Defective mitochondrial COX1 translation due to loss of COX14 function triggers ROS-induced inflammation in mouse liver

. 2024 Aug 12 ; 15 (1) : 6914. [epub] 20240812

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39134548

Grantová podpora
EXC2067/1-390729940 Deutsche Forschungsgemeinschaft (German Research Foundation)
SFB1002 Deutsche Forschungsgemeinschaft (German Research Foundation)
SFB1286 Deutsche Forschungsgemeinschaft (German Research Foundation)
FOR2848 Deutsche Forschungsgemeinschaft (German Research Foundation)

Odkazy

PubMed 39134548
PubMed Central PMC11319346
DOI 10.1038/s41467-024-51109-y
PII: 10.1038/s41467-024-51109-y
Knihovny.cz E-zdroje

Mitochondrial oxidative phosphorylation (OXPHOS) fuels cellular ATP demands. OXPHOS defects lead to severe human disorders with unexplained tissue specific pathologies. Mitochondrial gene expression is essential for OXPHOS biogenesis since core subunits of the complexes are mitochondrial-encoded. COX14 is required for translation of COX1, the central mitochondrial-encoded subunit of complex IV. Here we describe a COX14 mutant mouse corresponding to a patient with complex IV deficiency. COX14M19I mice display broad tissue-specific pathologies. A hallmark phenotype is severe liver inflammation linked to release of mitochondrial RNA into the cytosol sensed by RIG-1 pathway. We find that mitochondrial RNA release is triggered by increased reactive oxygen species production in the deficiency of complex IV. Additionally, we describe a COA3Y72C mouse, affected in an assembly factor that cooperates with COX14 in early COX1 biogenesis, which displays a similar yet milder inflammatory phenotype. Our study provides insight into a link between defective mitochondrial gene expression and tissue-specific inflammation.

Bioanalytical Mass Spectrometry Group Max Planck Institute for Multidisciplinary Sciences Göttingen Germany

Clinic of Neurology University Medical Center Göttingen 37075 Göttingen Germany

Cluster of Excellence Cellular Stress Responses in Aging associated Diseases Faculty of Medicine and University Hospital Cologne University of Cologne Cologne Germany

Cluster of Excellence Multiscale Bioimaging from Molecular Machines to Networks of Excitable Cells University of Göttingen Göttingen Germany

Czech Centre for Phenogenomics Institute of Molecular Genetics of the CAS v v i 252 50 Vestec Czech Republic

Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases German Center for Neurodegenerative Diseases Göttingen Germany

Department of Cellular Biochemistry University Medical Center Göttingen 37073 Göttingen Germany

Department of Molecular Biochemistry University Medical Center Göttingen 37073 Göttingen Germany

Department of NanoBiophotonics Max Planck Institute for Multidisciplinary Sciences 37077 Göttingen Germany

Department of Psychiatry and Psychotherapy University Medical Center Göttingen Göttingen Germany

Fraunhofer Institute for Translational Medicine and Pharmacology ITMP Translational Neuroinflammation and Automated Microscopy Goettingen Germany

German Center for Cardiovascular Research partner site Göttingen Göttingen Germany

Heidelberg University Biochemistry Center 69120 Heidelberg Germany

Institute for Clinical Chemistry University Medical Center Göttingen Göttingen Germany

Institute of Pathology University Medical Center Göttingen Göttingen Germany

Laboratory for Electron Microscopy Max Planck Institute for Multidisciplinary Sciences Göttingen 37077 Germany

Max Planck Institute for Biology of Ageing 50931 Köln Germany

Max Planck Institute for Multidisciplinary Science Department of Neurogenetics 37077 Göttingen Germany

Max Planck Institute for Multidisciplinary Sciences D 37077 Goettingen Germany

Zobrazit více v PubMed

Guerrero-Castillo, S. et al. The assembly pathway of mitochondrial respiratory chain complex I. Cell Metab.25, 128–139 (2017). 10.1016/j.cmet.2016.09.002 PubMed DOI

Lobo-Jarne, T. et al. Multiple pathways coordinate assembly of human mitochondrial complex IV and stabilization of respiratory supercomplexes. EMBO J.39, e103912 (2020). 10.15252/embj.2019103912 PubMed DOI PMC

Priesnitz, C. & Becker, T. Pathways to balance mitochondrial translation and protein import. Genes Dev.32, 1285–1296 (2018). 10.1101/gad.316547.118 PubMed DOI PMC

Signes, A. & Fernandez-Vizarra, E. Assembly of mammalian oxidative phosphorylation complexes I–V and supercomplexes. Essays Biochem.62, 255–270 (2018). 10.1042/EBC20170098 PubMed DOI PMC

Homberg, B., Rehling, P. & Cruz-Zaragoza, L. D. The multifaceted mitochondrial OXA insertase. Trends Cell Biol. 33, 765–772 (2023). PubMed

Hildenbeutel, M. et al. The membrane insertase Oxa1 is required for efficient import of carrier proteins into mitochondria. J. Mol. Biol.423, 590–599 (2012). 10.1016/j.jmb.2012.07.018 PubMed DOI

Mick, D. U. et al. MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation. Cell151, 1528–1541 (2012). 10.1016/j.cell.2012.11.053 PubMed DOI

Timón-Gómez, A. et al. Mitochondrial cytochrome c oxidase biogenesis: recent developments. Semin Cell Dev. Biol.76, 163–178 (2018). 10.1016/j.semcdb.2017.08.055 PubMed DOI PMC

Richter-Dennerlein, R. et al. Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein. Cell167, 471–483.e10 (2016). 10.1016/j.cell.2016.09.003 PubMed DOI PMC

Stiburek, L. et al. Tissue-specific cytochrome c oxidase assembly defects due to mutations in SCO2 and SURF1. Biochem J.392, 625–632 (2005). 10.1042/BJ20050807 PubMed DOI PMC

Sinkler, C. A. et al. Tissue- and condition-specific isoforms of mammalian cytochrome c oxidase subunits: from function to human disease. Oxid. Med Cell Longev.2017, 1534056 (2017). 10.1155/2017/1534056 PubMed DOI PMC

Rak, M. et al. Mitochondrial cytochrome c oxidase deficiency. Clin. Sci. (Lond.)130, 393–407 (2016). 10.1042/CS20150707 PubMed DOI PMC

Weraarpachai, W. et al. Mutations in C12orf62, a Factor that Couples COX I Synthesis with Cytochrome c Oxidase Assembly, Cause Fatal Neonatal Lactic Acidosis. Am. J. Hum. Genet90, 142–151 (2012). 10.1016/j.ajhg.2011.11.027 PubMed DOI PMC

Ostergaard, E. et al. Mutations in COA3 cause isolated complex IV deficiency associated with neuropathy, exercise intolerance, obesity, and short stature. J. Med Genet52, 203 (2015). 10.1136/jmedgenet-2014-102914 PubMed DOI

Breda, C. NdeS. et al. Mitochondria as central hub of the immune system. Redox Biol.26, 101255 (2019). 10.1016/j.redox.2019.101255 PubMed DOI PMC

Hwang, I. et al. Cellular stress signaling activates type-I IFN response through FOXO3-regulated lamin posttranslational modification. Nat. Commun.12, 640 (2021). 10.1038/s41467-020-20839-0 PubMed DOI PMC

Schoggins, J. W. Interferon-Stimulated Genes: What Do They All Do? Annu Rev. Virol.6, 1–18 (2019). 10.1146/annurev-virology-092818-015756 PubMed DOI

West, A. P. & Shadel, G. S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol.17, 363–375 (2017). 10.1038/nri.2017.21 PubMed DOI PMC

Chowdhury, A., Witte, S. & Aich, A. Role of mitochondrial nucleic acid sensing pathways in health and patho-physiology. Front Cell Dev. Biol.10, 796066 (2022). 10.3389/fcell.2022.796066 PubMed DOI PMC

Sprenger, H.-G. et al. Cellular pyrimidine imbalance triggers mitochondrial DNA–dependent innate immunity. Nat. Metab.3, 636–650 (2021). 10.1038/s42255-021-00385-9 PubMed DOI PMC

Trefts, E., Gannon, M. & Wasserman, D. H. The liver. Curr. Biol.27, R1147–R1151 (2017). 10.1016/j.cub.2017.09.019 PubMed DOI PMC

Zhang, C. et al. Mitochondrial dysfunction and chronic liver disease. Curr. Issues Mol. Biol.44, 3156–3165 (2022). 10.3390/cimb44070218 PubMed DOI PMC

Zhang, Z. et al. Serine catabolism generates liver NADPH and supports hepatic lipogenesis. Nat. Metab.3, 1608–1620 (2021). 10.1038/s42255-021-00487-4 PubMed DOI PMC

Schneider, W. M., Chevillotte, M. D., Rice, C. M. & Interferon-Stimulated Genes: a complex web of host defenses. Annu Rev. Immunol.32, 513–545 (2014). 10.1146/annurev-immunol-032713-120231 PubMed DOI PMC

Yang, E. & Li, M. M. H. All about the RNA: interferon-stimulated genes that interfere with viral RNA processes. Front Immunol.11, 605024 (2020). 10.3389/fimmu.2020.605024 PubMed DOI PMC

Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol.14, 36–49 (2014). 10.1038/nri3581 PubMed DOI PMC

Mazewski, C., Perez, R. E., Fish, E. N., Platanias, L. C. & Type, I. Interferon (IFN)-regulated activation of CAnonical and Non-canonical Signaling Pathways. Front Immunol.11, 606456 (2020). 10.3389/fimmu.2020.606456 PubMed DOI PMC

Murira, A. & Lamarre, A. Type-I Interferon Responses: From Friend to Foe in the Battle against Chronic Viral Infection. Front Immunol.7, 609 (2016). 10.3389/fimmu.2016.00609 PubMed DOI PMC

Chen, W. et al. Chronic type I interferon signaling promotes lipid-peroxidation-driven terminal CD8+ T cell exhaustion and curtails anti-PD-1 efficacy. Cell Rep.41, 111647 (2022). 10.1016/j.celrep.2022.111647 PubMed DOI

Scala, M. D. et al. Chronic exposure to IFNα drives medullar lymphopoiesis towards T-cell differentiation in mice. Haematologica100, 1014–1022 (2015). PubMed PMC

Buang, N. et al. Type I interferons affect the metabolic fitness of CD8+ T cells from patients with systemic lupus erythematosus. Nat. Commun.12, 1980 (2021). 10.1038/s41467-021-22312-y PubMed DOI PMC

Blanc, M. et al. Host Defense against Viral Infection Involves Interferon Mediated Down-Regulation of Sterol Biosynthesis. PLoS Biol.9, e1000598 (2011). 10.1371/journal.pbio.1000598 PubMed DOI PMC

Reboldi, A. et al. 25-Hydroxycholesterol suppresses interleukin-1–driven inflammation downstream of type I interferon. Science345, 679–684 (2014). 10.1126/science.1254790 PubMed DOI PMC

Grunkemeyer, T. J. et al. The antiviral enzyme viperin inhibits cholesterol biosynthesis. J. Biol. Chem.297, 100824 (2021). 10.1016/j.jbc.2021.100824 PubMed DOI PMC

Dhir, A. et al. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature560, 238–242 (2018). 10.1038/s41586-018-0363-0 PubMed DOI PMC

Tigano, M. et al. Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance. Nature591, 477–481 (2021). 10.1038/s41586-021-03269-w PubMed DOI

Kim, J. et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science366, 1531–1536 (2019). 10.1126/science.aav4011 PubMed DOI PMC

McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science359, eaao6047 (2018). PubMed

Todkar, K. et al. Selective packaging of mitochondrial proteins into extracellular vesicles prevents the release of mitochondrial DAMPs. Nat. Commun.12, 1971 (2021). 10.1038/s41467-021-21984-w PubMed DOI PMC

Guo, C., Sun, L., Chen, X. & Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res8, 2003–2014 (2013). PubMed PMC

García, N. & Chávez, E. Mitochondrial DNA fragments released through the permeability transition pore correspond to specific gene size. Life Sci.81, 1160–1166 (2007). 10.1016/j.lfs.2007.08.019 PubMed DOI

Soubannier, V. et al. A Vesicular Transport Pathway Shuttles Cargo from Mitochondria to Lysosomes. Curr. Biol.22, 135–141 (2012). 10.1016/j.cub.2011.11.057 PubMed DOI

Tröder, S. E. et al. An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes. PLoS One13, e0196891 (2018). 10.1371/journal.pone.0196891 PubMed DOI PMC

Frezza, C., Cipolat, S. & Scorrano, L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat. Protoc.2, 287–295 (2007). 10.1038/nprot.2006.478 PubMed DOI

Hughes, C. S. et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc.14, 68–85 (2019). 10.1038/s41596-018-0082-x PubMed DOI

Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc.11, 2301–2319 (2016). 10.1038/nprot.2016.136 PubMed DOI

Cox, J., Michalski, A. & Mann, M. Software Lock Mass by Two-Dimensional Minimization of Peptide Mass Errors. J. Am. Soc. Mass Spectr.22, 1373–1380 (2011).10.1007/s13361-011-0142-8 PubMed DOI PMC

Lindovsky, J. et al. OCT and ERG Techniques in High-Throughput Phenotyping of Mouse Vision. Genes (Basel)14, 294 (2023). 10.3390/genes14020294 PubMed DOI PMC

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics29, 15–21 (2013). 10.1093/bioinformatics/bts635 PubMed DOI PMC

Liao, Y., Smyth, G.K. & Shi, W. featureCounts: An efficient general-purpose program for assigning sequence reads to genomic features. Arxiv (2013) PubMed

Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res41, e108 (2013). 10.1093/nar/gkt214 PubMed DOI PMC

Leek, J. T. et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics28, 882–883 (2012). 10.1093/bioinformatics/bts034 PubMed DOI PMC

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014). 10.1186/s13059-014-0550-8 PubMed DOI PMC

Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. & Zhang, B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res47, W199–W205 (2019). 10.1093/nar/gkz401 PubMed DOI PMC

Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res.28, 27–30 (2000). 10.1093/nar/28.1.27 PubMed DOI PMC

Liu, Z.-P., Wu, C., Miao, H. & Wu, H. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database2015, bav095 (2015). 10.1093/database/bav095 PubMed DOI PMC

von Mering, C. et al. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res31, 258–261 (2003). 10.1093/nar/gkg034 PubMed DOI PMC

Gong, J. et al. RISE: a database of RNA interactome from sequencing experiments. Nucleic Acids Res46, D194–D201 (2018). 10.1093/nar/gkx864 PubMed DOI PMC

Wu, T. et al. NPInter: the noncoding RNAs and protein related biomacromolecules interaction database. Nucleic Acids Res34, D150–D152 (2006). 10.1093/nar/gkj025 PubMed DOI PMC

Shannon, P. et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res13, 2498–2504 (2003). 10.1101/gr.1239303 PubMed DOI PMC

Malek, M. et al. Inositol triphosphate-triggered calcium release blocks lipid exchange at endoplasmic reticulum-Golgi contact sites. Nat. Commun.12, 2673 (2021). 10.1038/s41467-021-22882-x PubMed DOI PMC

Özbalci, C., Sachsenheimer, T. & Brügger, B. Membrane Biogenesis, Methods and Protocols. Methods Mol. Biol.1033, 3–20 (2013). 10.1007/978-1-62703-487-6_1 PubMed DOI

Paltauf, F. & Hermetter, A. Strategies for the synthesis of glycerophospholipids. Prog. Lipid Res.33, 239–328 (1994). 10.1016/0163-7827(94)90028-0 PubMed DOI

Liebisch, G. et al. High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim. Biophys. Acta1761, 121–128 (2006). 10.1016/j.bbalip.2005.12.007 PubMed DOI

Herzog, R. et al. LipidXplorer: A Software for Consensual Cross-Platform Lipidomics. PLoS One7, e29851 (2012). 10.1371/journal.pone.0029851 PubMed DOI PMC

Herzog, R. et al. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol.12, R8 (2011). 10.1186/gb-2011-12-1-r8 PubMed DOI PMC

Schuhmann, K. et al. Intensity-Independent Noise Filtering in FT MS and FT MS/MS Spectra for Shotgun Lipidomics. Anal. Chem.89, 7046–7052 (2017). 10.1021/acs.analchem.7b00794 PubMed DOI

Weil, M. T. et al. Transmission Electron Microscopy of Oligodendrocytes and Myelin. Methods Mol. Biol.1936, 343–375 (2019). 10.1007/978-1-4939-9072-6_20 PubMed DOI

Weil, M. T. et al. Axonal Ensheathment in the Nervous System of Lamprey: Implications for the Evolution of Myelinating Glia. J. Neurosci.38, 6586–6596 (2018). 10.1523/JNEUROSCI.1034-18.2018 PubMed DOI PMC

Steyer, A. M., Schertel, A., Nardis, C. & Möbius, W. FIB-SEM of mouse nervous tissue: Fast and slow sample preparation. Methods Cell Biol.152, 1–21 (2019). 10.1016/bs.mcb.2019.03.009 PubMed DOI

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods9, 676–682 (2012). 10.1038/nmeth.2019 PubMed DOI PMC

Schwaiger, M. et al. Anion-Exchange Chromatography Coupled to High-Resolution Mass Spectrometry: A Powerful Tool for Merging Targeted and Non-targeted Metabolomics. Anal. Chem.89, 7667–7674 (2017). 10.1021/acs.analchem.7b01624 PubMed DOI

Bonekamp, N. A. et al. Small-molecule inhibitors of human mitochondrial DNA transcription. Nature588, 712–716 (2020). 10.1038/s41586-020-03048-z PubMed DOI

McDonald, J. G. et al. Introducing the lipidomics minimal reporting checklist. Nat. Metab.4, 1086–1088 (2022). 10.1038/s42255-022-00628-3 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...