Defective mitochondrial COX1 translation due to loss of COX14 function triggers ROS-induced inflammation in mouse liver
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
EXC2067/1-390729940
Deutsche Forschungsgemeinschaft (German Research Foundation)
SFB1002
Deutsche Forschungsgemeinschaft (German Research Foundation)
SFB1286
Deutsche Forschungsgemeinschaft (German Research Foundation)
FOR2848
Deutsche Forschungsgemeinschaft (German Research Foundation)
PubMed
39134548
PubMed Central
PMC11319346
DOI
10.1038/s41467-024-51109-y
PII: 10.1038/s41467-024-51109-y
Knihovny.cz E-zdroje
- MeSH
- cyklooxygenasa 1 * MeSH
- DEAD box protein 58 MeSH
- DEAD-box RNA-helikasy metabolismus genetika MeSH
- játra * metabolismus patologie MeSH
- lidé MeSH
- membránové proteiny MeSH
- mitochondriální proteiny metabolismus genetika MeSH
- mitochondrie metabolismus MeSH
- mutace MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- oxidativní fosforylace * MeSH
- proteosyntéza MeSH
- reaktivní formy kyslíku * metabolismus MeSH
- respirační komplex IV * metabolismus genetika MeSH
- RNA mitochondriální genetika metabolismus MeSH
- zánět * metabolismus genetika patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cyklooxygenasa 1 * MeSH
- Ddx58 protein, mouse MeSH Prohlížeč
- DEAD box protein 58 MeSH
- DEAD-box RNA-helikasy MeSH
- membránové proteiny MeSH
- mitochondriální proteiny MeSH
- Ptgs1 protein, mouse MeSH Prohlížeč
- reaktivní formy kyslíku * MeSH
- respirační komplex IV * MeSH
- RNA mitochondriální MeSH
Mitochondrial oxidative phosphorylation (OXPHOS) fuels cellular ATP demands. OXPHOS defects lead to severe human disorders with unexplained tissue specific pathologies. Mitochondrial gene expression is essential for OXPHOS biogenesis since core subunits of the complexes are mitochondrial-encoded. COX14 is required for translation of COX1, the central mitochondrial-encoded subunit of complex IV. Here we describe a COX14 mutant mouse corresponding to a patient with complex IV deficiency. COX14M19I mice display broad tissue-specific pathologies. A hallmark phenotype is severe liver inflammation linked to release of mitochondrial RNA into the cytosol sensed by RIG-1 pathway. We find that mitochondrial RNA release is triggered by increased reactive oxygen species production in the deficiency of complex IV. Additionally, we describe a COA3Y72C mouse, affected in an assembly factor that cooperates with COX14 in early COX1 biogenesis, which displays a similar yet milder inflammatory phenotype. Our study provides insight into a link between defective mitochondrial gene expression and tissue-specific inflammation.
Clinic of Neurology University Medical Center Göttingen 37075 Göttingen Germany
Department of Cellular Biochemistry University Medical Center Göttingen 37073 Göttingen Germany
Department of Molecular Biochemistry University Medical Center Göttingen 37073 Göttingen Germany
Department of Psychiatry and Psychotherapy University Medical Center Göttingen Göttingen Germany
German Center for Cardiovascular Research partner site Göttingen Göttingen Germany
Heidelberg University Biochemistry Center 69120 Heidelberg Germany
Institute for Clinical Chemistry University Medical Center Göttingen Göttingen Germany
Institute of Pathology University Medical Center Göttingen Göttingen Germany
Max Planck Institute for Biology of Ageing 50931 Köln Germany
Max Planck Institute for Multidisciplinary Sciences D 37077 Goettingen Germany
Zobrazit více v PubMed
Guerrero-Castillo, S. et al. The assembly pathway of mitochondrial respiratory chain complex I. Cell Metab.25, 128–139 (2017). 10.1016/j.cmet.2016.09.002 PubMed DOI
Lobo-Jarne, T. et al. Multiple pathways coordinate assembly of human mitochondrial complex IV and stabilization of respiratory supercomplexes. EMBO J.39, e103912 (2020). 10.15252/embj.2019103912 PubMed DOI PMC
Priesnitz, C. & Becker, T. Pathways to balance mitochondrial translation and protein import. Genes Dev.32, 1285–1296 (2018). 10.1101/gad.316547.118 PubMed DOI PMC
Signes, A. & Fernandez-Vizarra, E. Assembly of mammalian oxidative phosphorylation complexes I–V and supercomplexes. Essays Biochem.62, 255–270 (2018). 10.1042/EBC20170098 PubMed DOI PMC
Homberg, B., Rehling, P. & Cruz-Zaragoza, L. D. The multifaceted mitochondrial OXA insertase. Trends Cell Biol. 33, 765–772 (2023). PubMed
Hildenbeutel, M. et al. The membrane insertase Oxa1 is required for efficient import of carrier proteins into mitochondria. J. Mol. Biol.423, 590–599 (2012). 10.1016/j.jmb.2012.07.018 PubMed DOI
Mick, D. U. et al. MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation. Cell151, 1528–1541 (2012). 10.1016/j.cell.2012.11.053 PubMed DOI
Timón-Gómez, A. et al. Mitochondrial cytochrome c oxidase biogenesis: recent developments. Semin Cell Dev. Biol.76, 163–178 (2018). 10.1016/j.semcdb.2017.08.055 PubMed DOI PMC
Richter-Dennerlein, R. et al. Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein. Cell167, 471–483.e10 (2016). 10.1016/j.cell.2016.09.003 PubMed DOI PMC
Stiburek, L. et al. Tissue-specific cytochrome c oxidase assembly defects due to mutations in SCO2 and SURF1. Biochem J.392, 625–632 (2005). 10.1042/BJ20050807 PubMed DOI PMC
Sinkler, C. A. et al. Tissue- and condition-specific isoforms of mammalian cytochrome c oxidase subunits: from function to human disease. Oxid. Med Cell Longev.2017, 1534056 (2017). 10.1155/2017/1534056 PubMed DOI PMC
Rak, M. et al. Mitochondrial cytochrome c oxidase deficiency. Clin. Sci. (Lond.)130, 393–407 (2016). 10.1042/CS20150707 PubMed DOI PMC
Weraarpachai, W. et al. Mutations in C12orf62, a Factor that Couples COX I Synthesis with Cytochrome c Oxidase Assembly, Cause Fatal Neonatal Lactic Acidosis. Am. J. Hum. Genet90, 142–151 (2012). 10.1016/j.ajhg.2011.11.027 PubMed DOI PMC
Ostergaard, E. et al. Mutations in COA3 cause isolated complex IV deficiency associated with neuropathy, exercise intolerance, obesity, and short stature. J. Med Genet52, 203 (2015). 10.1136/jmedgenet-2014-102914 PubMed DOI
Breda, C. NdeS. et al. Mitochondria as central hub of the immune system. Redox Biol.26, 101255 (2019). 10.1016/j.redox.2019.101255 PubMed DOI PMC
Hwang, I. et al. Cellular stress signaling activates type-I IFN response through FOXO3-regulated lamin posttranslational modification. Nat. Commun.12, 640 (2021). 10.1038/s41467-020-20839-0 PubMed DOI PMC
Schoggins, J. W. Interferon-Stimulated Genes: What Do They All Do? Annu Rev. Virol.6, 1–18 (2019). 10.1146/annurev-virology-092818-015756 PubMed DOI
West, A. P. & Shadel, G. S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol.17, 363–375 (2017). 10.1038/nri.2017.21 PubMed DOI PMC
Chowdhury, A., Witte, S. & Aich, A. Role of mitochondrial nucleic acid sensing pathways in health and patho-physiology. Front Cell Dev. Biol.10, 796066 (2022). 10.3389/fcell.2022.796066 PubMed DOI PMC
Sprenger, H.-G. et al. Cellular pyrimidine imbalance triggers mitochondrial DNA–dependent innate immunity. Nat. Metab.3, 636–650 (2021). 10.1038/s42255-021-00385-9 PubMed DOI PMC
Trefts, E., Gannon, M. & Wasserman, D. H. The liver. Curr. Biol.27, R1147–R1151 (2017). 10.1016/j.cub.2017.09.019 PubMed DOI PMC
Zhang, C. et al. Mitochondrial dysfunction and chronic liver disease. Curr. Issues Mol. Biol.44, 3156–3165 (2022). 10.3390/cimb44070218 PubMed DOI PMC
Zhang, Z. et al. Serine catabolism generates liver NADPH and supports hepatic lipogenesis. Nat. Metab.3, 1608–1620 (2021). 10.1038/s42255-021-00487-4 PubMed DOI PMC
Schneider, W. M., Chevillotte, M. D., Rice, C. M. & Interferon-Stimulated Genes: a complex web of host defenses. Annu Rev. Immunol.32, 513–545 (2014). 10.1146/annurev-immunol-032713-120231 PubMed DOI PMC
Yang, E. & Li, M. M. H. All about the RNA: interferon-stimulated genes that interfere with viral RNA processes. Front Immunol.11, 605024 (2020). 10.3389/fimmu.2020.605024 PubMed DOI PMC
Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol.14, 36–49 (2014). 10.1038/nri3581 PubMed DOI PMC
Mazewski, C., Perez, R. E., Fish, E. N., Platanias, L. C. & Type, I. Interferon (IFN)-regulated activation of CAnonical and Non-canonical Signaling Pathways. Front Immunol.11, 606456 (2020). 10.3389/fimmu.2020.606456 PubMed DOI PMC
Murira, A. & Lamarre, A. Type-I Interferon Responses: From Friend to Foe in the Battle against Chronic Viral Infection. Front Immunol.7, 609 (2016). 10.3389/fimmu.2016.00609 PubMed DOI PMC
Chen, W. et al. Chronic type I interferon signaling promotes lipid-peroxidation-driven terminal CD8+ T cell exhaustion and curtails anti-PD-1 efficacy. Cell Rep.41, 111647 (2022). 10.1016/j.celrep.2022.111647 PubMed DOI
Scala, M. D. et al. Chronic exposure to IFNα drives medullar lymphopoiesis towards T-cell differentiation in mice. Haematologica100, 1014–1022 (2015). PubMed PMC
Buang, N. et al. Type I interferons affect the metabolic fitness of CD8+ T cells from patients with systemic lupus erythematosus. Nat. Commun.12, 1980 (2021). 10.1038/s41467-021-22312-y PubMed DOI PMC
Blanc, M. et al. Host Defense against Viral Infection Involves Interferon Mediated Down-Regulation of Sterol Biosynthesis. PLoS Biol.9, e1000598 (2011). 10.1371/journal.pbio.1000598 PubMed DOI PMC
Reboldi, A. et al. 25-Hydroxycholesterol suppresses interleukin-1–driven inflammation downstream of type I interferon. Science345, 679–684 (2014). 10.1126/science.1254790 PubMed DOI PMC
Grunkemeyer, T. J. et al. The antiviral enzyme viperin inhibits cholesterol biosynthesis. J. Biol. Chem.297, 100824 (2021). 10.1016/j.jbc.2021.100824 PubMed DOI PMC
Dhir, A. et al. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature560, 238–242 (2018). 10.1038/s41586-018-0363-0 PubMed DOI PMC
Tigano, M. et al. Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance. Nature591, 477–481 (2021). 10.1038/s41586-021-03269-w PubMed DOI
Kim, J. et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science366, 1531–1536 (2019). 10.1126/science.aav4011 PubMed DOI PMC
McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science359, eaao6047 (2018). PubMed
Todkar, K. et al. Selective packaging of mitochondrial proteins into extracellular vesicles prevents the release of mitochondrial DAMPs. Nat. Commun.12, 1971 (2021). 10.1038/s41467-021-21984-w PubMed DOI PMC
Guo, C., Sun, L., Chen, X. & Zhang, D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen. Res8, 2003–2014 (2013). PubMed PMC
García, N. & Chávez, E. Mitochondrial DNA fragments released through the permeability transition pore correspond to specific gene size. Life Sci.81, 1160–1166 (2007). 10.1016/j.lfs.2007.08.019 PubMed DOI
Soubannier, V. et al. A Vesicular Transport Pathway Shuttles Cargo from Mitochondria to Lysosomes. Curr. Biol.22, 135–141 (2012). 10.1016/j.cub.2011.11.057 PubMed DOI
Tröder, S. E. et al. An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes. PLoS One13, e0196891 (2018). 10.1371/journal.pone.0196891 PubMed DOI PMC
Frezza, C., Cipolat, S. & Scorrano, L. Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts. Nat. Protoc.2, 287–295 (2007). 10.1038/nprot.2006.478 PubMed DOI
Hughes, C. S. et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc.14, 68–85 (2019). 10.1038/s41596-018-0082-x PubMed DOI
Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc.11, 2301–2319 (2016). 10.1038/nprot.2016.136 PubMed DOI
Cox, J., Michalski, A. & Mann, M. Software Lock Mass by Two-Dimensional Minimization of Peptide Mass Errors. J. Am. Soc. Mass Spectr.22, 1373–1380 (2011).10.1007/s13361-011-0142-8 PubMed DOI PMC
Lindovsky, J. et al. OCT and ERG Techniques in High-Throughput Phenotyping of Mouse Vision. Genes (Basel)14, 294 (2023). 10.3390/genes14020294 PubMed DOI PMC
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics29, 15–21 (2013). 10.1093/bioinformatics/bts635 PubMed DOI PMC
Liao, Y., Smyth, G.K. & Shi, W. featureCounts: An efficient general-purpose program for assigning sequence reads to genomic features. Arxiv (2013) PubMed
Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res41, e108 (2013). 10.1093/nar/gkt214 PubMed DOI PMC
Leek, J. T. et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics28, 882–883 (2012). 10.1093/bioinformatics/bts034 PubMed DOI PMC
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014). 10.1186/s13059-014-0550-8 PubMed DOI PMC
Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z. & Zhang, B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res47, W199–W205 (2019). 10.1093/nar/gkz401 PubMed DOI PMC
Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res.28, 27–30 (2000). 10.1093/nar/28.1.27 PubMed DOI PMC
Liu, Z.-P., Wu, C., Miao, H. & Wu, H. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database2015, bav095 (2015). 10.1093/database/bav095 PubMed DOI PMC
von Mering, C. et al. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res31, 258–261 (2003). 10.1093/nar/gkg034 PubMed DOI PMC
Gong, J. et al. RISE: a database of RNA interactome from sequencing experiments. Nucleic Acids Res46, D194–D201 (2018). 10.1093/nar/gkx864 PubMed DOI PMC
Wu, T. et al. NPInter: the noncoding RNAs and protein related biomacromolecules interaction database. Nucleic Acids Res34, D150–D152 (2006). 10.1093/nar/gkj025 PubMed DOI PMC
Shannon, P. et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res13, 2498–2504 (2003). 10.1101/gr.1239303 PubMed DOI PMC
Malek, M. et al. Inositol triphosphate-triggered calcium release blocks lipid exchange at endoplasmic reticulum-Golgi contact sites. Nat. Commun.12, 2673 (2021). 10.1038/s41467-021-22882-x PubMed DOI PMC
Özbalci, C., Sachsenheimer, T. & Brügger, B. Membrane Biogenesis, Methods and Protocols. Methods Mol. Biol.1033, 3–20 (2013). 10.1007/978-1-62703-487-6_1 PubMed DOI
Paltauf, F. & Hermetter, A. Strategies for the synthesis of glycerophospholipids. Prog. Lipid Res.33, 239–328 (1994). 10.1016/0163-7827(94)90028-0 PubMed DOI
Liebisch, G. et al. High throughput quantification of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Biochim. Biophys. Acta1761, 121–128 (2006). 10.1016/j.bbalip.2005.12.007 PubMed DOI
Herzog, R. et al. LipidXplorer: A Software for Consensual Cross-Platform Lipidomics. PLoS One7, e29851 (2012). 10.1371/journal.pone.0029851 PubMed DOI PMC
Herzog, R. et al. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol.12, R8 (2011). 10.1186/gb-2011-12-1-r8 PubMed DOI PMC
Schuhmann, K. et al. Intensity-Independent Noise Filtering in FT MS and FT MS/MS Spectra for Shotgun Lipidomics. Anal. Chem.89, 7046–7052 (2017). 10.1021/acs.analchem.7b00794 PubMed DOI
Weil, M. T. et al. Transmission Electron Microscopy of Oligodendrocytes and Myelin. Methods Mol. Biol.1936, 343–375 (2019). 10.1007/978-1-4939-9072-6_20 PubMed DOI
Weil, M. T. et al. Axonal Ensheathment in the Nervous System of Lamprey: Implications for the Evolution of Myelinating Glia. J. Neurosci.38, 6586–6596 (2018). 10.1523/JNEUROSCI.1034-18.2018 PubMed DOI PMC
Steyer, A. M., Schertel, A., Nardis, C. & Möbius, W. FIB-SEM of mouse nervous tissue: Fast and slow sample preparation. Methods Cell Biol.152, 1–21 (2019). 10.1016/bs.mcb.2019.03.009 PubMed DOI
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods9, 676–682 (2012). 10.1038/nmeth.2019 PubMed DOI PMC
Schwaiger, M. et al. Anion-Exchange Chromatography Coupled to High-Resolution Mass Spectrometry: A Powerful Tool for Merging Targeted and Non-targeted Metabolomics. Anal. Chem.89, 7667–7674 (2017). 10.1021/acs.analchem.7b01624 PubMed DOI
Bonekamp, N. A. et al. Small-molecule inhibitors of human mitochondrial DNA transcription. Nature588, 712–716 (2020). 10.1038/s41586-020-03048-z PubMed DOI
McDonald, J. G. et al. Introducing the lipidomics minimal reporting checklist. Nat. Metab.4, 1086–1088 (2022). 10.1038/s42255-022-00628-3 PubMed DOI