How Could the Use of Crop Wild Relatives in Breeding Increase the Adaptation of Crops to Marginal Environments?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35783966
PubMed Central
PMC9243378
DOI
10.3389/fpls.2022.886162
Knihovny.cz E-zdroje
- Klíčová slova
- abiotic stress, adaptation, breeding, crop wild relatives, legumes, marginal environment,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Alongside the use of fertilizer and chemical control of weeds, pests, and diseases modern breeding has been very successful in generating cultivars that have increased agricultural production several fold in favorable environments. These typically homogeneous cultivars (either homozygous inbreds or hybrids derived from inbred parents) are bred under optimal field conditions and perform well when there is sufficient water and nutrients. However, such optimal conditions are rare globally; indeed, a large proportion of arable land could be considered marginal for agricultural production. Marginal agricultural land typically has poor fertility and/or shallow soil depth, is subject to soil erosion, and often occurs in semi-arid or saline environments. Moreover, these marginal environments are expected to expand with ongoing climate change and progressive degradation of soil and water resources globally. Crop wild relatives (CWRs), most often used in breeding as sources of biotic resistance, often also possess traits adapting them to marginal environments. Wild progenitors have been selected over the course of their evolutionary history to maintain their fitness under a diverse range of stresses. Conversely, modern breeding for broad adaptation has reduced genetic diversity and increased genetic vulnerability to biotic and abiotic challenges. There is potential to exploit genetic heterogeneity, as opposed to genetic uniformity, in breeding for the utilization of marginal lands. This review discusses the adaptive traits that could improve the performance of cultivars in marginal environments and breeding strategies to deploy them.
CERZOS Departamento de Agronomía Universidad Nacional del Sur Bahía Blanca Argentina
Department of Botany Faculty of Science Palacký University Olomouc Czechia
Department of Geoinformatics Faculty of Sciences Palacký University Olomouc Czechia
Instituto Nacional de Tecnología Agropecuaria Hilario Ascasubi Argentina
The UWA Institute of Agriculture University of Western Australia Crawley WA Australia
Zobrazit více v PubMed
Abbo S., Berger J., Turner N. C. (2003). Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. PubMed
Abbo S., Lev-Yadun S., Galwey N. (2002). Vernalization response of wild chickpea. PubMed
Abbo S., Pinhasi van-Oss R., Gopher A., Saranga Y., Ofner I., Peleg Z. (2014). Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. PubMed DOI
Ahmadzai H., Tutundjian S., Elouafi I. (2021). Policies for sustainable agriculture and livelihood in marginal lands: a review.
Al Bari M. A. A., Worral H., Szwiec S., Ma Y., Zheng P., Main D., et al. (2021). Harnessing genetic diversity in the USDA pea ( PubMed DOI PMC
Alonso-Blanco C., Aarts M. G. M., Bentsink L., Keurentjes J. J. B., Reymond M., Vreugdenhil D., et al. (2009). What has natural variation taught us about plant development, physiology, and adaptation? PubMed DOI PMC
Altpeter F., Springer N. M., Bartley L. E., Blechl A. E., Brutnell T. P., Citovsky V., et al. (2016). Advancing crop transformation in the era of genome editing. PubMed DOI PMC
Anderson J. E., Kono T. J. Y., Stupar R. M., Kantar M. B., Morrell P. L. (2016). Environmental association analyses identify candidates for abiotic stress tolerance in PubMed DOI PMC
Anderson J. T., Willis J. H., Mitchell-Olds T. (2011). Evolutionary genetics of plant adaptation. PubMed DOI PMC
Annicchiarico P., Barrett B., Brummer E. C., Julier B., Marshall A. H. (2015). Achievements and challenges in improving temperate perennial forage legumes. DOI
Araújo S. S., Beebe S., Crespi M., Delbreil B., González E. M., Gruber V., et al. (2015). Abiotic stress responses in legumes: strategies used to cope with environmental challenges. DOI
Araus J. L., Kefauver S. C. (2018). Breeding to adapt agriculture to climate change: affordable phenotyping solutions. PubMed DOI
Arora L., Narula A. (2017). Gene editing and crop improvement using CRISPR-cas9 system. PubMed DOI PMC
Ayangbenro A. S., Babalola O. O. (2020). Reclamation of arid and semi-arid soils: the role of plant growth-promoting archaea and bacteria. DOI
Badaruddin M. I., Meyer D. W. (2001). Factors modifying frost tolerance of legume species.
Bahrami F., Arzani A., Rahimmalek M. (2021). Tolerance to high temperature at reproductive stage: trade-offs between phenology, grain yield and yield-related traits in wild and cultivated barleys. DOI
Balakrishnan D., Surapaneni M., Mesapogu S., Neelamraju S. (2019). Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. PubMed DOI
Bari A., Street K., Mackay M., Endresen D. T. F., De Pauw E., Amri A. (2012). Focused identification of germplasm strategy (FIGS) detects wheat stem rust resistance linked to environmental variables.
Basey A. C., Fant J. B., Kramer A. T. (2015). Producing native plant materials for restoration: 10 rules to collect and maintain genetic diversity. DOI
Beche E., Gillman J. D., Song Q., Nelson R., Beissinger T., Decker J., et al. (2021). Genomic prediction using training population design in interspecific soybean populations. PubMed DOI PMC
Belhaj K., Chaparro-Garcia A., Kamoun S., Nekrasov V. (2013). Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. PubMed DOI PMC
Berger J. D., Ludwig C. (2014). Contrasting adaptive strategies to terminal drought stress gradients in Mediterranean legumes: phenology, productivity and water relations in wild and domesticated PubMed DOI PMC
Berger J. D., Buck R., Henzell J. M., Turner N. C. (2005). Evolution in the genus
Berger J. D., Kumar S., Nayyar H., Street K., Sandhu J. S., Henzell J. M., et al. (2012b). Temperature-stratified screening of chickpea (
Berger J. D., Buirchell B., Luckett D. J., Nelson M. N. (2012a). Domestication bottlenecks limit genetic diversity and constrain adaptation in narrow-leafed lupin ( PubMed DOI
Berger J. D., Ludwig C., Whisson K. (2020). Changing water use and adaptive strategies along rainfall gradients in Mediterranean lupins. PubMed DOI
Berger J. D., Milroy S. P., Turner N. C., Siddique K. H. M., Imtiaz M., Malhotra R. (2011). Chickpea evolution has selected for contrasting phenological mechanisms among different habitats.
Berger J. D., Robertson L. D., Cocks P. S. (2002). Agricultural potential of Mediterranean grain and forage legumes: key differences between and within
Berger J. D., Shrestha D., Ludwig C. (2017). Reproductive strategies in mediterranean legumes: trade-offs between phenology, seed size and vigor within and between wild and domesticated PubMed DOI PMC
Berger J., Palta J., Vadez V. (2016). Review: an integrated framework for crop adaptation to dry environments: responses to transient and terminal drought. PubMed DOI
Berger J., Pushpavalli R., Ludwig C., Parsons S., Basdemir F., Whisson K. (2020). Wild and domestic differences in plant development and responses to water deficit in PubMed DOI PMC
Bheemanahalli R., Sathishraj R., Manoharan M., Sumanth H. N., Muthurajan R., Ishimaru T., et al. (2017). Is early morning flowering an effective trait to minimize heat stress damage during flowering in rice? PubMed DOI PMC
Bohra A., Kilian B., Sivasankar S., Caccamo M., Mba C., McCouch S. R., et al. (2021). Reap the crop wild relatives for breeding future crops. PubMed DOI
Brandsæter L. O., Olsmo A., Tronsmo A. M., Fykse H. (2002). Freezing resistance of winter annual and biennial legumes at different developmental stages. DOI
Breseghello F., Coelho A. S. G. (2013). Traditional and modern plant breeding methods with examples in rice ( PubMed DOI
Brink M., van Hintum T. (2022). Practical consequences of digital sequence information (DSI) definitions and access and benefit-sharing scenarios from a plant genebank’s perspective. DOI
Brozynska M., Furtado A., Henry R. J. (2016). Genomics of crop wild relatives: expanding the gene pool for crop improvement. PubMed DOI PMC
Brunazzi A., Scaglione D., Talini R. F., Miculan M., Magni F., Poland J., et al. (2018). Molecular diversity and landscape genomics of the crop wild relative PubMed DOI
Brus J., Pechanec V., Machar I. (2018). Depiction of uncertainty in the visually interpreted land cover data. DOI
Buitrago-Bitar M. A., Cortés A. J., López-Hernández F., Londoño-Caicedo J. M., Muñoz-Florez J. E., Carmenza Muñoz L., et al. (2021). Allelic diversity at abiotic stress responsive genes in relationship to ecological drought indices for cultivated tepary bean, PubMed DOI PMC
Bullock J. M., Mallada González L., Tamme R., Götzenberger L., White S. M., Pärtel M., et al. (2017). A synthesis of empirical plant dispersal kernels. DOI
Cable J., Ronald P. C., Voytas D., Zhang F., Levy A. A., Takatsuka A., et al. (2021). Plant genome engineering from lab to field—a Keystone Symposia report. PubMed DOI
Campbell J. E., Lobell D. B., Genova R. C., Field C. B. (2008). The global potential of bioenergy on abandoned agriculture lands. PubMed DOI
Cantamutto M. A., Bertucci C. L., Huarte R. D. (2016).
Carr P. M., Poland W. W., Tisor L. J. (2005). Forage legume regeneration from the soil seed bank in Western North Dakota.
Castro H., Castro P. (2019). “Mediterranean marginal lands in face of climate change: biodiversity and ecosystem services,” in
Chapman S. C., Cooper M., Hammer G. L., Butler D. G. (2000). Genotype by environment interactions affecting grain sorghum. II. Frequencies of different seasonal patterns of drought stress are related to location effects on hybrid yields. DOI
Chaturvedi P., Wiese A. J., Ghatak A., Zaveska Drabkova L., Weckwerth W., Honys D. (2021). Heat stress response mechanisms in pollen development. PubMed DOI PMC
Chen C., Fletcher A., Lawes R., Berger J., Robertson M. (2017). Modelling phenological and agronomic adaptation options for narrow-leafed lupins in the southern grainbelt of Western Australia.
Chen Q., Yang C. J., York A. M., Xue W., Daskalska L. L., DeValk C. A., et al. (2019). TeoNAM: a nested association mapping population for domestication and agronomic trait analysis in maize. PubMed DOI PMC
Chen S., Stefanova K., Siddique K. H., Cowling W. A. (2021). Transient daily heat stress during the early reproductive phase disrupts pod and seed development in
Clark R. M., Linton E., Messing J., Doebley J. F. (2004). Pattern of diversity in the genomic region near the maize domestication gene tb1. PubMed DOI PMC
Coba de la Peña T., Pueyo J. J. (2011). Legumes in the reclamation of marginal soils, from cultivar and inoculant selection to transgenic approaches. DOI
Colbach N., Durr C., Roger-Estrade J., Caneill J. (2005). How to model the effects of farming practices on weed emergence.
Combs E., Bernardo R. (2013). Genomewide selection to introgress semidwarf maize germplasm into U.S. Corn Belt inbreds. DOI
Cortes A. J., Lopez-Hernandez F. (2021). Harnessing crop wild diversity for climate change adaptation. PubMed DOI PMC
Cowling W. A., Buirchell B. J., Falk D. E. (2009). A model for incorporating novel alleles from the primary gene pool into elite crop breeding programs while reselecting major genes for domestication or adaptation.
Coyne C. J., Shiv Kumar S., von Wettberg E. B., Marques E., Berger J. D., Redden R. J., et al. (2020). Potential and limits of exploitation of crop wild relatives for pea, lentil and chickpea improvement. DOI
Crossa J., Pérez-Rodríguez P., Cuevas J., Montesinos-López O., Jarquín D., de los Campos G., et al. (2017). Genomic selection in plant breeding: methods, models, and perspectives. PubMed DOI
Das A., Sharma N., Prasad M. (2019). CRISPR/Cas9: a novel weapon in the arsenal to combat plant diseases. PubMed DOI PMC
Dauber J., Jones M. B., Stout J. C. (2010). The impact of biomass crop cultivation on temperate biodiversity.
De Andrés E., Zambrana E., Cadorniga C., Martín D., Marcos T., De la Rosa L., et al. (2008). Estudio de caracteres de resistencia a la sequía en la colección activa de
de Felipe M., Alvarez Prado S. (2021). Has yield plasticity already been exploited by soybean breeding programmes in Argentina? PubMed DOI
De la Rosa L., Zambrana E., Ramirez-Parra E. (2020). Molecular bases for drought tolerance in common vetch: designing new molecular breeding tools. PubMed DOI PMC
DeHaan L., Larson S., López-Marqués R. L., Wenkel S., Gao C., Palmgren M. (2020). Roadmap for accelerated domestication of an emerging perennial grain crop. PubMed
Dempewolf H., Baute G., Anderson J., Kilian B., Smith C., Guarino L. (2017). Past and future use of wild relatives in crop breeding. DOI
Dempewolf H., Eastwood R. J., Guarino L., Khoury C. K., Müller J. V., Toll J. (2014). Adapting agriculture to climate change: a global initiative to collect, conserve, and use crop wild relatives.
Donald C. M. (1981). “Competitive plants, communal plants, and yield in wheat crops,” in DOI
Driouech N., Abou Fayad F., Ghanem A., Al-bitar L. (2008). “Agronomic performance of annual self-reseeding legumes and their self-establishment potential in the Apulia region of Italy,” in
Duc G., Agrama H., Bao S., Berger J., Bourion V., De Ron A. M., et al. (2015). Breeding annual grain legumes for sustainable agriculture: new methods to approach complex traits and target new cultivar ideotypes. DOI
Dürr C., Dickie J., Yang X.-Y., Pritchard H. (2015). Ranges of critical temperature and water potential values for the germination of species worldwide: contribution to a seed trait database.
El Haddad N., Sanchez-Garcia M., Visioni A., Jilal A., El Amil R., Sall A. T., et al. (2021). Crop wild relatives crosses: multi-location assessment in durum wheat, barley, and lentil. DOI
El-Beltagy A., Madkour M. (2012). Impact of climate change on arid lands agriculture. DOI
Elbersen B., Van Eupen M., Mantel S., Alexopoulou E., Bai Z., Boogard H., et al. (2018). “Mapping marginal land potentially available for industrial crops in Europe,” in
Endresen D. T. F., Street K., Mackay M., Bari A., De Pauw E. (2011). Predictive association between biotic stress traits and eco-geographic data for wheat and barley landraces.
Espeland E. K., Johnson R. C., Horning M. E. (2018). Plasticity in native perennial grass populations: implications for restoration.
Evenson R. E., Gollin D. (2003). Assessing the impact of the Green Revolution, 1960 to 2000. PubMed DOI
Fauser F., Schiml S., Puchta H. (2014). Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in PubMed DOI
Fernández I., Fraysse M., Presotto A., Cantamutto M. A. (2012). Evaluation of Argentine wild sunflower biotypes for drought stress during reproductive stage. DOI
Fernie A. R., Yan J. (2019). PubMed
Fick S. E., Hijmans R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. DOI
Forcella F., Benech-Arnold R. L., Sánchez R., Ghersa C. M. (2000). Modeling seedling emergence.
Foyer C., Lam H. M., Nguyen H., Siddique K. H., Varshney R. K., Colmer T. D., et al. (2016). Neglecting legumes has compromised human health and sustainable food production. PubMed DOI
Fuller D. Q., Allaby R. (2009). “Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation,” in
Fuller D. Q., Allaby R. (2018). “Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation,” in DOI
Fustier M. A., Brandenburg J. T., Boitard S., Lapeyronnie J., Eguiarte L. E., Vigouroux Y., et al. (2017). Signatures of local adaptation in lowland and highland teosintes from whole-genome sequencing of pooled samples. PubMed
Gage J. L., Monier B., Giri A., Buckler E. S. (2020). Ten years of the maize nested association mapping population: impact, limitations, and future directions. PubMed DOI PMC
Gardarin A., Coste F., Wagner M. H., Dürr C. (2016). How do seed and seedling traits influence germination and emergence parameters in crop species? A comparative analysis. DOI
Gardarin A., Durr C., Colbach N. (2012). Modelling the dynamics and emergence of multispecies weed seed bank with species traits.
Garibaldi L. A., Aizen M. A., Saez A., Gleiser G., Strelin M. M., Harder L. D. (2021). The influences of progenitor filtering, domestication selection and the boundaries of nature on the domestication of grain crops.
Ghoshal B., Picard C. L., Vong B., Feng S., Jacobsen S. E. (2021). CRISPR-based targeting of DNA methylation in PubMed DOI PMC
Gladstones J. S. (1994). “An historical review of lupins in Australia,” in DOI
Gladstones J. S., Hill G. D. (1969). Selection for economic characters in
Goddard M., Hayes B. (2007). Genomic selection. PubMed
Gonzalez M. Y., Zhao Y., Jiang Y., Stein N., Habekuss A., Reif J. C., et al. (2021). Genomic prediction models trained with historical records enable populating the German PubMed DOI PMC
González-Andujar J. L., Fernández-Quintanilla C. (1993). Strategies for the control of Avena sterilis in winter wheat production systems in central Spain.
González-Andujar J. L., Fernández-Quintanilla C. (2004). Modelling the population dynamics of annual ryegrass (
González-Paleo L., Ravetta D. A. (2015). Carbon acquisition strategies uncoupled from predictions derived from species life-cycle. DOI
Grime J. P. (1974). Vegetation classification by reference to strategies.
Hajjar R., Hodgkin T. (2007). The use of wild relatives in crop improvement: a survey of developments over the last 20 years. DOI
Harlan J. R., de Wet J. M. J. (1971). Toward a rational classification of cultivated plants. DOI
Hellwig T., Abbo S., Sherman A., Ophir R. (2021). Prospects for genetic diversity of crop wild relatives under climate change: the case of the wild pea PubMed
Hernández F., Poverene M., Presotto A. (2018). Heat stress effects on reproductive traits in cultivated and wild sunflower ( DOI
Hernández F., Poverene M., Mercer K. L., Presotto A. (2020). Genetic variation for tolerance to extreme temperatures in wild and cultivated sunflower ( DOI
Hoad S. P., Davies D. H. K., Topp C. E. F. (2006). How to select varieties for organic farming: science and practice.
Holst N., Rasmussen I. A., Bastiaans L. (2007). Field weed population dynamics: a review of model approaches and applications.
Hondelmann W. (1984). The Lupin-ancient and modern crop plant. PubMed DOI
Hradilová I., Duchoslav M., Brus J., Pechanec V., Hýbl M., Kopecký P., et al. (2019). Variation in wild pea ( PubMed DOI PMC
Hu J., Guo C., Wang B., Ye J., Liu M., Wu Z., et al. (2018). Genetic properties of a Nested Association Mapping population constructed with semi-winter and spring oilseed rapes. PubMed DOI PMC
Iqbal M. M., Erskine W., Berger J. D., Nelson M. N. (2020). Phenotypic characterisation and linkage mapping of domestication syndrome traits in yellow lupin ( PubMed DOI PMC
Jacobsen E., Schouten H. J. (2007). Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants. PubMed DOI
Jones H. P., Hole D. G., Zavaleta E. S. (2012). Harnessing nature to help people adapt to climate change.
Joost S., Bonin A., Bruford M. W., Després L., Conord C., Erhardt G., et al. (2007). A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. PubMed DOI
Kang S., Post W. M., Nichols J. A., Wang D., West T. O., Bandaru V., et al. (2013). Marginal lands: concept, assessment and management.
Kantar M. B., Nashoba A. R., Anderson J. E., Blackman B. K., Rieseberg L. H. (2017). The genetics and genomics of plant domestication.
Kantar M. B., Sosa C. C., Khoury C. K., Castañeda-Álvarez N. P., Achicanoy H. A., Bernau V., et al. (2015). Ecogeography and utility to plant breeding of the crop wild relatives of sunflower ( PubMed DOI PMC
Kattge J., Díaz S., Lavorel S., Prentice I. C., Leadley P., Bönisch G., et al. (2011). TRY—a global database of plant traits. PubMed DOI
Kebede E. (2021). Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems. DOI
Khazaei H., Street K., Bari A., Mackay M., Stoddard F. L. (2013). The FIGS (Focused Identification of Germplasm Strategy) approach identifies traits related to drought adaptation in PubMed DOI PMC
Khoury C. K., Brush S., Costich D. E., Curry H. A., de Haan S., Engels J. M. M., et al. (2022). Crop genetic erosion: understanding and responding to loss of crop diversity. PubMed DOI
Khoury C. K., Carver D., Greene S. L., Williams K. A., Achicanoy H. A., Schori M., et al. (2020). Crop wild relatives of the United States require urgent conservation action. PubMed DOI PMC
Kissing Kucek L., Riday H., Rufener B. P., Burke A. N., Eagen S. S., Ehlke N., et al. (2020a). Pod dehiscence in hairy vetch ( PubMed DOI PMC
Kissing Kucek L., Azevedo M. D., Eagen S. S., Ehlke N. J., Hayes R. J., Mirsky S. B., et al. (2020b). Seed dormancy in hairy vetch ( DOI
Komatsuzaki M. (2007). New weed management strategy using subterranean clover reseeding under different tillage systems: numerical experiments with the subterranean clover-tillage dynamics model.
Lane M. A., Edwards J. L. (2007). “The global biodiversity information facility (GBIF),” in
Lark T. J., Spawn S. A., Bougie M., Gibbs H. K. (2020). Cropland expansion in the United States produces marginal yields at high costs to wildlife. PubMed DOI PMC
Larkan N. J., Lydiate D. J., Parkin I. A. P., Nelson M. N., Epp D. J., Cowling W. A., et al. (2013). The PubMed DOI
Leclercq P. (1969). Cytoplasmic male sterility in sunflower.
Lembrechts J. J., van den Hoogen J., Aalto J., Ashcroft M. B., De Frenne P., Kemppinen J., et al. (2021). Global maps of soil temperature. PubMed DOI PMC
León-Lobos P., Way M., Aranda P. D., Lima-Junior M. (2012). The role of ex situ seed banks in the conservation of plant diversity and in ecological restoration in Latin America. DOI
Lipper L., Thornton P., Campbell B. M., Baedeker T., Braimoh A., Bwalya M., et al. (2014). Climate-smart agriculture for food security. PubMed DOI PMC
Litrico I., Violle C. (2015). Diversity in plant breeding: a new conceptual framework. PubMed DOI
Liu M., Li Y., Ma Y., Zhao Q., Stiller J., Qi F., et al. (2020). The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley. PubMed DOI PMC
Loi A., Howieson J. G., Nutt B. J., Carr S. J. (2005). A second generation of annual pasture legumes and their potential for inclusion in Mediterranean-type farming systems.
Loi A., Nutt B. J., Howieson J. G., Yates R. J., Norman H. C. (2012). Preliminary assessment of bladder clover (
Ludlow M. M., Muchow R. C. (1990). A critical evaluation of traits for improving crop yields in water-limited environments. PubMed DOI
Manghwar H., Lindsey K., Zhang X., Jin S. (2019). CRISPR/Cas system: recent advances and future prospects for genome editing. PubMed DOI
Matesanz S., Ramos-Muñoz M., Moncalvillo B., Rubio Teso M. L., García de Dionisio S. L., Romero J., et al. (2020). Plasticity to drought and ecotypic differentiation in populations of a crop wild relative. PubMed DOI PMC
Maxted N., Dulloo E., Ford-Lloyd B. V., Iriondo J. M., Jarvis A. (2008). Gap analysis: a tool for complementary genetic conservation assessment. DOI
Maxted N., Hawkes J., Guarino L., Sawkins M. (1997). Towards the selection of taxa for plant genetic conservation. DOI
Mazzafera P., Favarin J. L., Andrade S. A. L. (2021). Intercropping Systems in Sustainable Agriculture. DOI
McCouch S., Navabi Z. K., Abberton M., Anglin N. L., Barbieri R. L., Baum M., et al. (2020). Mobilizing crop biodiversity. PubMed DOI
Merrick L. F., Carter A. H. (2021). Comparison of genomic selection models for exploring predictive ability of complex traits in breeding programs. PubMed DOI
Meuwissen T., Hayes B., Goddard M. (2001). Prediction of total genetic value using genome-wide dense marker maps. PubMed DOI PMC
Meyer R. S., Duval A. E., Jensen H. R. (2012). Patterns and processes in crop domestication: an analysis of 203 global food crops. PubMed
Mishra R., Joshi R. K., Zhao K. (2018). Genome editing in rice: recent advances, challenges, and future implications. PubMed DOI PMC
Molla K. A., Sretenovic S., Bansal K. C., Yiping Q. (2021). Precise plant genome editing using base editors and prime editors. PubMed DOI
Mousavi-Derazmahalleh M., Bayer P. E., Nevado B., Hurgobin B., Filatov D., Kilian A., et al. (2018). Exploring the genetic and adaptive diversity of a pan-Mediterranean crop wild relative: narrow-leafed lupin. PubMed DOI PMC
Muir J. P., Pitman W. D., Dubeux J. C., Foster J. L. (2014). The future of warm-season, tropical and subtropical forage legumes in sustainable pastures and rangelands. DOI
Muir J. P., Pitman W. D., Smith F. S., Lloyd-Reilley J., Shadow R. A. (2018). Challenges to developing native legume seed supplies: the Texas experience as a case study. DOI
Muleta K. T., Bulli P., Zhang Z., Chen X., Pumphrey M. (2017). Unlocking diversity in germplasm collections via genomic selection: a case study based on quantitative adult plant resistance to stripe rust in spring wheat. PubMed DOI
Muller K., Guinness J., Hecking M., Drinkwater L. (2021). Estimating agronomically relevant symbiotic N fixation in green manure breeding programs. DOI
Nagel R., Durka W., Bossdorf O., Bucharova A. (2019). Rapid evolution in native plants cultivated for ecological restoration: not a general pattern. PubMed DOI
Nevo E., Chen G. (2010). Drought and salt tolerances in wild relatives for wheat and barley improvement. PubMed DOI
Nichols P. G. H., Revell C. K., Humphries A. W., Howie J. H., Hall E. J., Sandral G. A., et al. (2012). Temperate pasture legumes in Australia – their history, current use, and future prospects.
Nicotra A. B., Atkin O. K., Bonser S. P., Davidson A. M., Finnegan J., Mathesius U., et al. (2010). Plant phenotypic plasticity in a changing climate. PubMed
Norman H. C., Cocks P. S., Galwey N. W. (2002). Hardseededness in annual clovers: variation between populations from wet and dry environments.
Norman H. C., Cokcs P. S., Galwey N. W. (2005). Annual clovers (
Nutt B. J., Loi A. (1999). “Harvestability of annual Mediterranean pasture legumes using conventional crop machinery,” in
Ogutcen E., Pandey A., Khan M. K., Marques E., Penmetsa R. V., Kahraman A., et al. (2018). Pod shattering: a homologous series of variation underlying domestication and an avenue for crop improvement.
Ovalle C. M., Del Pozo A. L., Avendaño J. R., Fernández F. E., Arredondo S. S. (2005). Adaptation, growth and production of new annual forage legumes in the Mediterranean Zone of Chile. II. Species performance in granitic soils of the sub-humid interior dryland.
Pacher M., Puchta H. (2017). From classical mutagenesis to nuclease-based breeding—directing natural DNA repair for a natural end-product. PubMed DOI
Pailles Y., Awlia M., Julkowska M., Passone L., Zemmouri K., Negrão S., et al. (2020). Diverse traits contribute to salinity tolerance of wild tomato seedlings from the Galapagos Islands. PubMed DOI PMC
Passioura J. (2006). Increasing crop productivity when water is scarce—from breeding to field management. DOI
Phillips J., Whitehouse K., Maxted N. (2019). An DOI
Phillips S., Anderson R., Schapire R. (2006). Maximum entropy modeling of species geographic distributions.
Piano P., Pecetti L., Carroni A. M. (1996). Climatic adaptation in subterranean clover populations.
Pingali P. L. (2012). Green revolution: impacts, limits, and the path ahead. PubMed DOI PMC
Pizza R., Espeland E., Etterson J. (2021). Eight generations of native seed cultivation reduces plant fitness relative to the wild progenitor population. PubMed DOI PMC
Polechová J., Barton N. H. (2015). Limits to adaptation along environmental gradients. PubMed DOI PMC
Postman J., Hummer K., Ayala-Silva T., Bretting P., Franko T., Kinard G., et al. (2010). GRIN-GLOBAL: an international project to develop a global plant Genebank information management system. DOI
Prohens J., Gramazio P., Plazas M., Dempewolf H., Kilian B., Diez M. J., et al. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. DOI
Provorov N., Tikhonovich I. (2003). Genetic resources for improving nitrogen fixation in legume-rhizobia symbiosis. DOI
Purugganan M. D. (2019). Evolutionary insights into the nature of plant domestication. PubMed DOI
Purugganan M. D., Fuller D. Q. (2009). The nature of selection during plant domestication. PubMed DOI
Qian C., Yan X., Shi Y., Yin H., Chang Y., Chen J., et al. (2020). Adaptive signals of flowering time pathways in wild barley from Israel over 28 generations. PubMed DOI PMC
Quezada-Martinez D., Addo Nyarko C. P., Schiessl S. V., Mason A. S. (2021). Using wild relatives and related species to build climate resilience in Brassica crops. PubMed DOI PMC
Ramsay L., Koh C. S., Kagale S., Gao D., Kaur S., Haile T., et al. (2021). Genomic rearrangements have consequences for introgression breeding as revealed by genome assemblies of wild and cultivated lentil species. DOI
Raubach S., Kilian B., Dreher K., Amri A., Bassi F. M., Boukar O., et al. (2021). From bits to bites: advancement of the Germinate platform to support prebreeding informatics for crop wild relatives.
Redden R. (2013). New approaches for crop genetic adaptation to the abiotic stresses predicted with climate change. DOI
Redden R., Berger J. D. (2007). “History and origin of chickpea,” in
Renzi J. P. (2020).
Renzi J. P., Chantre G. R., Cantamutto M. A. (2017). Self-regeneration of hairy vetch (
Renzi J. P., Chantre G. R., Smýkal P., Presotto A. D., Zubiaga L., Garayalde A. F., et al. (2020). Diversity of naturalized hairy vetch ( PubMed DOI PMC
Renzi J. P., Chantre G., González-Andújar J. L., Cantamutto M. A. (2019). Development and validation of a simulation model for hairy vetch (
Reynolds M. P., Saint Pierre C., Saad A. S. I., Vargas M., Condon A. G. (2007). Evaluating potential genetic gains in wheat associated with stress adaptive trait expression in elite genetic resources under drought and heat stress. DOI
Ricardo D. (2005). “From the principles of political economy and taxation,” in
Richards R. A. (2006). Physiological traits used in the breeding of new cultivars for water-scarce environments. DOI
Rieseberg L. H., Van Fossen C., Desrochers A. M. (1995). Hybrid speciation accompanied by genomic reorganization in wild sunflowers.
Rodríguez-Leal D., Lemmon Z. H., Man J., Bartlett M. E., Lippman Z. B. (2017). Engineering quantitative trait variation for crop improvement by genome editing. PubMed DOI
Rohden F., Scholz A. H. (2022). The international political process around Digital Sequence Information under the Convention on Biological Diversity and the 2018–2020 intersessional period.
Runck B. C., Kantar M. B., Jordan N. R., Anderson J. A., Wyse D. L., Eckberg J. O., et al. (2014). The reflective plant breeding paradigm: a robust system of Germplasm development to support strategic diversification of Agroecosystems. DOI
Runck B. C., Khoury C. K., Ewing P. M., Kantar M. (2020). The hidden land use cost of upscaling cover crops. PubMed DOI PMC
Russell J., van Zonneveld M., Dawson I. K., Booth A., Waugh R., Steffenson B. (2014). Genetic diversity and ecological niche modeling of wild barley: refugia, large-scale post-LGM Range expansion and limited mid-future climate threats? PubMed DOI PMC
Saatkamp A., Cochrane A., Commander L., Guja L. K., Jimenez-Alfaro B., Larson J., et al. (2019). A research agenda for seed-trait functional ecology. PubMed DOI
Sadras V. O., Richards R. A. (2014). Improvement of crop yield in dry environments: benchmarks, levels of organization and the role of nitrogen. PubMed DOI
Sakuma S., Salomon B., Komatsuda T. (2011). The domestication syndrome genes responsible for the major changes in plant form in the Triticeae crops. PubMed DOI PMC
Sandquist D. R., Ehleringer J. R. (1997). Intraspecific variation of leaf pubescence and drought response in DOI
Sansaloni C., Franco J., Santos B., Percival-Alwyn L., Singh S., Petroli C., et al. (2020). Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. PubMed DOI PMC
Scafaro A. P., Gallé A., Van Rie J., Carmo-Silva E., Salvucci M. E., Atwell B. J. (2016). Heat tolerance in a wild PubMed DOI
Scott M. F., Ladejobi O., Amer S., Bentley A. R., Biernaskie J., Boden S. A., et al. (2020). Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. PubMed DOI PMC
Sebby K. (2010).
Sedeek K. E. M., Mahas A., Mahfouz M. (2019). Plant genome engineering for targeted improvement of crop traits. PubMed DOI PMC
Sehgal A., Sita K., Siddique K. H. M., Kumar R., Bhogireddy S., Varshney R. K., et al. (2018). Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. PubMed DOI PMC
Seiler G. J., Qi L. L., Marek L. F. (2017). Utilization of sunflower crop wild relatives for cultivated sunflower improvement. DOI
Sharma S., Upadhyaya H. D. (2019). Photoperiod response of annual wild cicer species and cultivated chickpea on phenology, growth, and yield traits.
Shelef O., Weisberg P. J., Provenza F. D. (2017). The value of native plants and local production in an era of global agriculture. PubMed DOI PMC
Shi J., Gao H., Wang H., Lafitte H. R., Archibald R. L., Yang M., et al. (2017). ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. PubMed DOI PMC
Silenzi J. C., Echeverria N. E., Vallejos A. G., Bouza M. E., De Lucia M. P. (2012). Wind erosion risk in the southwest of Buenos Aires province, Argentina and its relationship to the productivity index.
Singh K. B., Malhotra R. S., Saxena M. C. (1990). Sources for tolerance to cold in
Singh K. B., Malhotra R. S., Halila M. H., Knights E. J., Verma M. M. (1994). Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stresses.
Singh N., Wang D. R., Ali L., Kim H., Akther K. M., Harrington S. E., et al. (2020). A coordinated suite of wild-introgression lines in Indica and Japonica elite backgrounds. PubMed DOI PMC
Skarbø K., VanderMolen K. (2014). Irrigation access and vulnerability to climate-induced hydrological change in the Ecuadorian Andes.
Smýkal P., Nelson M., Berger J., von Wettberg E. (2018). The impact of genetic changes during crop domestication. DOI
Smýkal P., Vernoud V., Blair M. W., Soukup A., Thompson R. D. (2014). The role of the testa during development and in establishment of dormancy of the legume seed. PubMed DOI PMC
Smýkal P., Hradilová I., Trněný O., Brus J., Rathore A., Bariotakis M., et al. (2017). Genomic diversity and macroecology of the crop wild relatives of domesticated pea. PubMed PMC
Song Q., Hyten D. L., Jia G., Quigley C. V., Fickus E. W., Nelson R. L., et al. (2015). Fingerprinting soybean germplasm and its utility in genomic research. PubMed DOI PMC
Stenberg J. A., Ortiz R. (2021). Focused identification of germplasm strategy (FIGS): polishing a rough diamond. PubMed DOI
Sukegawa S., Saika H., Toki S. (2021). Plant genome editing: ever more precise and wide reaching. PubMed DOI
Tanksley S. D., McCouch S. R. (1997). Seed banks and molecular maps: unlocking genetic potential from the wild. PubMed DOI
Taylor C. M., Garg G., Berger J. D., Ribalta F. M., Croser J. S., Singh K. B., et al. (2021). A Trimethylguanosine Synthase1-like (TGS1) homologue is implicated in vernalisation and flowering time control. PubMed DOI PMC
Taylor C. M., Kamphuis L. G., Zhang W., Garg G., Berger J. D., Mousavi-Derazmahalleh M., et al. (2019). INDEL variation in the regulatory region of the major flowering time gene LanFTc1 is associated with vernalization response and flowering time in narrow-leafed lupin ( PubMed DOI PMC
Taylor G. B., Maller L. A., Rossiter R. C. (1991). A model describing the influence of hard seededness on the persistence of an annual forage legume, in a ley farming system, in a mediterranean-type environment.
Tefera A. (2021). Pre-breeding concept and role in crop improvement. DOI
Thapa R., Kemp D. W., Nichols P. G. H. (2011).
Thomson B., Siddique K. H. (1997). Grain legume species in low rainfall Mediterranean-type environments II. Canopy development, radiation interception, and dry-matter production.
Thomson F. J., Moles A. T., Auld T. D., Kingsford R. T. (2011). Seed dispersal distance is more strongly correlated with plant height than with seed mass. DOI
Tilman D., Balzer C., Hill J., Befort B. L. (2011). Global food demand and the sustainable intensification of agriculture. PubMed DOI PMC
Title P. O., Bemmels J. B. (2018). ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. DOI
Toda E., Koiso N., Takebayashi A., Ichikawa M., Kiba T., Osakabe K., et al. (2019). An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. PubMed DOI
Václavík T., Lautenbach S., Kuemmerle T., Seppelt R. (2013). Mapping global land system archetypes.
Van Tassel D. L., Tesdell O., Schlautman B., Rubin M. J., DeHaan L. R., Crews T. E., et al. (2020). New food crop domestication in the age of gene editing: genetic, agronomic and cultural change remain co-evolutionarily entangled. PubMed DOI PMC
Van Tassel D., Albrecht K. A., Bever J. D., Boe A. A., Brandvain Y., Crews T. E., et al. (2017). Accelerating
Varshney R. K., Roorkiwal M., Sun S., Bajaj P., Chitikineni A., Thudi M., et al. (2021). A chickpea genetic variation map based on the sequencing of 3,366 genomes. PubMed PMC
Vavilov N. I. (1957).
Vilela A. E., González-Paleo L. (2015). Changes in resource-use strategy and phenotypic plasticity associated with selection for yield in wild species native to arid environments. DOI
Vincent H., Amri A., Castañeda-Álvarez N. P., Dempewolf H., Dulloo E., Guarino L., et al. (2019). Modeling of crop wild relative species identifies areas globally for in situ conservation. PubMed DOI PMC
von Wettberg E. J. B., Chang P. L., Başdemir F., Carrasquila-Garcia N., Korbu L. B., Moenga S. M., et al. (2018). Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. PubMed DOI PMC
von Wettberg E. J., Mukherjee J. R., Adesky N. D., Nesbeth D., Sistla S. (2014). “The evolutionary ecology and genetics of stress resistance syndrome (SRS) traits: revisiting Chapin, Autumn and Pugnaire (1993),” in
von Wettberg E., Khoury C. K. (2022). Biodiversity data: the importance of access and the challenges regarding benefit sharing. DOI
Walsh M. J., Groose R. W., Obour A. K., Claypool D. A., Delaney R. H., Krall J. M. (2013). Seed persistence in soil of five medic cultivars in southeastern wyoming.
Wang C., Hu S., Gardner C., Lübberstedt T. (2017). Emerging avenues for utilization of exotic germplasm. PubMed DOI
Warschefsky E., Varma Penmetsa R., Cook D. R., von Wettberg E. J. B. (2014). Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. PubMed DOI
Weiner J., Du Y.-L., Zhang C., Qin X.-L., Li F.-M. (2017). Evolutionary agroecology: individual fitness and population yield in wheat ( PubMed DOI
Weitemier K., Straub S. C. K., Cronn R. C., Fishbein M., Schmickl R., McDonnell A., et al. (2014). Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics. PubMed DOI PMC
Wiering N. P., Flavin C., Sheaffer C. C., Heineck G. C., Sadok W., Ehlke N. J. (2018). Winter hardiness and freezing tolerance in a hairy vetch collection. DOI
Wilke B. J., Snapp S. S. (2008). Winter cover crops for local ecosystems: linking plant traits and ecosystem function. DOI
Wilkinson M. D., Dumontier M., Aalbersberg I. J., Appleton G., Axton M., Baak A., et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. PubMed DOI PMC
Xiao A., Wang Z., Hu Y., Wu Y., Luo Z., Yang Z., et al. (2013). Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. PubMed DOI PMC
Ye M., Peng Z., Tang D., Yang Z., Li D., Xu Y., et al. (2018). Generation of self-compatible diploid potato by knockout of S-RNase. PubMed DOI
Yousfi N., Slama I., Ghnaya T., Sayoure A., Abdelly C. (2010). Effects of water deficit stress on growth, water relations and osmolyte accumulation in PubMed DOI
Yu J., Holland J. B., McMullen M. D., Buckler E. S. (2008). Genetic design and statistical power of nested association mapping in maize. PubMed DOI PMC
Yu J., Jiang M., Guo C. (2019). Crop pollen development under drought: from the phenotype to the mechanism. PubMed DOI PMC
Yu X., Li X., Guo T., Zhu C., Wu Y., Mitchell S. E., et al. (2016). Genomic prediction contributing to a promising global strategy to turbocharge gene banks. PubMed DOI
Zahran H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. PubMed DOI PMC
Zair W., Maxted N., Brehm J. M., Amri A. (2021). Ex situ and in situ conservation gap analysis of crop wild relative diversity in the Fertile Crescent of the Middle East. DOI
Zamir D. (2001). Improving plant breeding with exotic genetic libraries. PubMed DOI
Zhang H., Li Y., Zhu J.-K. (2018). Developing naturally stress-resistant crops for a sustainable agriculture. PubMed DOI
Zhang H., Mittal N., Leamy L. J., Barazani O., Song B. H. (2017). Back into the wild—Apply untapped genetic diversity of wild relatives for crop improvement. PubMed DOI PMC
Zohary D., Hopf M., Weiss E. (2012).
Zsögön A., Cermak T., Naves E. R., Notini M. M., Edel K. H., Weinl S., et al. (2018). De novo domestication of wild tomato using genome editing. PubMed DOI
Zsögön A., Cermak T., Voytas D., Peres L. E. P. (2017). Genome editing as a tool to achieve the crop ideotype and PubMed DOI