Tissue-specific cytochrome c oxidase assembly defects due to mutations in SCO2 and SURF1

. 2005 Dec 15 ; 392 (Pt 3) : 625-32.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid16083427

The biogenesis of eukaryotic COX (cytochrome c oxidase) requires several accessory proteins in addition to structural subunits and prosthetic groups. We have analysed the assembly state of COX and SCO2 protein levels in various tissues of six patients with mutations in SCO2 and SURF1. SCO2 is a copper-binding protein presumably involved in formation of the Cu(A) centre of the COX2 subunit. The function of SURF1 is unknown. Immunoblot analysis of native gels demonstrated that COX holoenzyme is reduced to 10-20% in skeletal muscle and brain of SCO2 and SURF1 patients and to 10-30% in heart of SCO2 patients, whereas liver of SCO2 patients' contained normal holoenzyme levels. The steady-state levels of mutant SCO2 protein ranged from 0 to 20% in different SCO2 patient tissues. In addition, eight distinct COX subcomplexes and unassembled subunits were found, some of them identical with known assembly intermediates of the human enzyme. Heart, brain and skeletal muscle of SCO2 patients contained accumulated levels of the COX1.COX4.COX5A subcomplex, three COX1-containing subcomplexes, a COX4.COX5A subcomplex and two subcomplexes composed of only COX4 or COX5A. The accumulation of COX1.COX4.COX5A subcomplex, along with the virtual absence of free COX2, suggests that the lack of the Cu(A) centre may result in decreased stability of COX2. The appearance of COX4.COX5A subcomplex indicates that association of these nucleus-encoded subunits probably precedes their addition to COX1 during the assembly process. Finally, the consequences of SCO2 and SURF1 mutations suggest the existence of tissue-specific functional differences of these proteins that may serve different tissue-specific requirements for the regulation of COX biogenesis.

Zobrazit více v PubMed

Capaldi R. A. Structure and assembly of cytochrome c oxidase. Arch. Biochem. Biophys. 1990;280:252–262. PubMed

Ludwig B., Bender E., Arnold S., Huttemann M., Lee I., Kadenbach B. Cytochrome c oxidase and the regulation of oxidative phosphorylation. ChemBioChem. 2001;2:392–403. PubMed

Kadenbach B., Stroh A., Becker A., Eckerskorn C., Lottspeich F. Tissue- and species-specific expression of cytochrome c oxidase isozymes in vertebrates. Biochim. Biophys. Acta. 1990;1015:368–372. PubMed

Linder D., Freund R., Kadenbach B. Species-specific expression of cytochrome c oxidase isozymes. Comp. Biochem. Physiol. B. 1995;112:461–469. PubMed

Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science. 1996;272:1136–1144. PubMed

Carr H. S., Winge D. R. Assembly of cytochrome c oxidase within mitochondrion. Acc. Chem. Res. 2003;36:309–316. PubMed

Barrientos A., Barros M. H., Valnot I., Rotig A., Rustin P., Tzagoloff A. Cytochrome oxidase in health and disease. Gene. 2002;286:53–63. PubMed

Mootha V. K., Lepage P., Miller K., Bunkenborg J., Reich M., Hjerrild M., Delmonte T., Villeneuve A., Sladek R., Xu F., et al. Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc. Natl. Acad. Sci. U.S.A. 2003;100:605–610. PubMed PMC

Papadopoulou L. C., Sue C. M., Davidson M. M., Tanji K., Nishino I., Sadlock J. E., Krishna S., Walker W., Selby J., Glerum D. M., et al. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat. Genet. 1999;23:333–337. PubMed

Jaksch M., Ogilvie I., Yao J., Kortenhaus G., Bresser H. G., Gerbitz K. D., Shoubridge E. A. Mutations in SCO2 are associated with a distinct form of hypertrophic cardiomyopathy and cytochrome c oxidase deficiency. Hum. Mol. Genet. 2000;9:795–801. PubMed

Jaksch M., Paret C., Stucka R., Horn N., Muller-Hocker J., Horvath R., Trepesch N., Stecker G., Freisinger P., Thirion C., et al. Cytochrome c oxidase deficiency due to mutations in SCO2, encoding a mitochondrial copper-binding protein, is rescued by copper in human myoblasts. Hum. Mol. Genet. 2001;10:3025–3035. PubMed

Tiranti V., Galimberti C., Nijtmans L., Bovolenta S., Perini M. P., Zeviani M. Characterization of SURF-1 expression and Surf-1p function in normal and disease conditions. Hum. Mol. Genet. 1999;8:2533–2540. PubMed

Yao J., Shoubridge E. A. Expression and functional analysis of SURF1 in Leigh syndrome patients with cytochrome c oxidase deficiency. Hum. Mol. Genet. 1999;8:2541–2549. PubMed

Williams S. L., Valnot I., Rustin P., Taanman J. W. Cytochrome c oxidase subassemblies in fibroblast cultures from patients carrying mutations in COX10, SCO1, or SURF1. J. Biol. Chem. 2004;279:7462–7469. PubMed

Nijtmans L. G., Taanman J. W., Muijsers A. O., Speijer D., Van den Bogert C. Assembly of cytochrome-c oxidase in cultured human cells. Eur. J. Biochem. 1998;254:389–394. PubMed

Zhu Z., Yao J., Johns T., Fu K., De Bie I., Macmillan C., Cuthbert A. P., Newbold R. F., Wang J., Chevrette M., et al. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat. Genet. 1998;20:337–343. PubMed

Tiranti V., Hoertnagel K., Carrozzo R., Galimberti C., Munaro M., Granatiero M., Zelante L., Gasparini P., Marzella R., Rocchi M., et al. Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am. J. Hum. Genet. 1998;63:1609–1621. PubMed PMC

Pequignot M. O., Dey R., Zeviani M., Tiranti V., Godinot C., Poyau A., Sue C., Di Mauro S., Abitbol M., Marsac C. Mutations in the SURF1 gene associated with Leigh syndrome and cytochrome c oxidase deficiency. Hum. Mutat. 2001;17:374–381. PubMed

Sue C. M., Karadimas C., Checcarelli N., Tanji K., Papadopoulou L. C., Pallotti F., Guo F. L., Shanske S., Hirano M., De Vivo D. C., et al. Differential features of patients with mutations in two COX assembly genes, SURF-1 and SCO2. Ann. Neurol. 2000;47:589–595. PubMed

Vesela K., Hansikova H., Tesarova M., Martasek P., Elleder M., Houstek J., Zeman J. Clinical, biochemical and molecular analyses of six patients with isolated cytochrome c oxidase deficiency due to mutations in the SCO2 gene. Acta Paediatr. 2004;93:1312–1317. PubMed

Williams S. L., Taanman J. W., Hansikova H., Houstkova H., Chowdhury S., Zeman J., Houstek J. A novel mutation in SURF1 causes skipping of exon 8 in a patient with cytochrome c oxidase-deficient Leigh syndrome and hypertrichosis. Mol. Genet. Metab. 2001;73:340–343. PubMed

Pecina P., Capkova M., Chowdhury S. K., Drahota Z., Dubot A., Vojtiskova A., Hansikova H., Houstkova H., Zeman J., Godinot C., et al. Functional alteration of cytochrome c oxidase by SURF1 mutations in Leigh syndrome. Biochim. Biophys. Acta. 2003;1639:53–63. PubMed

Rickwood D., Wilson M. T., Darley-Usmar V. M. Isolation and characteristics of intact mitochondria. In: Darley-Usmar V. M., Rickwood D., Wilson M. T., editors. Mitochondria: A Practical Approach. Oxford, U.K.: IRL Press; 1987. pp. 3–5.

Klement P., Nijtmans L. G., Van den Bogert C., Houstek J. Analysis of oxidative phosphorylation complexes in cultured human fibroblasts and amniocytes by blue-native-electrophoresis using mitoplasts isolated with the help of digitonin. Anal. Biochem. 1995;231:218–224. PubMed

Rustin P., Chretien D., Bourgeron T., Gérard B., Rötig A., Saudubray J. M., Munnich A. Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta. 1994;228:35–51. PubMed

Schägger H., von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 1991;199:223–231. PubMed

Coenen M. J., van den Heuvel L. P., Nijtmans L. G., Morava E., Marquardt I., Girschick H. J., Trijbels F. J., Grivell L. A., Smeitink J. A. SURFEIT-1 gene analysis and two-dimensional blue native gel electrophoresis in cytochrome c oxidase deficiency. Biochem. Biophys. Res. Commun. 1999;265:339–344. PubMed

Leary S. C., Kaufman B. A., Pellecchia G., Guercin G.-H., Mattman A., Jaksch M., Shoubridge E. A. Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. Hum. Mol. Genet. 2004;13:1839–1848. PubMed

Valnot I., Osmond S., Gigarel N., Mehaye B., Amiel J., Cormier-Daire V., Munnich A., Bonnefont J. P., Rustin P., Rotig A. Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am. J. Hum. Genet. 2000;67:1104–1109. PubMed PMC

Foltopoulou P. F., Zachariadis G. A., Politou A. S., Tsiftsoglou A. S., Papadopoulou L. C. Human recombinant mutated forms of the mitochondrial COX assembly Sco2 protein differ from wild-type in physical state and copper binding capacity. Mol. Genet. Metab. 2004;81:225–236. PubMed

Jaksch M., Horvath R., Horn N., Auer D. P., Macmillan C., Peters J., Gerbitz K. D., Kraegeloh-Mann I., Muntau A., Karcagi V., et al. Homozygosity (E140K) in SCO2 causes delayed infantile onset of cardiomyopathy and neuropathy. Neurology. 2001;57:1440–1446. PubMed

Keightley J. A., Hoffbuhr K. C., Burton M. D., Sala V. M., Johnston W. S. W., Penn A. M. W., Buist N. R. M., Kennaway N. G. A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria. Nat. Genet. 1996;12:410–416. PubMed

Comi G. P., Bordoni A., Salani S., Franceschina L., Sciacco M., Prelle M., Fortunato F., Zeviani M., Napoli L., Bresolin L., et al. Cytochrome c oxidase subunit I microdeletion in a patient with motor neuron disease. Ann. Neurol. 1998;43:110–116. PubMed

Bruno C., Martinuzzi A., Tang Y., Andreu A. L., Pallotti F., Bonilla E., Shanske S., Fu J., Sue C. M., Angelini C., et al. A stop-codon mutation in the human mtDNA cytochrome c oxidase I gene disrupts the functional structure of complex IV. Am. J. Hum. Genet. 1999;65:611–620. PubMed PMC

Taanman J.-W., Burton M. D., Marusich M. F., Kennaway N. G., Capaldi R. A. Subunit specific monoclonal antibodies show different steady-state levels of various cytochrome-c oxidase subunits in chronic progressive external ophthalmoplegia. Biochim. Biophys. Acta. 1996;1315:199–207. PubMed

Hoffbuhr K. C., Davidson E., Filiano B. A., Davidson M., Kennaway N. G., King M. P. A pathogenic 15-base pair deletion in mitochondrial DNA-encoded cytochrome c oxidase subunit III results in the absence of functional cytochrome c oxidase. J. Biol. Chem. 2000;275:13994–14003. PubMed

Hanson B. J., Carrozzo R., Piemonte F., Tessa A., Robinson B. H., Capaldi R. A. Cytochrome c oxidase-deficient patients have distinct subunit assembly profiles. J. Biol. Chem. 2001;276:16296–16301. PubMed

Tiranti V., Corona P., Greco M., Taanman J. W., Carrara F., Lamantea E., Nijumans L., Uziel G., Zeviani M. A novel frameshift mutation of the mtDNA COIII gene leads to impaired assembly of cytochrome c oxidase in a patient affected by Leigh-like syndrome. Hum. Mol. Genet. 2000;9:2733–2742. PubMed

Williams S. L., Scholte H. R., Gray R. G., Leonard J. V., Schapira A. H., Taanman J. W. Immunological phenotyping of fibroblast cultures from patients with a mitochondrial respiratory chain deficit. Lab. Invest. 2001;81:1069–1077. PubMed

Taanman J.-W., Williams S. L. Assembly of cytochrome c oxidase: what can we learn from patients with cytochrome c oxidase deficiency? Biochem. Soc. Trans. 2001;29:446–451. PubMed

Hundt E., Trapp M., Kadenbach B. Biosynthesis of cytochrome c oxidase in isolated rat hepatocytes. FEBS Lett. 1980;115:95–99. PubMed

Tarnopolsky M. A., Bourgeois J. M., Fu M.-H., Kataeva G., Shah J., Simon D. K., Mahoney D., Johns D., MacKay N., Robinson B. H. Novel SCO2 mutation (G1521A) presenting as a spinal muscular atrophy type I phenotype. Am. J. Med. Genet. 2004;125:310–314. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Defective mitochondrial COX1 translation due to loss of COX14 function triggers ROS-induced inflammation in mouse liver

. 2024 Aug 12 ; 15 (1) : 6914. [epub] 20240812

Case report: A rare variant m.4135T>C in the MT-ND1 gene leads to Leber hereditary optic neuropathy and altered respiratory chain supercomplexes

. 2023 ; 14 () : 1182288. [epub] 20230518

Mitochondrial Dysfunction in a High Intraocular Pressure-Induced Retinal Ischemia Minipig Model

. 2022 Oct 21 ; 12 (10) : . [epub] 20221021

Knock-Out of ACBD3 Leads to Dispersed Golgi Structure, but Unaffected Mitochondrial Functions in HEK293 and HeLa Cells

. 2021 Jul 06 ; 22 (14) : . [epub] 20210706

Loss of COX4I1 Leads to Combined Respiratory Chain Deficiency and Impaired Mitochondrial Protein Synthesis

. 2021 Feb 10 ; 10 (2) : . [epub] 20210210

Loss of Mitochondrial AAA Proteases AFG3L2 and YME1L Impairs Mitochondrial Structure and Respiratory Chain Biogenesis

. 2018 Dec 07 ; 19 (12) : . [epub] 20181207

LACE1 interacts with p53 and mediates its mitochondrial translocation and apoptosis

. 2016 Jul 26 ; 7 (30) : 47687-47698.

Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects

. 2016 Apr ; 1862 (4) : 705-715. [epub] 20160113

Large copy number variations in combination with point mutations in the TYMP and SCO2 genes found in two patients with mitochondrial disorders

. 2014 Mar ; 22 (3) : 431-4. [epub] 20130710

YME1L controls the accumulation of respiratory chain subunits and is required for apoptotic resistance, cristae morphogenesis, and cell proliferation

. 2012 Mar ; 23 (6) : 1010-23. [epub] 20120119

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...