., Arnason J. T., Miki B. (2011). Combined analysis of transcriptome and metabolite data reveals extensive differences between black and brown nearly-isogenic soybean (Glycine max) seed coats enabling the identification of pigment isogenes. BMC Genomics 12:381 10.1186/1471-2164-12-381 PubMed DOI PMC
Kurdyukov S., Song Y., Sheahan M. B., Rose R. J. (2014). Transcriptional regulation of early embryo development in the model legume Medicago truncatula. Plant Cell Rep. 33 349–362 10.1007/s00299-013-1535-x PubMed DOI PMC
Lacerda D. R., Lemos-Filho J. P., Goulart M. F., Ribeiro R. A., Lovato M. B. (2004). Seed-dormancy variation in natural populations of two tropical leguminous tree species: Senna multijuga (Caesalpinoideae) and Plathymenia reticulata (Mimosoideae). Seed Sci. Res. 14 127–135 10.1079/SSR2004162 DOI
Lackey J. A. (1981). Systematic significance of the epihilum in Phaseoleae (Fabaceae, Faboideae). Bot. Gaz. 142 160–164 10.1086/337207 DOI
Ladizinsky G. (1979). The origin of lentil and its wild genepool. Euphytica 28 179–187 10.1007/BF00029189 DOI
Ladizinsky G. (1985). The genetics of hard seed coat in the genus Lens. Euphytica 34 539–543 10.1007/BF00022952 DOI
Ladizinsky G. (1987). Pulse domestication before cultivation. Econ. Bot. 41 60–65 10.1007/BF02859349 DOI
Ladizinsky G. (1998). Plant Evolution Under Domestication. Dordrecht: Kluwer Academic Publishers; 10.1007/978-94-011-4429-2 DOI
Lanfermeijer F. C., van Oene M. A., Borstlap A. C. (1992). Compartmental analysis of amino-acid release from attached and detached pea seed coats. Planta 187 75–82 10.1007/BF00201626 PubMed DOI
Le B. H., Wagmaister J. A., Kawashima T., Bui A. Q., Harada J. J., Goldberg R. B. (2007). Using genomics to study legume seed development. Plant Physiol. 144 562–574 10.1104/pp.107.100362 PubMed DOI PMC
Legesse N., Powell A. A. (1996). Relationship between the development of seed coat pigmentation, seed coat adherence to the cotyledons and the rate of imbibition during the maturation of grain legumes. Seed Sci. Technol. 24 23–32
Lepiniec L., Debeaujon I., Routaboul J. M., Baudry A., Pourcel L., Nesi N., et al. (2006). Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 57 405–430 10.1146/annurev.arplant.57.032905.105252 PubMed DOI
Lersten N. R. (1982). Tracheid bar and vestured pits in legume seeds (Leguminosae: Papilionoideae). Am. J. Bot. 69 98–107 10.2307/2442834 DOI
Lersten N. R., Gunn C. R. (1981). Seed morphology and testa topography in Cicer (Fabaceae: Faboideae). Syst. Bot. 6 223–230
Lersten N. R., Gunn C. R. (1982). Testa Characters in Tribe Vicieae, with Notes About Tribes Abreae, Cicereae, and Trifolieae (Fabaceae). (Technical Bulletin No. 1667) (Washington, DC: United States Department of Agriculture; ) 1–40
Lersten N. R., Gunn C. R., Brubaker C. L. (1992). Comparative Morphology of the Lens on Legume (Fabaceae) Seeds, with Emphasis on Species in Subfamilies Caesalpinioideae and Mimosoideae. (Technical Bulletin No. 1791) (Washington, DC: United States Department of Agriculture; ) 44
Lewis G., Schrire B., Mackinder B., Lock M. (2005). Legumes of the World. Kew: Royal Botanic Gardens
Lhotská M., Chrtková A. (1978). Karpologie a diasporologie: československých zástupců čeledi Fabaceae. Prague: Academia
Li X., Buirchell B., Yan G., Yang H. (2012). A molecular marker linked to the mollis gene conferring soft-seediness for marker-assisted selection applicable to a wide range of crosses in lupin (Lupinus angustifolius L.). Breed. Mol. Breed. 29 361–370 10.1007/s11032-011-9552-3 DOI
Liang M., Davis E., Gardner D., Cai X., Wu Y. (2006). Involvement of AtLAC15 in lignin synthesis in seeds and in root elongation of Arabidopsis. Planta 224 1185–1196 10.1007/s00425-006-0300-6 PubMed DOI
Liu B., Liu X., Wang C., Jin J., Herbert S. J. (2010). Endogenous hormones in seed, leaf, and pod wall and their relationship to seed filling in soybeans. Crop Pasture Sci. 61 103–110 10.1071/CP09189 DOI
Liu W., Peffley E. B., Powell R. J., Auld D. L., Hou A. (2007). Association of seedcoat colour with seed water uptake, germination, and seed components in guar (Cyamopsis tetragonoloba (L.) Taub). J. Arid Environ. 70 29–38 10.1016/j.jaridenv.2006.12.011 DOI
Liu Y. H., Cao J. S., Li G. J., Wu X. H., Wang B. G., Xu P., et al. (2012). Genotypic differences in pod wall and seed growth relate to invertase activities and assimilate transport pathways in asparagus bean. Ann. Bot. 109 1277–1284 10.1093/aob/mcs060 PubMed DOI PMC
Lush W. M., Evans L. T. (1980). The seed coats of cowpeas and other grain legumes – structure in relation to function. Field Crops Res. 3 267–286 10.1016/0378-4290(80)90034-9 DOI
Ma F., Cholewa E., Mohamed T., Peterson C. A., Gijzen M. (2004). Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. Ann. Bot. 94 213–228 10.1093/aob/mch133 PubMed DOI PMC
Ma Y., Bliss F. A. (1978). Tannin content and inheritance in common bean. Crop Sci. 18 201–204 10.2135/cropsci1978.0011183X001800020001x DOI
Mandal S. M., Chakraborty D., Dey S. (2010). Phenolic acids act as signalling molecules in plant-microbe symbioses. Plant Signal. Behav. 5 359–368 10.4161/psb.5.4.10871 PubMed DOI PMC
Marbach I., Mayer A. M. (1974). Permeability of seed coats to water as related to drying conditions and metabolism of phenolics. Plant Physiol. 54 817–820 10.1104/pp.54.6.817 PubMed DOI PMC
Marles S. M. A., Gruber M. Y. (2004). Histochemical characterization of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. J. Sci. Food Agric. 84 251–262 10.1002/jsfa.1621 DOI
Matilla A., Gallardo M., Puga-Hermida M. I. (2005). Structural, physiological and molecular aspects of heterogeneity in seeds: a review. Seed Sci. Res. 15 63–76 10.1079/SSR2005203 DOI
McDonald M. B., Vertucci C. W., Roos E. E. (1988). Soybean seed imbibition: water absorption by seed parts. Crop Sci. 28 993–997 10.2135/cropsci1988.0011183X002800060026x DOI
McKeon G. M., Mott J. J. (1982). The effect of temperature on the field softening of hard seed of Stylosanthes humilis and S. hamata in dry monsoonal climate. Aust. J. Agric. Res. 33 75–85 10.1071/AR9820075 DOI
Meyer C. J., Steudle E., Peterson C. A. (2007). Patterns and kinetics of water uptake by soybean seeds. J. Exp. Bot. 58 717–732 10.1093/jxb/erl244 PubMed DOI
Miao Z. H., Fortune J. A., Gallagher J. (2001). Anatomical structure and nutritive value of lupin seed coats. Aust. J. Agric. Res. 52 985–993 10.1071/AR00117 DOI
Miernyk J. A., Johnston M. L. (2013). Proteomic analysis of the testa from developing soybean seeds. J. Proteomics 89 265–272 10.1016/j.jprot.2013.05.013 PubMed DOI
Milberg P., Andersson L. (1997). Seasonal variation in dormancy and light sensitivity in buried seeds of eight annual weed species. Can. J. Bot. 75 1998–2004 10.1139/b97-911 DOI
Miller S. S., Bowman L. A., Gijzen M., Miki B. L. A. (1999). Early development of the seed coat of soybean (Glycine max). Ann. Bot. 84 297–304 10.1006/anbo.1999.0915 DOI
Miller S. S., Jin Z., Schnell J. A., Romero M. C., Brown D. C. W., Johnson D. A. (2010). Hourglass cell development in the soybean seed coat. Ann. Bot. 106 235–242 10.1093/aob/mcq101 PubMed DOI PMC
Miranda M., Borisjuk L., Tewes A., Heim U., Sauer N., Wobus U., et al. (2001). Amino acid permeases in developing seeds of Vicia faba L.: expression precedes storage protein synthesis and is regulated by amino acid supply. Plant J. 28 61–71 10.1046/j.1365-313X.2001.01129.x PubMed DOI
Mizzotti C., Mendes M. A., Caporali E., Schnittger A., Kater M. M., Battaglia R., et al. (2012). The MADS box genes SEEDSTICK and ARABIDOPSIS B sister play a maternal role in fertilization and seed development. Plant J. 70 409–420 10.1111/j.1365-313X.2011.04878.x PubMed DOI
Mohamed-Yasseen Y., Barringer S. A., Splittstoesser W. E., Costanza S. (1994). The role of seed coats in seed viability. Bot. Rev. 60 426–439 10.1007/BF02857926 DOI
Moïse J. A., Han S., Gudynaite-Savitch L., Johnson D. A., Miki B. L. A. (2005). Seed coats: structure, development, composition, and biotechnology. In Vitro Cell. Dev. Biol. Plant 41 620–644 10.1079/IVP2005686 DOI
Moreau C., Ambrose M. J., Turner L., Hill L., Ellis T. H., Hofer J. M. (2012). The B gene of pea encodes a defective flavonoid 3′,5′-hydroxylase, and confers pink flower color. Plant Physiol. 159 759–768 10.1104/pp.112.197517 PubMed DOI PMC
Moreno-Casasola P., Grime J. P., Martinez L. (1994). A comparative study of the effects of fluctuations in temperature and moisture supply on hard coat dormancy in seeds of coastal tropical legumes in Mexico. J. Trop. Ecol. 10 67–86 10.1017/S0266467400007720 DOI
Morrison D. A., McClay K., Porter C., Rish S. (1998). The role of the lens in controlling heat-induced breakdown of testa-imposed dormancy and native Australian legumes. Ann. Bot. 82 35–40 10.1006/anbo.1998.0640 DOI
Murray D. R., Kennedy I. R. (1980). Changes in activities of enzymes of nitrogen-metabolism in seed coats and cotyledons during embryo development in pea seeds. Plant Physiol. 66 782–786 10.1104/pp.66.4.782 PubMed DOI PMC
Nadeau C. D., Ozga J. A., Kurepin L. V., Jin A., Pharis R. P., Reinecke D. M. (2011). Tissue-specific regulation of gibberellin biosynthesis in developing pea seeds. Plant Physiol. 156 897–912 10.1104/pp.111.172577 PubMed DOI PMC
Nagai I. (1921). A genetico-physiological study on the formation of anthocyanin and brown pigments in plants. J. Coll. Agric. Imp. Univ. Tokyo 8 1–92
Nawrath C. (2002). The biopolymers cutin and suberin. Arabidopsis Book 1 e0021. 10.1199/tab.0021 PubMed DOI PMC
Nikolaeva M. G. (1969). Physiology of Deep Dormancy in Seeds. Izdatel’stvo Nauka. Leningrad (Translated from Russian by Z. Shapiro, NSF, Washington, D.C.).
Nikolaeva M. G. (1977). “Factors controlling the seed dormancy pattern,” in The Physiology and Biochemistry of Seed Dormancy and Germination ed. Khan A. A. (Amsterdam: North-Holland Publishing Co.) 51–74
Noodén L. D., Blakley K. A., Grzybowski J. M. (1985). Control of seed coat thickness and permeability in soybean: a possible adaptation to stress. Plant Physiol. 79 543–545 10.1104/pp.79.2.543 PubMed DOI PMC
Nowack M. K., Ungru A., Bjerkan K. N., Grini P. E., Schnittger A. (2010). Reproductive cross-talk: seed development in flowering plants. Biochem. Soc. Trans. 38 604–612 10.1042/BST0380604 PubMed DOI
Offler C. E., Nerlich S. M., Patrick J. W. (1989). Pathway of photosynthate transfer in the developing seed of Vicia faba L. transfer in relation to seed anatomy. J. Exp. Bot. 40 769–780 10.1093/jxb/40.7.769 DOI
Offler C. E., Patrick J. W. (1984). Cellular structures, plasma-membrane surface-areas and plasmodesmatal frequencies of seed coats of Phaseolus vulgaris L. in relation to photosynthate transfer. Aust. J. Plant Physiol. 11 79–99 10.1071/PP9840079 DOI
Offler C. E., Patrick J. W. (1993). Pathway of photosynthate transfer in the developing seed of Vicia faba L: a structural assessment of the role of transfer cells in unloading from the seed coat. J. Exp. Bot. 44 711–724 10.1093/jxb/44.4.711 DOI
Oliveira A. E. A., Sassaki G. L., Iacomini M., da Cunha M., Gomes V. M., Fernandes B. K. V. S., et al. (2001). Isolation and characterization of a galactorhamnan polysaccharide from the seed coat of Canavalia ensiformis that is toxic to the cowpea weevil (Callosobruchus maculatus). Entomol. Exp. Appl. 101 225–231 10.1046/j.1570-7458.2001.00907.x DOI
Ozga J. A., Reinecke D. M., Ayele B. T., Ngo P., Nadeau C., Wickramarathna A. D. (2009). Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit. Plant Physiol. 150 448–462 10.1104/pp.108.132027 PubMed DOI PMC
Palmer R. G., Kilen T. C. (1987). “Quantitative genetics: Results relevant to soybean breeding,” in Soybean: Improvements, Production, and Uses 2nd Edn ed. Wilcox J. R. (Madison, WI: Agronomy Society of America; ) 135–209
Pammel L. H. (1899). Anatomical Characters of the Seeds of Leguminosae: Chiefly Genera of Gray’s Manual, Shaw School of Botany. Ph.D. thesis, Transactions of the Academy of Science of St. Louis, Washington University, St. Louis Bibliography, St. Louis, MI
Pang Y. Z., Peel G. J., Wright E., Wang Z., Dixon R. A. (2007). Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiol. 145 601–615 10.1104/pp.107.107326 PubMed DOI PMC
Pang Y. Z., Wenger J. P., Saathoff K., Peel G. J., Wen J., Huhman D., et al. (2009). A WD40 repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development. Plant Physiol. 151 1114–1129 10.1104/pp.109.144022 PubMed DOI PMC
Park S., Ozga J. A., Cohen J. D., Reinecke D. M. (2010). Evidence for 4-Cl-IAA and IAA bound to proteins in pea fruits and seeds. J. Plant Growth Regul. 29 184–193 10.1007/s00344-009-9123-6 DOI
Paulsen T. R., Colville L., Kranner I., Daws M. I., Högstedt G., Vandvik V., et al. (2013). Physical dormancy in seeds: a game of hide and seek? New Phytol. 198 496–503 10.1111/nph.12191 PubMed DOI
Pellew R. A., Southgate B. J. (1984). The parasitism of Acacia tortilis seeds in the Serengeti. Afr. J. Ecol. 22 73–75 10.1111/j.1365-2028.1984.tb00679.x DOI
Probert R. J. (2000). “The role of temperature in the regulation of seed dormancy and germination,” in Seeds. The Ecology of Regeneration in Plant Communities 2nd Edn ed. Fenner M. (Wallingford: CABI publishing; ) 261–292 10.1079/9780851994321.0261 DOI
Quesnelle P. E., Emery R. J. N. (2007). cis-Cytokinins that predominate in Pisum sativum during early embryogenesis will accelerate embryo growth in vitro. Can. J. Bot. 85 91–103 10.1139/b06-149 DOI
Quinlivan B. J. (1961). The effect of constant and fluctuating temperatures on the permeability of the hard seeds of some legume species. Aust. J. Agric. Res. 12 1009–1022 10.1071/AR9611009 DOI
Quinlivan B. J. (1968). The softening of hard seeds of sand-plain lupin (Lupinus varius L.). Aust. J. Agric. Res. 19 507–515 10.1071/AR9680507 DOI
Quinlivan B. J. (1971). Seed coat impermeability in legumes. J. Aust. Inst. Agric. Sci. 37 283–295
Ramsay G. (1997). Inheritance and linkage of a gene for testa imposed seed dormancy in faba bean (Vicia faba L.). Plant Breed. 116 287–289 10.1111/j.1439-0523.1997.tb00998.x DOI
Ranathunge K., Shao S., Qutob D., Gijzen M., Peterson C. A., Bernards M. A. (2010). Properties of the soybean seed coat cuticle change during development. Planta 231 1171–1188 10.1007/s00425-010-1118-9 PubMed DOI
Reinecke D. M. (1999). 4-Chloroindole-3-acetic acid and plant growth. Plant Growth Regul. 27 3–13 10.1023/A:1006191917753 DOI
Reinprecht Y., Yadegari Z., Perry G. E., Siddiqua M., Wright L. C., McClean P. E., et al. (2013). In silico comparison of genomic regions containing genes coding for enzymes and transcription factors for the phenylpropanoid pathway in Phaseolus vulgaris L. and Glycine max L. Merr. Front. Plant Sci. 4:317 10.3389/fpls.2013.00317 PubMed DOI PMC
Riggio Bevilacqua L., Roti-Mihelozzi G., Modenesi P. (1989). The watertight dormancy of Melilotus alba seeds: further observations on the palisade cell wall. Can. J. Bot. 67 3453–3456 10.1139/b89-422 DOI
Roberts H. A., Boddrell J. E. (1985). Seed survival and seasonal pattern of seedling emergence in some Leguminosae. Ann. Appl. Biol. 106 125–132 10.1111/j.1744-7348.1985.tb03102.x DOI
Rochat C., Boutin J. P. (1992). Temporary storage compounds and sucrose-starch metabolism in seed coats during pea seed development (Pisum sativum). Physiol. Plant 85 567–572 10.1111/j.1399-3054.1992.tb04756.x DOI
Rolston M. P. (1978). Water impermeable seed dormancy. Bot. Rev. 44 365–396 10.1007/BF02957854 DOI
Russi L., Cocks P. S., Roberts E. H. (1992). Coat thickness and hard-seededness in some Medicago and Trifolium species. Seed Sci. Res. 2 243–249 10.1017/S0960258500001434 DOI
Sabiiti E. N., Wein R. W. (1987). Fire and Acacia seeds: a hypothesis of colonization success. J. Ecol. 74 937–946 10.2307/2260305 DOI
Schlumbaum A., Mauch F., Vögeli U., Boller T. (1986). Plant chitinases are potent inhibitors of fungal growth. Nature 324 365–367 10.1038/324365a0 DOI
Schneitz K., Hülskamp M., Kopczak S. D., Pruitt R. E. (1997). Dissection of sexual organ ontogenesis: a genetic analysis of ovule development in Arabidopsis thaliana. Development 124 1367–1376 PubMed
Serrato Valenti G., Cornara L., Ferrando M., Modenesi P. (1993). Structural and histochemical features of Stylosanthes scabra (Leguminosae: Papilionoideae) seed coat as related to water entry. Can. J. Bot. 71 834–840 10.1139/b93-095 DOI
Serrato Valenti G., Melone L., Ferrando M., Bozzini A. (1989). Comparative studies on testa structure of hard-seeded and soft-seeded varieties of Lupinus angustifolius L. (Leguminosae) and mechanisms of water entry. Seed Sci. Technol. 17 563–581
Serrato Valenti G., Modenesi P., Roti-Mihelozzi G., Bevilacqua L. (1986). Structural and histochemical characters of the Prosopis tamarugo Phil. seed coat in relation to its hardness. Acta Bot. Nederland 35 475–487
Serrato-Valenti G., De Vries M., Cornara L. (1995). The hilar region in Leucaena leucocephala Lam. (De Wit) seed: structure, histochemistry and the role of the lens in germination. Ann. Bot. 75 569–574 10.1006/anbo.1995.1060 DOI
Shao S., Meyer C. J., Ma F., Peterson C. A., Bernards M. A. (2007). The outermost cuticle of soybean seeds: chemical composition and function during imbibition. J. Exp. Bot. 58 1071–1082 10.1093/jxb/erl268 PubMed DOI
Shen-Miller J., Mudgett M. B., Schopf J. W., Clarke R., Berger R. (1995). Exceptional seed longevity and robust growth: ancient Sacred Lotus from China. Am. J. Bot. 82 1367–1380 10.2307/2445863 DOI
Simao Neto M., Jones R. M., Ratcliff D. (1987). Recovery of pasture seed ingested by ruminants. 1. Seed of six tropical pasture species fed to cattle, sheep and goats. Aust. J. Exp. Agric. 27 239–246 10.1071/EA9870239 DOI
Skinner D. J., Hill T. A., Gasser C. S. (2004). Regulation of ovule development. Plant Cell 16 S32–S45 10.1105/tpc.015933 PubMed DOI PMC
Slater S. M., Yuan H. Y., Lulsdorf M. M., Vandenberg A., Zaharia L. I., Han X., et al. (2013). Comprehensive hormone profiling of the developing seeds of four grain legumes. Plant Cell Rep. 32 1939–1952 10.1007/s00299-013-1505-3 PubMed DOI
Slattery H. D., Atwell B. J., Kuo J. (1982). Relationship between colour, phenolic content and impermeability in the seed coat of various Trifolium subterraneum L. genotypes. Ann. Bot. 50 373–378
Smýkal P., Coyne C. J., Ambrose M. J., Maxted N., Schaefer H., Blair M., et al. (2014). Legume crops phylogeny and genetic diversity for science and breeding. Crit. Rev. Plant Sci. 10.1080/07352689.2014.897904 [Epub ahead of print]. DOI
Spurny M. (1963). Cell wall structure of epidermal cells of the pea seed coat (Pisum sativum L.) studied by microcinematography. Mikroskopie 18 272–279
Spurny M. (1964). Changes in the permeability of the seed coat in connection with the development of suberin adcrustations of the macrosclereids from the seed coat of the pea (Pisum sativum L.). Flora 154 547–567
Stevenson T. M. (1937). Sweet clover studies on habit of growth, seed pigmentation and permeability of the seed coat. Sci. Agric. 17 627–654
Taylor G. B. (1981). Effect of constant temperature treatments followed by alternating temperatures on the softening of hard seeds of Trifolium subterraneum L. Aust. J. Plant Physiol. 8 547–558 10.1071/PP9810547 DOI
Taylor G. B. (2005). Hardseededness in Mediterranean annual pasture legumes in Australia: a review. Aust. J. Agric. Res. 56 645–661 10.1071/AR04284 DOI
Taylor G. B., Ewing M. A. (1996). Effects of extended (4–12 years) burial on seed softening in subterranean clover and annual medics. Aust. J. Exp. Agric. 36 145–150 10.1071/EA9960145 DOI
Taylor G. B., Revell C. K. (1999). Effect of pod burial, light, and temperature on seed softening in yellow serradella. Aust. J. Agric. Res. 50 1203–1209 10.1071/AR98206 DOI
Taylor G. B., Revell C. K. (2002). Seed softening, imbibition time, and seedling establishment in yellow serradella. Aust. J. Agric. Res. 53 1011–1018 10.1071/AR01201 DOI
Telewski F. W., Zeevaart J. A. (2002). The 120-yr period for Dr. Beal’s seed viability experiment. Am. J. Bot. 89 1285–1288 10.3732/ajb.89.8.1285 PubMed DOI
Thompson K., Ooi M. K. J. (2013). Germination and dormancy breaking: two different things. Seed Sci. Res. 23 1 10.1017/S0960258512000190 DOI
Thompson R., Burstin J., Gallardo K. (2009). Post-genomics studies of developmental processes in legume seeds. Plant Physiol. 151 1023–1029 10.1104/pp.109.143966 PubMed DOI PMC
Thompson R. D., Hueros G., Becker H., Maitz M. (2001). Development and functions of seed transfer cells. Plant Sci. 160 775–783 10.1016/S0168-9452(01)00345-4 PubMed DOI
Thorne J. H. (1981). Morphology and ultrastructure of maternal seed tissues of soybean in relation to the import of photosynthate. Plant Physiol. 67 1016–1025 10.1104/pp.67.5.1016 PubMed DOI PMC
Thorne J. H., Rainbird R. M. (1983). An in vivo technique for the study of phloem unloading in seed coats of developing soybean seeds. Plant Physiol. 72 268–271 10.1104/pp.72.1.268 PubMed DOI PMC
Tuteja J. H., Clough S. J., Chan W. C., Vlodking L. O. (2004). Tissue specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell 16 819–835 10.1105/tpc.021352 PubMed DOI PMC
Van Assche J. A., Debucquoy K. L. A., Rommens W. A. F. (2003). Seasonal cycles in the germination capacity of buried seeds of some Leguminosae (Fabaceae). New Phytol. 158 315–323 10.1046/j.1469-8137.2003.00744.x DOI
Van Dongen J. T., Ammerlaan A. M., Wouterlood M., Van Aelst A. C., Borstlap A. C. (2003). Structure of the developing pea seed coat and the post-pholem transport pathway of nutrients. Ann. Bot. 93 729–737 10.1093/aob/mcg066 PubMed DOI PMC
van Klinken K. D., Goulier J. B. (2013). Habitat-specific seed dormancy-release mechanisms in four legume species. Seed Sci. Res. 23 181–188 10.1017/S0960258513000196 DOI
Van Staden J., Manning J. C., Kelly K. M. (1989). Legume seeds – the structure: function equation. Monogr. Syst. Bot. Missouri Bot. Gard. 29 417–450
Vaughan D. A., Bernard R. L., Sinclair J. B., Kunwar I. K. (1987). Soybean seed coat development. Crop Sci. 27 759–765 10.2135/cropsci1987.0011183X002700040031x DOI
Vázquez-Yanes C., Orozco-Segovia A. (1982). Seed germination of tropical rain forest pioneer tree (Heliocarpus donnell-smithii) in response to diurnal fluctuation in temperature. Physiol. Plant. 56 295–298 10.1111/j.1399-3054.1982.tb00341.x DOI
Verdier J., Dessaint F., Schneider C., Abirached-Darmency M. (2013a). A combined histology and transcriptome analysis unravels novel questions on Medicago truncatula seed coat. J. Exp. Bot. 64 459–470 10.1093/jxb/ers304 PubMed DOI PMC
Verdier J., Lalanne D., Pelletier S., Torres-Jerez I., Righetti K., Bandyopadhyay K., et al. (2013b). A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiol. 163 757–774 10.1104/pp.113.222380 PubMed DOI PMC
Verdier J., Kakar K., Gallardo K., Le Signor C., Aubert G., Schlereth A., et al. (2008). Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling. Plant Mol. Biol. 67 567–580 10.1007/s11103-008-9320-x PubMed DOI
Verdier J., Zhao J., Torres-Jerez I., Ge S., Liu C., He X., et al. (2012). MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proc. Natl. Acad. Sci. U.S.A. 109 1766–1771 10.1073/pnas.1120916109 PubMed DOI PMC
Vleeshouwers L. M., Bouwmeester H. J., Karssen C. M. (1995). Redefining seed dormancy: an attempt to integrate physiology and ecology. J. Ecol. 83 1031–1037 10.2307/2261184 DOI
Wang H. L., Grusak M. A. (2005). Structure and development of Medicago truncatula pod wall and seed coat. Ann. Bot. 95 737–747 10.1093/aob/mci080 PubMed DOI PMC
Warrag E. I., Eltigani M. A. (2005). Breaking seed coat dormancy of Acacia nilotica seeds under simulated natural habit conditions in Sudan. Trop. Ecol. 46 127–132
Weber H., Borisjuk L., Heim U., Sauer N., Wobus U. (1997). A role for sugar transporters during seed development: molecular characterization of a hexose and a sucrose carrier in fava bean seeds. Plant Cell 9 895–908 10.1105/tpc.9.6.895 PubMed DOI PMC
Weber H., Borisjuk L., Wobus U. (2005). Molecular physiology of legume seed development. Annu. Rev. Plant Biol. 56 253–279 10.1146/annurev.arplant.56.032604.144201 PubMed DOI
Weeden N. F. (2007). Genetic changes accompanying the domestication of Pisum sativum: is there a common genetic basis to the ‘domestication syndrome’ for legumes? Ann. Bot. 100 1017–1025 10.1093/aob/mcm122 PubMed DOI PMC
Weiss E., Kislev M. E., Hartmann A. (2006). Autonomous cultivation before domestication. Science 312 1608–1610 10.1126/science.1127235 PubMed DOI
Werker E., Marbach I., Mayer A. M. (1979). Relation between the anatomy of the testa, water permeability and the presence of phenolics in the genus Pisum. Ann. Bot. 43 765–771
White J. (1908). The occurrence of an impermeable cuticle on the exterior of certain seeds. Proc. Royal Soc. Victoria 21 203–210
Winkel-Shirley B. (2001). Flavonoid biosynthesis. a colourful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126 485–493 10.1104/pp.126.2.485 PubMed DOI PMC
Wolf W., Baker F. L., Bernard R. L. (1981). Soybean seed-coat structural features: pits, deposits and cracks. Scan. Electron Microsc. 3 531–544
Wyatt J. E. (1977). Seed coat and water absorption properties of seed of near-isogenic snap bean lines differing in seed coat color. J. Am. Soc. Hortic. Sci. 102 478–480
Yaklich R. W., Vigil E. L., Wergin W. P. (1986). Pore development and seed coat permeability in soybean. Crop Sci. 26 616–624 10.2135/cropsci1986.0011183X002600030041x DOI
Yang K., Jeong N., Moon J. K., Lee Y. H., Lee S. H., Kim H. M., et al. (2010). Genetic analysis of genes controlling natural variation of seed coat and flower colours in soybean. J. Hered. 101 757–768 10.1093/jhered/esq078 PubMed DOI
Zabala G., Vodkin L. O. (2003). Cloning of the pleiotropic T locus in soybean and two recessive alleles that differentially affect structure and expression of the encoded flavonoid 3 hydroxylase. Genetics 163 295–309 PubMed PMC
Zabala G., Vodkin L. O. (2005). The wp mutation of Glycine max carries a gene fragment-rich transposon of the CACTA superfamily. Plant Cell 17 2619–2632 10.1105/tpc.105.033506 PubMed DOI PMC
Zabala G., Vodkin L. O. (2007). A rearrangement resulting in small tandem repeats in the F3′5′H gene of white flower genotypes is associated with the soybean W1 locus. Crop Sci. 47 S113–S124 10.2135/cropsci2006.12.0838tpg DOI
Zhao J., Dixon R. A. (2009). MATE transporters facilitate vacuolar uptake of epicatechin 3′-o-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell 21 2323–2340 10.1105/tpc.109.067819 PubMed DOI PMC
Zhao J., Pang Y., Dixon R. A. (2010). The mysteries of proanthocyanidin transport and polymerization. Plant Physiol. 153 437–443 10.1104/pp.110.155432 PubMed DOI PMC
Zhou S., Sekizaki H., Yang Z., Sawa S., Pan J. (2010). Phenolics in the seed coat of wild soybean (Glycine soja) and their significance for seed hardness and seed germination. J. Agric. Food Chem. 58 10972–10978 10.1021/jf102694k PubMed DOI
Zohary D., Hopf M., Weiss E. (2012). Domestication of Plants in the Old World 4th Edn. Oxford: Oxford University Press
Phenylpropanoid Content of Chickpea Seed Coats in Relation to Seed Dormancy
Domestication has altered the ABA and gibberellin profiles in developing pea seeds
Effect of Seed Coating and PEG-Induced Drought on the Germination Capacity of Five Clover Crops
Physical Dormancy Release in Medicago truncatula Seeds Is Related to Environmental Variations
The role of the testa during the establishment of physical dormancy in the pea seed
Molecular Evidence for Two Domestication Events in the Pea Crop