How Could the Use of Crop Wild Relatives in Breeding Increase the Adaptation of Crops to Marginal Environments?

. 2022 ; 13 () : 886162. [epub] 20220616

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35783966

Alongside the use of fertilizer and chemical control of weeds, pests, and diseases modern breeding has been very successful in generating cultivars that have increased agricultural production several fold in favorable environments. These typically homogeneous cultivars (either homozygous inbreds or hybrids derived from inbred parents) are bred under optimal field conditions and perform well when there is sufficient water and nutrients. However, such optimal conditions are rare globally; indeed, a large proportion of arable land could be considered marginal for agricultural production. Marginal agricultural land typically has poor fertility and/or shallow soil depth, is subject to soil erosion, and often occurs in semi-arid or saline environments. Moreover, these marginal environments are expected to expand with ongoing climate change and progressive degradation of soil and water resources globally. Crop wild relatives (CWRs), most often used in breeding as sources of biotic resistance, often also possess traits adapting them to marginal environments. Wild progenitors have been selected over the course of their evolutionary history to maintain their fitness under a diverse range of stresses. Conversely, modern breeding for broad adaptation has reduced genetic diversity and increased genetic vulnerability to biotic and abiotic challenges. There is potential to exploit genetic heterogeneity, as opposed to genetic uniformity, in breeding for the utilization of marginal lands. This review discusses the adaptive traits that could improve the performance of cultivars in marginal environments and breeding strategies to deploy them.

Zobrazit více v PubMed

Abbo S., Berger J., Turner N. C. (2003). Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct. Plant Biol. 30 1081–1087. PubMed

Abbo S., Lev-Yadun S., Galwey N. (2002). Vernalization response of wild chickpea. New Phytol. 154 695–701. PubMed

Abbo S., Pinhasi van-Oss R., Gopher A., Saranga Y., Ofner I., Peleg Z. (2014). Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci. 19 351–360. 10.1016/j.tplants.2013.12.002 PubMed DOI

Ahmadzai H., Tutundjian S., Elouafi I. (2021). Policies for sustainable agriculture and livelihood in marginal lands: a review. Sustainability 13:8692.

Al Bari M. A. A., Worral H., Szwiec S., Ma Y., Zheng P., Main D., et al. (2021). Harnessing genetic diversity in the USDA pea (Pisum sativum L.) germplasm collection through genomic prediction. Front. Genet. 12:707754. 10.3389/fgene.2021.707754 PubMed DOI PMC

Alonso-Blanco C., Aarts M. G. M., Bentsink L., Keurentjes J. J. B., Reymond M., Vreugdenhil D., et al. (2009). What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21 1877–1896. 10.1105/tpc.109.068114 PubMed DOI PMC

Altpeter F., Springer N. M., Bartley L. E., Blechl A. E., Brutnell T. P., Citovsky V., et al. (2016). Advancing crop transformation in the era of genome editing. Plant Cell 28 1510–1520. 10.1105/tpc.16.00196 PubMed DOI PMC

Anderson J. E., Kono T. J. Y., Stupar R. M., Kantar M. B., Morrell P. L. (2016). Environmental association analyses identify candidates for abiotic stress tolerance in Glycine soja, the wild progenitor of cultivated soybeans. G3 Genes Genom. Genet. 6 835–843. 10.1534/g3.116.026914 PubMed DOI PMC

Anderson J. T., Willis J. H., Mitchell-Olds T. (2011). Evolutionary genetics of plant adaptation. Trends Genet. 27 258–266. 10.1016/j.tig.2011.04.001 PubMed DOI PMC

Annicchiarico P., Barrett B., Brummer E. C., Julier B., Marshall A. H. (2015). Achievements and challenges in improving temperate perennial forage legumes. Crit. Rev. Plant Sci. 34 327–380. 10.1080/07352689.2014.898462x DOI

Araújo S. S., Beebe S., Crespi M., Delbreil B., González E. M., Gruber V., et al. (2015). Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Crit. Rev. Plant Sci. 34 237–280. 10.1080/07352689.2014.898450 DOI

Araus J. L., Kefauver S. C. (2018). Breeding to adapt agriculture to climate change: affordable phenotyping solutions. Curr. Opin. Plant Biol. 45(Pt. B) 237–247. 10.1016/j.pbi.2018.05.003 PubMed DOI

Arora L., Narula A. (2017). Gene editing and crop improvement using CRISPR-cas9 system. Front. Plant Sci. 8:1932. 10.3389/fpls.2017.01932 PubMed DOI PMC

Ayangbenro A. S., Babalola O. O. (2020). Reclamation of arid and semi-arid soils: the role of plant growth-promoting archaea and bacteria. Curr. Plant Biol. 25 100173. 10.1016/j.cpb.2020.100173 DOI

Badaruddin M. I., Meyer D. W. (2001). Factors modifying frost tolerance of legume species. Crop Sci. 41 1911–1916.

Bahrami F., Arzani A., Rahimmalek M. (2021). Tolerance to high temperature at reproductive stage: trade-offs between phenology, grain yield and yield-related traits in wild and cultivated barleys. Plant Breed. 140 812–826. 10.1111/pbr.12953 DOI

Balakrishnan D., Surapaneni M., Mesapogu S., Neelamraju S. (2019). Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theor. Appl. Genet. 132 1–25. 10.1007/s00122-018-3219-y PubMed DOI

Bari A., Street K., Mackay M., Endresen D. T. F., De Pauw E., Amri A. (2012). Focused identification of germplasm strategy (FIGS) detects wheat stem rust resistance linked to environmental variables. Genet. Resour. Crop Evol. 59 1465–1481.

Basey A. C., Fant J. B., Kramer A. T. (2015). Producing native plant materials for restoration: 10 rules to collect and maintain genetic diversity. Native Plants J. 16 37–53. 10.3368/npj.16.1.37 DOI

Beche E., Gillman J. D., Song Q., Nelson R., Beissinger T., Decker J., et al. (2021). Genomic prediction using training population design in interspecific soybean populations. Mol. Breed. 41:15. 10.1007/s11032-021-01203-6 PubMed DOI PMC

Belhaj K., Chaparro-Garcia A., Kamoun S., Nekrasov V. (2013). Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9 1–10. 10.1186/1746-4811-9-39 PubMed DOI PMC

Berger J. D., Ludwig C. (2014). Contrasting adaptive strategies to terminal drought stress gradients in Mediterranean legumes: phenology, productivity and water relations in wild and domesticated Lupinus luteus L. J. Exp. Bot. 65 6219–6229. 10.1093/jxb/eru006 PubMed DOI PMC

Berger J. D., Buck R., Henzell J. M., Turner N. C. (2005). Evolution in the genus Cicer – vernalisation response and low temperature pod set in chickpea (C. arietinum L.) and its annual wild relatives. Aust. J. Agric. Res. 56 1191–1200.

Berger J. D., Kumar S., Nayyar H., Street K., Sandhu J. S., Henzell J. M., et al. (2012b). Temperature-stratified screening of chickpea (Cicer arietinum L.) genetic resource collections reveals very limited reproductive chilling tolerance compared to its annual wild relatives. Field Crops Res. 126 119–129.

Berger J. D., Buirchell B., Luckett D. J., Nelson M. N. (2012a). Domestication bottlenecks limit genetic diversity and constrain adaptation in narrow-leafed lupin (Lupinus angustifolius L.). Theor. Appl. Genet. 124 637–652. 10.1007/s00122-011-1736-z PubMed DOI

Berger J. D., Ludwig C., Whisson K. (2020). Changing water use and adaptive strategies along rainfall gradients in Mediterranean lupins. Plant Biol. 22 298–308. 10.1111/plb.13076 PubMed DOI

Berger J. D., Milroy S. P., Turner N. C., Siddique K. H. M., Imtiaz M., Malhotra R. (2011). Chickpea evolution has selected for contrasting phenological mechanisms among different habitats. Euphytica 180 1–15.

Berger J. D., Robertson L. D., Cocks P. S. (2002). Agricultural potential of Mediterranean grain and forage legumes: key differences between and within Vicia species in terms of phenology, yield, and agronomy give insight into plant adaptation to semi-arid environments. Genet. Resour. Crop Evol. 49 313–325.

Berger J. D., Shrestha D., Ludwig C. (2017). Reproductive strategies in mediterranean legumes: trade-offs between phenology, seed size and vigor within and between wild and domesticated Lupinus species collected along aridity gradients. Front. Plant Sci. 8:548. 10.3389/fpls.2017.00548 PubMed DOI PMC

Berger J., Palta J., Vadez V. (2016). Review: an integrated framework for crop adaptation to dry environments: responses to transient and terminal drought. Plant Sci. 253 58–67. 10.1016/j.plantsci.2016.09.007 PubMed DOI

Berger J., Pushpavalli R., Ludwig C., Parsons S., Basdemir F., Whisson K. (2020). Wild and domestic differences in plant development and responses to water deficit in Cicer. Front. Genet. 11:607819. 10.3389/fgene.2020.607819 PubMed DOI PMC

Bheemanahalli R., Sathishraj R., Manoharan M., Sumanth H. N., Muthurajan R., Ishimaru T., et al. (2017). Is early morning flowering an effective trait to minimize heat stress damage during flowering in rice? Field Crops Res. 203 238–242. 10.1016/j.fcr.2016.11.011 PubMed DOI PMC

Bohra A., Kilian B., Sivasankar S., Caccamo M., Mba C., McCouch S. R., et al. (2021). Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 40 412–431. 10.1016/j.tibtech.2021.08.009 PubMed DOI

Brandsæter L. O., Olsmo A., Tronsmo A. M., Fykse H. (2002). Freezing resistance of winter annual and biennial legumes at different developmental stages. Crop Sci. 42:437. 10.2135/cropsci2002.4370 DOI

Breseghello F., Coelho A. S. G. (2013). Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). J. Agric. Food Chem. 61 8277–8286. 10.1021/jf305531j PubMed DOI

Brink M., van Hintum T. (2022). Practical consequences of digital sequence information (DSI) definitions and access and benefit-sharing scenarios from a plant genebank’s perspective. Plants People Planet 4 23–32. 10.1002/ppp3.10201 DOI

Brozynska M., Furtado A., Henry R. J. (2016). Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol. J. 14 1070–1085. 10.1111/pbi.12454 PubMed DOI PMC

Brunazzi A., Scaglione D., Talini R. F., Miculan M., Magni F., Poland J., et al. (2018). Molecular diversity and landscape genomics of the crop wild relative Triticum urartu across the Fertile Crescent. Plant J. 94 670–684. 10.1111/tpj.13888 PubMed DOI

Brus J., Pechanec V., Machar I. (2018). Depiction of uncertainty in the visually interpreted land cover data. Ecol. Inf. 47 10–13. 10.1016/j.ecoinf.2017.10.015 DOI

Buitrago-Bitar M. A., Cortés A. J., López-Hernández F., Londoño-Caicedo J. M., Muñoz-Florez J. E., Carmenza Muñoz L., et al. (2021). Allelic diversity at abiotic stress responsive genes in relationship to ecological drought indices for cultivated tepary bean, Phaseolus acutifolius A. Gray, and its wild relatives. Genes 12 1–17. 10.3390/genes12040556 PubMed DOI PMC

Bullock J. M., Mallada González L., Tamme R., Götzenberger L., White S. M., Pärtel M., et al. (2017). A synthesis of empirical plant dispersal kernels. J. Ecol. 105 6–19. 10.1111/1365-2745.12666 DOI

Cable J., Ronald P. C., Voytas D., Zhang F., Levy A. A., Takatsuka A., et al. (2021). Plant genome engineering from lab to field—a Keystone Symposia report. Ann. N. Y. Acad. Sci. 1506 35–54. 10.1111/nyas.14675 PubMed DOI

Campbell J. E., Lobell D. B., Genova R. C., Field C. B. (2008). The global potential of bioenergy on abandoned agriculture lands. Environ. Sci. Technol. 42 5791–5794. 10.1021/es800052w PubMed DOI

Cantamutto M. A., Bertucci C. L., Huarte R. D. (2016). El trigo en el Sudoeste Bonaerense. Ed INTA. 76. Available online at: https://inta.gob.ar/sites/default/files/inta_trigo-sudoeste.bonaerense.2016.pdf (accessed February 1, 2022).

Carr P. M., Poland W. W., Tisor L. J. (2005). Forage legume regeneration from the soil seed bank in Western North Dakota. Agron. J. 97 505–513.

Castro H., Castro P. (2019). “Mediterranean marginal lands in face of climate change: biodiversity and ecosystem services,” in Climate Change-Resilient Agriculture and Agroforestry, eds Castro P., Azul A., Leal Filho W., Azeiteiro U. (Cham: Springer; ), 175–187.

Chapman S. C., Cooper M., Hammer G. L., Butler D. G. (2000). Genotype by environment interactions affecting grain sorghum. II. Frequencies of different seasonal patterns of drought stress are related to location effects on hybrid yields. Aust. J. Agric. Res. 51:209. 10.1071/AR99021 DOI

Chaturvedi P., Wiese A. J., Ghatak A., Zaveska Drabkova L., Weckwerth W., Honys D. (2021). Heat stress response mechanisms in pollen development. New Phytol. 231 571–585. 10.1111/nph.17380 PubMed DOI PMC

Chen C., Fletcher A., Lawes R., Berger J., Robertson M. (2017). Modelling phenological and agronomic adaptation options for narrow-leafed lupins in the southern grainbelt of Western Australia. Eur. J. Agron. 89 140–147.

Chen Q., Yang C. J., York A. M., Xue W., Daskalska L. L., DeValk C. A., et al. (2019). TeoNAM: a nested association mapping population for domestication and agronomic trait analysis in maize. Genetics 213 1065–1078. 10.1534/genetics.119.302594 PubMed DOI PMC

Chen S., Stefanova K., Siddique K. H., Cowling W. A. (2021). Transient daily heat stress during the early reproductive phase disrupts pod and seed development in Brassica napus L. Food Energy Secur. 10:e262.

Clark R. M., Linton E., Messing J., Doebley J. F. (2004). Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc. Natl. Acad. Sci. U.S.A. 101 700–707. 10.1073/pnas.2237049100 PubMed DOI PMC

Coba de la Peña T., Pueyo J. J. (2011). Legumes in the reclamation of marginal soils, from cultivar and inoculant selection to transgenic approaches. Agron. Sustain. Dev. 32 65–91. 10.1007/s13593-011-0024-2 DOI

Colbach N., Durr C., Roger-Estrade J., Caneill J. (2005). How to model the effects of farming practices on weed emergence. Weed Res. 45 2–17.

Combs E., Bernardo R. (2013). Genomewide selection to introgress semidwarf maize germplasm into U.S. Corn Belt inbreds. Crop Sci. 53 1427–1436. 10.2135/cropsci2012.11.0666 DOI

Cortes A. J., Lopez-Hernandez F. (2021). Harnessing crop wild diversity for climate change adaptation. Genes 12:21. 10.3390/genes12050783 PubMed DOI PMC

Cowling W. A., Buirchell B. J., Falk D. E. (2009). A model for incorporating novel alleles from the primary gene pool into elite crop breeding programs while reselecting major genes for domestication or adaptation. Crop Pasture Sci. 60 1009–1015.

Coyne C. J., Shiv Kumar S., von Wettberg E. B., Marques E., Berger J. D., Redden R. J., et al. (2020). Potential and limits of exploitation of crop wild relatives for pea, lentil and chickpea improvement. Legume Sci. 2:e36. 10.1002/leg3.36 DOI

Crossa J., Pérez-Rodríguez P., Cuevas J., Montesinos-López O., Jarquín D., de los Campos G., et al. (2017). Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci. 22 961–975. 10.1016/j.tplants.2017.08.011 PubMed DOI

Das A., Sharma N., Prasad M. (2019). CRISPR/Cas9: a novel weapon in the arsenal to combat plant diseases. Front. Plant Sci. 9:2008. 10.3389/fpls.2018.02008 PubMed DOI PMC

Dauber J., Jones M. B., Stout J. C. (2010). The impact of biomass crop cultivation on temperate biodiversity. GCB Bioenergy 2 289–309.

De Andrés E., Zambrana E., Cadorniga C., Martín D., Marcos T., De la Rosa L., et al. (2008). Estudio de caracteres de resistencia a la sequía en la colección activa de Vicia sativa L del CRF-INIA. Actas Asoc. Esp. Leguminosas 3 124–125.

de Felipe M., Alvarez Prado S. (2021). Has yield plasticity already been exploited by soybean breeding programmes in Argentina? J. Exp. Bot. 72 7264–7273. 10.1093/jxb/erab347 PubMed DOI

De la Rosa L., Zambrana E., Ramirez-Parra E. (2020). Molecular bases for drought tolerance in common vetch: designing new molecular breeding tools. BMC Plant Biol. 20:71. 10.1186/s12870-020-2267-z PubMed DOI PMC

DeHaan L., Larson S., López-Marqués R. L., Wenkel S., Gao C., Palmgren M. (2020). Roadmap for accelerated domestication of an emerging perennial grain crop. Trends Plant Sci. 25 525–537. PubMed

Dempewolf H., Baute G., Anderson J., Kilian B., Smith C., Guarino L. (2017). Past and future use of wild relatives in crop breeding. Crop Sci. 57 1070–1082. 10.2135/cropsci2016.10.0885 DOI

Dempewolf H., Eastwood R. J., Guarino L., Khoury C. K., Müller J. V., Toll J. (2014). Adapting agriculture to climate change: a global initiative to collect, conserve, and use crop wild relatives. Agroecol. Sustain. Food Syst. 38 369–377.

Donald C. M. (1981). “Competitive plants, communal plants, and yield in wheat crops,” in Wheat Science – Today and Tomorrow, eds Evans L. T., Peackock W. J. (Cambridge: Cambridge University Press; ), 223–247. 10.3389/fpls.2021.734056 DOI

Driouech N., Abou Fayad F., Ghanem A., Al-bitar L. (2008). “Agronomic performance of annual self-reseeding legumes and their self-establishment potential in the Apulia region of Italy,” in Proceedings of the 16th IFOAM Organic World Congress, Modena.

Duc G., Agrama H., Bao S., Berger J., Bourion V., De Ron A. M., et al. (2015). Breeding annual grain legumes for sustainable agriculture: new methods to approach complex traits and target new cultivar ideotypes. Crit. Rev. Plant Sci. 34 381–411. 10.1080/07352689.2014.898469 DOI

Dürr C., Dickie J., Yang X.-Y., Pritchard H. (2015). Ranges of critical temperature and water potential values for the germination of species worldwide: contribution to a seed trait database. Agric. For. Meteorol. 200 222–232.

El Haddad N., Sanchez-Garcia M., Visioni A., Jilal A., El Amil R., Sall A. T., et al. (2021). Crop wild relatives crosses: multi-location assessment in durum wheat, barley, and lentil. Agronomy 11:2283. 10.3390/agronomy11112283 DOI

El-Beltagy A., Madkour M. (2012). Impact of climate change on arid lands agriculture. Agric. Food Secur. 1 1–12. 10.1186/2048-7010-1-3 DOI

Elbersen B., Van Eupen M., Mantel S., Alexopoulou E., Bai Z., Boogard H., et al. (2018). “Mapping marginal land potentially available for industrial crops in Europe,” in Paper presented at the European Biomass Conference and Exhibition Proceedings 26thEUBCE, Copenhagen.

Endresen D. T. F., Street K., Mackay M., Bari A., De Pauw E. (2011). Predictive association between biotic stress traits and eco-geographic data for wheat and barley landraces. Crop Sci. 5 2036–2055.

Espeland E. K., Johnson R. C., Horning M. E. (2018). Plasticity in native perennial grass populations: implications for restoration. Evol. Appl. 11 340–349.

Evenson R. E., Gollin D. (2003). Assessing the impact of the Green Revolution, 1960 to 2000. Science 300 758–762. 10.1126/science.1078710 PubMed DOI

Fauser F., Schiml S., Puchta H. (2014). Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 79 348–359. 10.1111/tpj.12554 PubMed DOI

Fernández I., Fraysse M., Presotto A., Cantamutto M. A. (2012). Evaluation of Argentine wild sunflower biotypes for drought stress during reproductive stage. Helia 35 29–36. 10.2298/hel1257029f DOI

Fernie A. R., Yan J. (2019). De novo domestication: an alternative route toward new crops for the future. Mol. Plant 12 615–631. PubMed

Fick S. E., Hijmans R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37 4302–4315. 10.1002/joc.5086 DOI

Forcella F., Benech-Arnold R. L., Sánchez R., Ghersa C. M. (2000). Modeling seedling emergence. Field Crops Res. 67 123–139.

Foyer C., Lam H. M., Nguyen H., Siddique K. H., Varshney R. K., Colmer T. D., et al. (2016). Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2:16112. 10.1038/nplants.2016.112 PubMed DOI

Fuller D. Q., Allaby R. (2009). “Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation,” in Annual Plant Reviews: Fruit Development and Seed Dispersal, ed. Østergaard L. (Oxford: Wiley-Blackwell; ), 238–295.

Fuller D. Q., Allaby R. (2018). “Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation,” in Annual Plant Reviews online, ed. Roberts J. A. (Chichester: John Wiley & Sons, Ltd; ), 238–295. 10.1002/9781119312994.apr0414 DOI

Fustier M. A., Brandenburg J. T., Boitard S., Lapeyronnie J., Eguiarte L. E., Vigouroux Y., et al. (2017). Signatures of local adaptation in lowland and highland teosintes from whole-genome sequencing of pooled samples. Mol. Ecol. 26 2738–2756. PubMed

Gage J. L., Monier B., Giri A., Buckler E. S. (2020). Ten years of the maize nested association mapping population: impact, limitations, and future directions. Plant Cell 32 2083–2093. 10.1105/tpc.19.00951 PubMed DOI PMC

Gardarin A., Coste F., Wagner M. H., Dürr C. (2016). How do seed and seedling traits influence germination and emergence parameters in crop species? A comparative analysis. Seed Sci. Res. 26 317–331. 10.1017/s0960258516000210 DOI

Gardarin A., Durr C., Colbach N. (2012). Modelling the dynamics and emergence of multispecies weed seed bank with species traits. Ecol. Modell. 240 123–138.

Garibaldi L. A., Aizen M. A., Saez A., Gleiser G., Strelin M. M., Harder L. D. (2021). The influences of progenitor filtering, domestication selection and the boundaries of nature on the domestication of grain crops. Funct. Ecol. 35 1998–2011.

Ghoshal B., Picard C. L., Vong B., Feng S., Jacobsen S. E. (2021). CRISPR-based targeting of DNA methylation in Arabidopsis thaliana by a bacterial CG-specific DNA methyltransferase. Proc. Natl. Acad. Sci. U.S.A. 118:e2125016118. 10.1073/pnas.2125016118 PubMed DOI PMC

Gladstones J. S. (1994). “An historical review of lupins in Australia,” in Proceedings of the 1st Lupin Technical Symposium, eds Dracup M., Palta J. A. (Perth, WA: Department of Agriculture; ), 1–38. 10.1002/ar.24517 DOI

Gladstones J. S., Hill G. D. (1969). Selection for economic characters in Lupinus angustifulius and L. digitatus. 2. Time of flowering. Aust. J. Exp. Agric. Anim. Husbandry 9 213–220.

Goddard M., Hayes B. (2007). Genomic selection. J. Anim. Breed. Genet. 124 323–330. PubMed

Gonzalez M. Y., Zhao Y., Jiang Y., Stein N., Habekuss A., Reif J. C., et al. (2021). Genomic prediction models trained with historical records enable populating the German ex situ genebank bio-digital resource center of barley (Hordeum sp.) with information on resistances to soilborne barley mosaic viruses. Theor. Appl. Genet. 134 2181–2196. 10.1007/s00122-021-03815-0 PubMed DOI PMC

González-Andujar J. L., Fernández-Quintanilla C. (1993). Strategies for the control of Avena sterilis in winter wheat production systems in central Spain. Crop Protect. 12 617–623.

González-Andujar J. L., Fernández-Quintanilla C. (2004). Modelling the population dynamics of annual ryegrass (Lolium rigidum) under various weed management systems. Crop Protect. 23 723–729.

González-Paleo L., Ravetta D. A. (2015). Carbon acquisition strategies uncoupled from predictions derived from species life-cycle. Flora 212 1–9. 10.1016/j.flora.2015.02.004 DOI

Grime J. P. (1974). Vegetation classification by reference to strategies. Nature 250 26–31.

Hajjar R., Hodgkin T. (2007). The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156 1–13. 10.1007/s10681-007-9363-0 DOI

Harlan J. R., de Wet J. M. J. (1971). Toward a rational classification of cultivated plants. Taxon 20 509–517. 10.2307/1218252 DOI

Hellwig T., Abbo S., Sherman A., Ophir R. (2021). Prospects for genetic diversity of crop wild relatives under climate change: the case of the wild pea Pisum fulvum. Plant Sci. 310:110957. PubMed

Hernández F., Poverene M., Presotto A. (2018). Heat stress effects on reproductive traits in cultivated and wild sunflower (Helianthus annuus L.): evidence for local adaptation within the wild germplasm. Euphytica 214:146. 10.1007/s10681-018-2227-y DOI

Hernández F., Poverene M., Mercer K. L., Presotto A. (2020). Genetic variation for tolerance to extreme temperatures in wild and cultivated sunflower (Helianthus annuus) during early vegetative phases. Crop Pasture Sci. 71:578. 10.1071/CP20005 DOI

Hoad S. P., Davies D. H. K., Topp C. E. F. (2006). How to select varieties for organic farming: science and practice. Aspects Appl. Biol. 79 117–120.

Holst N., Rasmussen I. A., Bastiaans L. (2007). Field weed population dynamics: a review of model approaches and applications. Weed Res. 47 1–14.

Hondelmann W. (1984). The Lupin-ancient and modern crop plant. Theor. Appl. Genet. 68 1–9. 10.1007/BF00252301 PubMed DOI

Hradilová I., Duchoslav M., Brus J., Pechanec V., Hýbl M., Kopecký P., et al. (2019). Variation in wild pea (Pisum sativum subsp. elatius) seed dormancy and its relationship to the environment and seed coat traits. PeerJ 6:e6263. 10.7717/peerj.6263 PubMed DOI PMC

Hu J., Guo C., Wang B., Ye J., Liu M., Wu Z., et al. (2018). Genetic properties of a Nested Association Mapping population constructed with semi-winter and spring oilseed rapes. Front. Plant Sci. 9:1740. 10.3389/fpls.2018.01740 PubMed DOI PMC

Iqbal M. M., Erskine W., Berger J. D., Nelson M. N. (2020). Phenotypic characterisation and linkage mapping of domestication syndrome traits in yellow lupin (Lupinus luteus L.). Theor. Appl. Genet. 133 2975–2987. 10.1007/s00122-020-03650-9 PubMed DOI PMC

Jacobsen E., Schouten H. J. (2007). Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants. Trends Biotechnol. 25 219–223. 10.1016/j.tibtech.2007.03.008 PubMed DOI

Jones H. P., Hole D. G., Zavaleta E. S. (2012). Harnessing nature to help people adapt to climate change. Nat. Clim. Change 2 504–509.

Joost S., Bonin A., Bruford M. W., Després L., Conord C., Erhardt G., et al. (2007). A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol. Ecol. 16 3955–3969. 10.1111/j.1365-294X.2007.03442.x PubMed DOI

Kang S., Post W. M., Nichols J. A., Wang D., West T. O., Bandaru V., et al. (2013). Marginal lands: concept, assessment and management. J. Agric. Sci. 5:129.

Kantar M. B., Nashoba A. R., Anderson J. E., Blackman B. K., Rieseberg L. H. (2017). The genetics and genomics of plant domestication. BioScience 67 971–982.

Kantar M. B., Sosa C. C., Khoury C. K., Castañeda-Álvarez N. P., Achicanoy H. A., Bernau V., et al. (2015). Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.). Front. Plant Sci. 6:841. 10.3389/fpls.2015.00841 PubMed DOI PMC

Kattge J., Díaz S., Lavorel S., Prentice I. C., Leadley P., Bönisch G., et al. (2011). TRY—a global database of plant traits. Glob. Change Biol. 17 2905–2935. 10.1111/gcb.14869 PubMed DOI

Kebede E. (2021). Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems. Front. Sustain. Food Syst. 5:767998. 10.3389/fsufs.2021.767998 DOI

Khazaei H., Street K., Bari A., Mackay M., Stoddard F. L. (2013). The FIGS (Focused Identification of Germplasm Strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. PLoS One 8:e63107. 10.1371/journal.pone.0063107 PubMed DOI PMC

Khoury C. K., Brush S., Costich D. E., Curry H. A., de Haan S., Engels J. M. M., et al. (2022). Crop genetic erosion: understanding and responding to loss of crop diversity. New Phytol. 233 84–118. 10.1111/nph.17733 PubMed DOI

Khoury C. K., Carver D., Greene S. L., Williams K. A., Achicanoy H. A., Schori M., et al. (2020). Crop wild relatives of the United States require urgent conservation action. Proc. Natl. Acad. Sci. U.S.A. 117 33351–33357. 10.1073/pnas.2007029117 PubMed DOI PMC

Kissing Kucek L., Riday H., Rufener B. P., Burke A. N., Eagen S. S., Ehlke N., et al. (2020a). Pod dehiscence in hairy vetch (Vicia villosa Roth). Front. Plant Sci. 11:82. 10.3389/fpls.2020.00082 PubMed DOI PMC

Kissing Kucek L., Azevedo M. D., Eagen S. S., Ehlke N. J., Hayes R. J., Mirsky S. B., et al. (2020b). Seed dormancy in hairy vetch (Vicia villosa Roth) is influenced by genotype and environment. Agronomy 10:1804. 10.3390/agronomy10111804 DOI

Komatsuzaki M. (2007). New weed management strategy using subterranean clover reseeding under different tillage systems: numerical experiments with the subterranean clover-tillage dynamics model. Weed Biol. Manag. 7 3–13.

Lane M. A., Edwards J. L. (2007). “The global biodiversity information facility (GBIF),” in Biodiversity Databases, Vol. 73 eds Curry G. B., Humphries C. J. (Boca Raton, FL: CRC Press; ).

Lark T. J., Spawn S. A., Bougie M., Gibbs H. K. (2020). Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nat. Commun. 11 1–11. 10.1038/s41467-020-18045-z PubMed DOI PMC

Larkan N. J., Lydiate D. J., Parkin I. A. P., Nelson M. N., Epp D. J., Cowling W. A., et al. (2013). The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytol. 197 595–605. 10.1111/nph.12043 PubMed DOI

Leclercq P. (1969). Cytoplasmic male sterility in sunflower. Ann. Amelior. Plant. 19 99–106.

Lembrechts J. J., van den Hoogen J., Aalto J., Ashcroft M. B., De Frenne P., Kemppinen J., et al. (2021). Global maps of soil temperature. Glob. Chang. Biol. 28 3110–3144. 10.1111/gcb.16060 PubMed DOI PMC

León-Lobos P., Way M., Aranda P. D., Lima-Junior M. (2012). The role of ex situ seed banks in the conservation of plant diversity and in ecological restoration in Latin America. Plant Ecol. Diver. 5 245–258. 10.1080/17550874.2012.713402 DOI

Lipper L., Thornton P., Campbell B. M., Baedeker T., Braimoh A., Bwalya M., et al. (2014). Climate-smart agriculture for food security. Nat. Clim. Change 4 1068–1072. 10.1016/j.agsy.2017.09.007 PubMed DOI PMC

Litrico I., Violle C. (2015). Diversity in plant breeding: a new conceptual framework. Trends Plant Sci. 2 604–613. 10.1016/j.tplants.2015.07.007 PubMed DOI

Liu M., Li Y., Ma Y., Zhao Q., Stiller J., Qi F., et al. (2020). The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley. Plant Biotechnol. J. 18 443–456. 10.1111/pbi.13210 PubMed DOI PMC

Loi A., Howieson J. G., Nutt B. J., Carr S. J. (2005). A second generation of annual pasture legumes and their potential for inclusion in Mediterranean-type farming systems. Aust. J. Agric. Res. 45 289–299.

Loi A., Nutt B. J., Howieson J. G., Yates R. J., Norman H. C. (2012). Preliminary assessment of bladder clover (Trifolium spumosum L.) as an annual legume for ley farming systems in southern Australia. Crop Pasture Sci. 63 582–591.

Ludlow M. M., Muchow R. C. (1990). A critical evaluation of traits for improving crop yields in water-limited environments. Adv. Agron. 43 107–153. 10.1071/FP13149 PubMed DOI

Manghwar H., Lindsey K., Zhang X., Jin S. (2019). CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci. 24 1102–1125. 10.1016/j.tplants.2019.09.006 PubMed DOI

Matesanz S., Ramos-Muñoz M., Moncalvillo B., Rubio Teso M. L., García de Dionisio S. L., Romero J., et al. (2020). Plasticity to drought and ecotypic differentiation in populations of a crop wild relative. AoB Plants 12:laa006. 10.1093/aobpla/plaa006 PubMed DOI PMC

Maxted N., Dulloo E., Ford-Lloyd B. V., Iriondo J. M., Jarvis A. (2008). Gap analysis: a tool for complementary genetic conservation assessment. Divers. Distrib. 14 1018–1030. 10.1111/j.1472-4642.2008.00512.x DOI

Maxted N., Hawkes J., Guarino L., Sawkins M. (1997). Towards the selection of taxa for plant genetic conservation. Genet. Resour. Crop Evol. 44 337–348. 10.1023/A:1008643206054 DOI

Mazzafera P., Favarin J. L., Andrade S. A. L. (2021). Intercropping Systems in Sustainable Agriculture. Front. Sustain. Food Syst. 5:634361. 10.3389/fsufs.2021.634361 DOI

McCouch S., Navabi Z. K., Abberton M., Anglin N. L., Barbieri R. L., Baum M., et al. (2020). Mobilizing crop biodiversity. Mol. Plant 13 1341–1344. 10.1016/j.molp.2020.08.011 PubMed DOI

Merrick L. F., Carter A. H. (2021). Comparison of genomic selection models for exploring predictive ability of complex traits in breeding programs. Plant Genome 14:e20158. 10.1002/tpg2.20158 PubMed DOI

Meuwissen T., Hayes B., Goddard M. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157 1819–1829. 10.1093/genetics/157.4.1819 PubMed DOI PMC

Meyer R. S., Duval A. E., Jensen H. R. (2012). Patterns and processes in crop domestication: an analysis of 203 global food crops. New Phytol. 196 29–48. PubMed

Mishra R., Joshi R. K., Zhao K. (2018). Genome editing in rice: recent advances, challenges, and future implications. Front. Plant Sci. 9:1361. 10.3389/fpls.2018.01361 PubMed DOI PMC

Molla K. A., Sretenovic S., Bansal K. C., Yiping Q. (2021). Precise plant genome editing using base editors and prime editors. Nat. Plants 7 1166–1187. 10.1038/s41477-021-00991-1 PubMed DOI

Mousavi-Derazmahalleh M., Bayer P. E., Nevado B., Hurgobin B., Filatov D., Kilian A., et al. (2018). Exploring the genetic and adaptive diversity of a pan-Mediterranean crop wild relative: narrow-leafed lupin. Theor. Appl. Genet. 131 887–901. 10.1007/s00122-017-3045-7 PubMed DOI PMC

Muir J. P., Pitman W. D., Dubeux J. C., Foster J. L. (2014). The future of warm-season, tropical and subtropical forage legumes in sustainable pastures and rangelands. Afr. J. Range Forage Sci. 31 187–198. 10.2989/10220119.2014.884165 PubMed DOI

Muir J. P., Pitman W. D., Smith F. S., Lloyd-Reilley J., Shadow R. A. (2018). Challenges to developing native legume seed supplies: the Texas experience as a case study. Native Plants J. 19 224–238. 10.3368/npj.19.3.224 DOI

Muleta K. T., Bulli P., Zhang Z., Chen X., Pumphrey M. (2017). Unlocking diversity in germplasm collections via genomic selection: a case study based on quantitative adult plant resistance to stripe rust in spring wheat. Plant Genome 10:3. 10.3835/plantgenome2016.12.0124 PubMed DOI

Muller K., Guinness J., Hecking M., Drinkwater L. (2021). Estimating agronomically relevant symbiotic N fixation in green manure breeding programs. Crop Sci. 61 3314–3330. 10.7298/vrd4-4k23 PubMed DOI

Nagel R., Durka W., Bossdorf O., Bucharova A. (2019). Rapid evolution in native plants cultivated for ecological restoration: not a general pattern. Plant Biol. 21 551–558. 10.1111/plb.12901 PubMed DOI

Nevo E., Chen G. (2010). Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant, Cell Environ. 33 670–685. 10.1111/j.1365-3040.2009.02107.x PubMed DOI

Nichols P. G. H., Revell C. K., Humphries A. W., Howie J. H., Hall E. J., Sandral G. A., et al. (2012). Temperate pasture legumes in Australia – their history, current use, and future prospects. Crop Pasture Sci. 63 691–725.

Nicotra A. B., Atkin O. K., Bonser S. P., Davidson A. M., Finnegan J., Mathesius U., et al. (2010). Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15 684–692. PubMed

Norman H. C., Cocks P. S., Galwey N. W. (2002). Hardseededness in annual clovers: variation between populations from wet and dry environments. Aust. J. Agric. Res. 53 821–829.

Norman H. C., Cokcs P. S., Galwey N. W. (2005). Annual clovers (Trifolium spp.) have different reproductive strategies to achieve persistence in Mediterranean-type climates. Aust. J. Agric. Res. 56 33–43.

Nutt B. J., Loi A. (1999). “Harvestability of annual Mediterranean pasture legumes using conventional crop machinery,” in “Proceedings of the 4th International Herbage Seed Conference”, eds Fancinelli M., Rosellini D. (Perugia: University of Perugia; ), 78–82.

Ogutcen E., Pandey A., Khan M. K., Marques E., Penmetsa R. V., Kahraman A., et al. (2018). Pod shattering: a homologous series of variation underlying domestication and an avenue for crop improvement. Agronomy 8:137.

Ovalle C. M., Del Pozo A. L., Avendaño J. R., Fernández F. E., Arredondo S. S. (2005). Adaptation, growth and production of new annual forage legumes in the Mediterranean Zone of Chile. II. Species performance in granitic soils of the sub-humid interior dryland. Agric. Técnica 65 265–277.

Pacher M., Puchta H. (2017). From classical mutagenesis to nuclease-based breeding—directing natural DNA repair for a natural end-product. Plant J. 90 819–833. 10.1111/tpj.13469 PubMed DOI

Pailles Y., Awlia M., Julkowska M., Passone L., Zemmouri K., Negrão S., et al. (2020). Diverse traits contribute to salinity tolerance of wild tomato seedlings from the Galapagos Islands. Plant Physiol. 182 534–546. 10.1104/pp.19.00700 PubMed DOI PMC

Passioura J. (2006). Increasing crop productivity when water is scarce—from breeding to field management. Agric. Water Manage. 80 176–196. 10.1016/j.agwat.2005.07.012 DOI

Phillips J., Whitehouse K., Maxted N. (2019). An in situ approach to the conservation of temperate cereal crop wild relatives in the Mediterranean Basin and Asian centre of diversity. Plant Genet. Resour. 17 185–195. 10.1017/S1479262118000588 DOI

Phillips S., Anderson R., Schapire R. (2006). Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190 231–259.

Piano P., Pecetti L., Carroni A. M. (1996). Climatic adaptation in subterranean clover populations. Euphytica 92 39–44.

Pingali P. L. (2012). Green revolution: impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. U.S.A. 109 12302–12308. 10.1073/pnas.0912953109 PubMed DOI PMC

Pizza R., Espeland E., Etterson J. (2021). Eight generations of native seed cultivation reduces plant fitness relative to the wild progenitor population. Evol. Appl. 14 1816–1829. 10.1111/eva.13243 PubMed DOI PMC

Polechová J., Barton N. H. (2015). Limits to adaptation along environmental gradients. Proc. Natl. Acad. Sci. U.S.A. 112 6401–6406. 10.1073/pnas.1421515112 PubMed DOI PMC

Postman J., Hummer K., Ayala-Silva T., Bretting P., Franko T., Kinard G., et al. (2010). GRIN-GLOBAL: an international project to develop a global plant Genebank information management system. Acta Hortic. 859 49–55. 10.17660/actahortic.2010.859.4 DOI

Prohens J., Gramazio P., Plazas M., Dempewolf H., Kilian B., Diez M. J., et al. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213:158. 10.1007/s10681-017-1938-9 DOI

Provorov N., Tikhonovich I. (2003). Genetic resources for improving nitrogen fixation in legume-rhizobia symbiosis. Genet. Resour. Crop Evol. 50 89–99. 10.1023/A:1022957429160 DOI

Purugganan M. D. (2019). Evolutionary insights into the nature of plant domestication. Curr. Biol. 29 R705–R714. 10.1016/j.cub.2019.05.053 PubMed DOI

Purugganan M. D., Fuller D. Q. (2009). The nature of selection during plant domestication. Nature 457:843. 10.1038/nature07895 PubMed DOI

Qian C., Yan X., Shi Y., Yin H., Chang Y., Chen J., et al. (2020). Adaptive signals of flowering time pathways in wild barley from Israel over 28 generations. Heredity 124 62–76. 10.1038/s41437-019-0264-5 PubMed DOI PMC

Quezada-Martinez D., Addo Nyarko C. P., Schiessl S. V., Mason A. S. (2021). Using wild relatives and related species to build climate resilience in Brassica crops. Theor. Appl. Genet. 134 1711–1728. 10.1007/s00122-021-03793-3 PubMed DOI PMC

Ramsay L., Koh C. S., Kagale S., Gao D., Kaur S., Haile T., et al. (2021). Genomic rearrangements have consequences for introgression breeding as revealed by genome assemblies of wild and cultivated lentil species. bioRxiv [preprint]. 10.1101/2021.07.23.453237 DOI

Raubach S., Kilian B., Dreher K., Amri A., Bassi F. M., Boukar O., et al. (2021). From bits to bites: advancement of the Germinate platform to support prebreeding informatics for crop wild relatives. Crop Sci. 61 1538–1566.

Redden R. (2013). New approaches for crop genetic adaptation to the abiotic stresses predicted with climate change. Agronomy 3 419–432. 10.3390/agronomy3020419 DOI

Redden R., Berger J. D. (2007). “History and origin of chickpea,” in Chickpea Breeding and Management, eds Yadav S. S., Redden R., Chen W., Sharma B. (Wallingford: CABI; ), 1–13.

Renzi J. P. (2020). Caracterización Agroecológica de Poblaciones Naturales de Vicia Villosa Roth (Fabaceae) de Argentina. Tesis de Doctorado en Agronomía. Bahía Blanca: Universidad Nacional del Sur, 152.

Renzi J. P., Chantre G. R., Cantamutto M. A. (2017). Self-regeneration of hairy vetch (Vicia villosa Roth) as affected by seedling density and soil tillage method in a semi-arid agroecosystem. Grass Forage Sci. 72 535–544.

Renzi J. P., Chantre G. R., Smýkal P., Presotto A. D., Zubiaga L., Garayalde A. F., et al. (2020). Diversity of naturalized hairy vetch (Vicia villosa Roth) populations in central argentina as a source of potential adaptive traits for breeding. Front. Plant Sci. 11:189. 10.3389/fpls.2020.00189 PubMed DOI PMC

Renzi J. P., Chantre G., González-Andújar J. L., Cantamutto M. A. (2019). Development and validation of a simulation model for hairy vetch (Vicia villosa Roth) self-regeneration under different crop rotations. Field Crops Res. 235 79–86.

Reynolds M. P., Saint Pierre C., Saad A. S. I., Vargas M., Condon A. G. (2007). Evaluating potential genetic gains in wheat associated with stress adaptive trait expression in elite genetic resources under drought and heat stress. Crop Sci. 47 172–189. 10.2135/cropsci2007.10.0022ipbs DOI

Ricardo D. (2005). “From the principles of political economy and taxation,” in Readings in the Economics of the Division of Labor: The Classical Tradition, ed. Guang-Zhen S. (Hackensack, NJ: World Scientific; ), 127–130.

Richards R. A. (2006). Physiological traits used in the breeding of new cultivars for water-scarce environments. Agric. Water Manag. 80 197–211. 10.1016/j.agwat.2005.07.013 DOI

Rieseberg L. H., Van Fossen C., Desrochers A. M. (1995). Hybrid speciation accompanied by genomic reorganization in wild sunflowers. Nature 375 313–316.

Rodríguez-Leal D., Lemmon Z. H., Man J., Bartlett M. E., Lippman Z. B. (2017). Engineering quantitative trait variation for crop improvement by genome editing. Cell 171 470–480. 10.1016/j.cell.2017.08.030 PubMed DOI

Rohden F., Scholz A. H. (2022). The international political process around Digital Sequence Information under the Convention on Biological Diversity and the 2018–2020 intersessional period. Plants People Planet 4 51–60.

Runck B. C., Kantar M. B., Jordan N. R., Anderson J. A., Wyse D. L., Eckberg J. O., et al. (2014). The reflective plant breeding paradigm: a robust system of Germplasm development to support strategic diversification of Agroecosystems. Crop Sci. 54 1939–1948. 10.2135/cropsci2014.03.0195 DOI

Runck B. C., Khoury C. K., Ewing P. M., Kantar M. (2020). The hidden land use cost of upscaling cover crops. Commun. Biol. 3:300. 10.1038/s42003-020-1022-1 PubMed DOI PMC

Russell J., van Zonneveld M., Dawson I. K., Booth A., Waugh R., Steffenson B. (2014). Genetic diversity and ecological niche modeling of wild barley: refugia, large-scale post-LGM Range expansion and limited mid-future climate threats? PLoS One 9:e86021. 10.1371/journal.pone.0086021 PubMed DOI PMC

Saatkamp A., Cochrane A., Commander L., Guja L. K., Jimenez-Alfaro B., Larson J., et al. (2019). A research agenda for seed-trait functional ecology. New Phytol. 221 1764–1775. 10.1111/nph.15502 PubMed DOI

Sadras V. O., Richards R. A. (2014). Improvement of crop yield in dry environments: benchmarks, levels of organization and the role of nitrogen. J. Exp. Bot. 65 1981–1995. 10.1093/jxb/eru061 PubMed DOI

Sakuma S., Salomon B., Komatsuda T. (2011). The domestication syndrome genes responsible for the major changes in plant form in the Triticeae crops. Plant Cell Physiol. 52 738–749. 10.1093/pcp/pcr025 PubMed DOI PMC

Sandquist D. R., Ehleringer J. R. (1997). Intraspecific variation of leaf pubescence and drought response in Encelia farinosa associated with contrasting desert environments. New Phytol. 135 635–644. 10.1046/j.1469-8137.1997.00697.x DOI

Sansaloni C., Franco J., Santos B., Percival-Alwyn L., Singh S., Petroli C., et al. (2020). Diversity analysis of 80,000 wheat accessions reveals consequences and opportunities of selection footprints. Nat. Commun. 11:4572. 10.1038/s41467-020-18404-w PubMed DOI PMC

Scafaro A. P., Gallé A., Van Rie J., Carmo-Silva E., Salvucci M. E., Atwell B. J. (2016). Heat tolerance in a wild Oryza species is attributed to maintenance of Rubisco activation by a thermally stable Rubisco activase ortholog. New Phytol. 211 899–911. 10.1111/nph.13963 PubMed DOI

Scott M. F., Ladejobi O., Amer S., Bentley A. R., Biernaskie J., Boden S. A., et al. (2020). Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. Heredity 125 396–416. 10.1038/s41437-020-0336-6 PubMed DOI PMC

Sebby K. (2010). The Green Revolution of the 1960’s and its Impact on Small Farmers in India. Undergraduate thesis. Lincoln, NE: University of Nebraska–Lincoln.

Sedeek K. E. M., Mahas A., Mahfouz M. (2019). Plant genome engineering for targeted improvement of crop traits. Front. Plant Sci. 10:114. 10.3389/fpls.2019.00114 PubMed DOI PMC

Sehgal A., Sita K., Siddique K. H. M., Kumar R., Bhogireddy S., Varshney R. K., et al. (2018). Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Front. Plant Sci. 9:1705. 10.3389/fpls.2018.01705 PubMed DOI PMC

Seiler G. J., Qi L. L., Marek L. F. (2017). Utilization of sunflower crop wild relatives for cultivated sunflower improvement. Crop Sci. 57 1083–1101. 10.2135/cropsci2016.10.0856 DOI

Sharma S., Upadhyaya H. D. (2019). Photoperiod response of annual wild cicer species and cultivated chickpea on phenology, growth, and yield traits. Crop Sci. 59 632–639.

Shelef O., Weisberg P. J., Provenza F. D. (2017). The value of native plants and local production in an era of global agriculture. Front. Plant Sci. 8:2069. 10.3389/fpls.2017.02069 PubMed DOI PMC

Shi J., Gao H., Wang H., Lafitte H. R., Archibald R. L., Yang M., et al. (2017). ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. 15 207–216. 10.1111/pbi.12603 PubMed DOI PMC

Silenzi J. C., Echeverria N. E., Vallejos A. G., Bouza M. E., De Lucia M. P. (2012). Wind erosion risk in the southwest of Buenos Aires province, Argentina and its relationship to the productivity index. Aeolian Res. 3 419–425.

Singh K. B., Malhotra R. S., Saxena M. C. (1990). Sources for tolerance to cold in Cicer species. Crop Sci. 30 1136–1138.

Singh K. B., Malhotra R. S., Halila M. H., Knights E. J., Verma M. M. (1994). Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stresses. Euphytica 73 137–149.

Singh N., Wang D. R., Ali L., Kim H., Akther K. M., Harrington S. E., et al. (2020). A coordinated suite of wild-introgression lines in Indica and Japonica elite backgrounds. Front. Plant Sci. 12:564824. 10.3389/fpls.2020.564824 PubMed DOI PMC

Skarbø K., VanderMolen K. (2014). Irrigation access and vulnerability to climate-induced hydrological change in the Ecuadorian Andes. Cult. Agric. Food Environ. 36 28–44.

Smýkal P., Nelson M., Berger J., von Wettberg E. (2018). The impact of genetic changes during crop domestication. Agronomy 8:119. 10.3390/agronomy8070119 DOI

Smýkal P., Vernoud V., Blair M. W., Soukup A., Thompson R. D. (2014). The role of the testa during development and in establishment of dormancy of the legume seed. Front. Plant Sci. 5:351. 10.3389/fpls.2014.00351 PubMed DOI PMC

Smýkal P., Hradilová I., Trněný O., Brus J., Rathore A., Bariotakis M., et al. (2017). Genomic diversity and macroecology of the crop wild relatives of domesticated pea. Sci. Rep. 7:17384. PubMed PMC

Song Q., Hyten D. L., Jia G., Quigley C. V., Fickus E. W., Nelson R. L., et al. (2015). Fingerprinting soybean germplasm and its utility in genomic research. G3 Genes Genom. Genet. 5 1999–2006. 10.1534/g3.115.019000 PubMed DOI PMC

Stenberg J. A., Ortiz R. (2021). Focused identification of germplasm strategy (FIGS): polishing a rough diamond. Curr. Opin. Insect Sci. 45 1–6. 10.1016/j.cois.2020.11.001 PubMed DOI

Sukegawa S., Saika H., Toki S. (2021). Plant genome editing: ever more precise and wide reaching. Plant J. 106 1208–1218. 10.1111/tpj.15233 PubMed DOI

Tanksley S. D., McCouch S. R. (1997). Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277 1063–1066. 10.1126/science.277.5329.1063 PubMed DOI

Taylor C. M., Garg G., Berger J. D., Ribalta F. M., Croser J. S., Singh K. B., et al. (2021). A Trimethylguanosine Synthase1-like (TGS1) homologue is implicated in vernalisation and flowering time control. Theor. Appl. Genet. 134 3411–3426. 10.1007/s00122-021-03910-2 PubMed DOI PMC

Taylor C. M., Kamphuis L. G., Zhang W., Garg G., Berger J. D., Mousavi-Derazmahalleh M., et al. (2019). INDEL variation in the regulatory region of the major flowering time gene LanFTc1 is associated with vernalization response and flowering time in narrow-leafed lupin (Lupinus angustifolius L.). Plant Cell Environ. 42 174–187. 10.1111/pce.13320 PubMed DOI PMC

Taylor G. B., Maller L. A., Rossiter R. C. (1991). A model describing the influence of hard seededness on the persistence of an annual forage legume, in a ley farming system, in a mediterranean-type environment. Agric. Ecosyst. Environ. 37 275–301.

Tefera A. (2021). Pre-breeding concept and role in crop improvement. Int. J. Res. Appl. Sci. Biotechnol. 8 2–7. 10.31033/ijrasb.8.2.37 DOI

Thapa R., Kemp D. W., Nichols P. G. H. (2011). Low Cost Rehabilitation of Native Perennial Grass Pastures by Managing Seedling Recruitment. FFI CRC Technical Report 8-Farming systems. Crawley WA: The University of Western Australia.

Thomson B., Siddique K. H. (1997). Grain legume species in low rainfall Mediterranean-type environments II. Canopy development, radiation interception, and dry-matter production. Field Crops Res. 54 189–199.

Thomson F. J., Moles A. T., Auld T. D., Kingsford R. T. (2011). Seed dispersal distance is more strongly correlated with plant height than with seed mass. J. Ecol. 99 1299–1307. 10.1111/j.1365-2745.2011.01867.x DOI

Tilman D., Balzer C., Hill J., Befort B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. U.S.A. 108 20260–20264. 10.1073/pnas.1116437108 PubMed DOI PMC

Title P. O., Bemmels J. B. (2018). ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41 291–307. 10.1111/ecog.02880 DOI

Toda E., Koiso N., Takebayashi A., Ichikawa M., Kiba T., Osakabe K., et al. (2019). An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Nat. Plants 5 363–368. 10.1038/s41477-019-0386-z PubMed DOI

Václavík T., Lautenbach S., Kuemmerle T., Seppelt R. (2013). Mapping global land system archetypes. Glob. Environ. Change 23 1637–1647.

Van Tassel D. L., Tesdell O., Schlautman B., Rubin M. J., DeHaan L. R., Crews T. E., et al. (2020). New food crop domestication in the age of gene editing: genetic, agronomic and cultural change remain co-evolutionarily entangled. Front. Plant Sci. 11:789. 10.3389/fpls.2020.00789 PubMed DOI PMC

Van Tassel D., Albrecht K. A., Bever J. D., Boe A. A., Brandvain Y., Crews T. E., et al. (2017). Accelerating Silphium domestication: an opportunity to develop new crop ideotypes and breeding strategies informed by multiple disciplines. Crop Sci. 57 1274–1284.

Varshney R. K., Roorkiwal M., Sun S., Bajaj P., Chitikineni A., Thudi M., et al. (2021). A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature 599 622–627. PubMed PMC

Vavilov N. I. (1957). Agroecological Survey of the Main Field Crops. Moscow: Academy of Sciences of the USSR.

Vilela A. E., González-Paleo L. (2015). Changes in resource-use strategy and phenotypic plasticity associated with selection for yield in wild species native to arid environments. J. Arid Environ. 113 51–58. 10.1016/j.jaridenv.2014.09.005 DOI

Vincent H., Amri A., Castañeda-Álvarez N. P., Dempewolf H., Dulloo E., Guarino L., et al. (2019). Modeling of crop wild relative species identifies areas globally for in situ conservation. Commun. Biol. 2:136. 10.1038/s42003-019-0372-z PubMed DOI PMC

von Wettberg E. J. B., Chang P. L., Başdemir F., Carrasquila-Garcia N., Korbu L. B., Moenga S. M., et al. (2018). Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nat. Commun. 9:649. 10.1038/s41467-018-02867-z PubMed DOI PMC

von Wettberg E. J., Mukherjee J. R., Adesky N. D., Nesbeth D., Sistla S. (2014). “The evolutionary ecology and genetics of stress resistance syndrome (SRS) traits: revisiting Chapin, Autumn and Pugnaire (1993),” in Plant Ecology and Evolution in Harsh Environments, eds Rajakaruna N., Boyd R. S., Harris T. B. (New York, NY: Nova Science Publishers; ), 201–226.

von Wettberg E., Khoury C. K. (2022). Biodiversity data: the importance of access and the challenges regarding benefit sharing. Plants People Planet 4 2–4. 10.1002/ppp3.10241 DOI

Walsh M. J., Groose R. W., Obour A. K., Claypool D. A., Delaney R. H., Krall J. M. (2013). Seed persistence in soil of five medic cultivars in southeastern wyoming. Crop Sci. 53 1–5.

Wang C., Hu S., Gardner C., Lübberstedt T. (2017). Emerging avenues for utilization of exotic germplasm. Trends Plant Sci. 22 624–637. 10.1016/j.tplants.2017.04.002 PubMed DOI

Warschefsky E., Varma Penmetsa R., Cook D. R., von Wettberg E. J. B. (2014). Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. Am. J. Bot. 101 1791–1800. 10.3732/ajb.1400116 PubMed DOI

Weiner J., Du Y.-L., Zhang C., Qin X.-L., Li F.-M. (2017). Evolutionary agroecology: individual fitness and population yield in wheat (Triticum aestivum). Ecology 98 2261–2266. 10.1002/ecy.1934 PubMed DOI

Weitemier K., Straub S. C. K., Cronn R. C., Fishbein M., Schmickl R., McDonnell A., et al. (2014). Hyb-Seq: combining target enrichment and genome skimming for plant phylogenomics. Appl. Plant Sci. 2:1400042. 10.3732/apps.1400042 PubMed DOI PMC

Wiering N. P., Flavin C., Sheaffer C. C., Heineck G. C., Sadok W., Ehlke N. J. (2018). Winter hardiness and freezing tolerance in a hairy vetch collection. Crop Sci. 58:1594. 10.2135/cropsci2017.12.0748 DOI

Wilke B. J., Snapp S. S. (2008). Winter cover crops for local ecosystems: linking plant traits and ecosystem function. J. Sci. Food Agric. 88 551–557. 10.1002/jsfa.3149 DOI

Wilkinson M. D., Dumontier M., Aalbersberg I. J., Appleton G., Axton M., Baak A., et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3 1–9. 10.1038/sdata.2016.18 PubMed DOI PMC

Xiao A., Wang Z., Hu Y., Wu Y., Luo Z., Yang Z., et al. (2013). Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. 41 1–11. 10.1093/nar/gkt464 PubMed DOI PMC

Ye M., Peng Z., Tang D., Yang Z., Li D., Xu Y., et al. (2018). Generation of self-compatible diploid potato by knockout of S-RNase. Nat. Plants 4 651–654. 10.1038/s41477-018-0218-6 PubMed DOI

Yousfi N., Slama I., Ghnaya T., Sayoure A., Abdelly C. (2010). Effects of water deficit stress on growth, water relations and osmolyte accumulation in Medicago truncatula and M. laciniata populations. C. R. Biol. 333 205–213. 10.1016/j.crvi.2009.12.010 PubMed DOI

Yu J., Holland J. B., McMullen M. D., Buckler E. S. (2008). Genetic design and statistical power of nested association mapping in maize. Genetics 178 539–551. 10.1534/genetics.107.074245 PubMed DOI PMC

Yu J., Jiang M., Guo C. (2019). Crop pollen development under drought: from the phenotype to the mechanism. Inter. J. Mol. Sci. 20:1550. 10.3390/ijms20071550 PubMed DOI PMC

Yu X., Li X., Guo T., Zhu C., Wu Y., Mitchell S. E., et al. (2016). Genomic prediction contributing to a promising global strategy to turbocharge gene banks. Nat. Plants 2:16150. 10.1038/nplants.2016.150 PubMed DOI

Zahran H. H. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63 968–989. 10.1128/mmbr.63.4.968-989.1999 PubMed DOI PMC

Zair W., Maxted N., Brehm J. M., Amri A. (2021). Ex situ and in situ conservation gap analysis of crop wild relative diversity in the Fertile Crescent of the Middle East. Genet. Resour. Crop Evol. 68 693–709. 10.1007/s10722-020-01017-z DOI

Zamir D. (2001). Improving plant breeding with exotic genetic libraries. Nat. Rev. Genet. 2 983–989. 10.1038/35103590 PubMed DOI

Zhang H., Li Y., Zhu J.-K. (2018). Developing naturally stress-resistant crops for a sustainable agriculture. Nat. Plants 4 989–996. 10.1038/s41477-018-0309-4 PubMed DOI

Zhang H., Mittal N., Leamy L. J., Barazani O., Song B. H. (2017). Back into the wild—Apply untapped genetic diversity of wild relatives for crop improvement. Evol. Appl. 10 5–24. 10.1111/eva.12434 PubMed DOI PMC

Zohary D., Hopf M., Weiss E. (2012). Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin, 4th Edn. Oxford: Oxford University Press.

Zsögön A., Cermak T., Naves E. R., Notini M. M., Edel K. H., Weinl S., et al. (2018). De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36 1211–1216. 10.1038/nbt.4272 PubMed DOI

Zsögön A., Cermak T., Voytas D., Peres L. E. P. (2017). Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: case study in tomato. Plant Sci. 256 120–130. 10.1016/j.plantsci.2016.12.012 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...