Tissue-specific cytochrome c oxidase assembly defects due to mutations in SCO2 and SURF1
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
16083427
PubMed Central
PMC1316303
DOI
10.1042/bj20050807
PII: BJ20050807
Knihovny.cz E-zdroje
- MeSH
- fibroblasty enzymologie MeSH
- játra enzymologie MeSH
- kojenec MeSH
- kosterní svaly enzymologie MeSH
- lidé MeSH
- membránové proteiny MeSH
- mitochondriální proteiny MeSH
- molekulární chaperony MeSH
- mozek enzymologie MeSH
- mutace genetika MeSH
- myokard enzymologie MeSH
- orgánová specificita MeSH
- podjednotky proteinů chemie metabolismus MeSH
- předškolní dítě MeSH
- proteiny genetika metabolismus MeSH
- regulace genové exprese enzymů MeSH
- respirační komplex IV biosyntéza chemie metabolismus MeSH
- transportní proteiny MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- membránové proteiny MeSH
- mitochondriální proteiny MeSH
- molekulární chaperony MeSH
- podjednotky proteinů MeSH
- proteiny MeSH
- respirační komplex IV MeSH
- SCO2 protein, human MeSH Prohlížeč
- Surf-1 protein MeSH Prohlížeč
- transportní proteiny MeSH
The biogenesis of eukaryotic COX (cytochrome c oxidase) requires several accessory proteins in addition to structural subunits and prosthetic groups. We have analysed the assembly state of COX and SCO2 protein levels in various tissues of six patients with mutations in SCO2 and SURF1. SCO2 is a copper-binding protein presumably involved in formation of the Cu(A) centre of the COX2 subunit. The function of SURF1 is unknown. Immunoblot analysis of native gels demonstrated that COX holoenzyme is reduced to 10-20% in skeletal muscle and brain of SCO2 and SURF1 patients and to 10-30% in heart of SCO2 patients, whereas liver of SCO2 patients' contained normal holoenzyme levels. The steady-state levels of mutant SCO2 protein ranged from 0 to 20% in different SCO2 patient tissues. In addition, eight distinct COX subcomplexes and unassembled subunits were found, some of them identical with known assembly intermediates of the human enzyme. Heart, brain and skeletal muscle of SCO2 patients contained accumulated levels of the COX1.COX4.COX5A subcomplex, three COX1-containing subcomplexes, a COX4.COX5A subcomplex and two subcomplexes composed of only COX4 or COX5A. The accumulation of COX1.COX4.COX5A subcomplex, along with the virtual absence of free COX2, suggests that the lack of the Cu(A) centre may result in decreased stability of COX2. The appearance of COX4.COX5A subcomplex indicates that association of these nucleus-encoded subunits probably precedes their addition to COX1 during the assembly process. Finally, the consequences of SCO2 and SURF1 mutations suggest the existence of tissue-specific functional differences of these proteins that may serve different tissue-specific requirements for the regulation of COX biogenesis.
Zobrazit více v PubMed
Capaldi R. A. Structure and assembly of cytochrome c oxidase. Arch. Biochem. Biophys. 1990;280:252–262. PubMed
Ludwig B., Bender E., Arnold S., Huttemann M., Lee I., Kadenbach B. Cytochrome c oxidase and the regulation of oxidative phosphorylation. ChemBioChem. 2001;2:392–403. PubMed
Kadenbach B., Stroh A., Becker A., Eckerskorn C., Lottspeich F. Tissue- and species-specific expression of cytochrome c oxidase isozymes in vertebrates. Biochim. Biophys. Acta. 1990;1015:368–372. PubMed
Linder D., Freund R., Kadenbach B. Species-specific expression of cytochrome c oxidase isozymes. Comp. Biochem. Physiol. B. 1995;112:461–469. PubMed
Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science. 1996;272:1136–1144. PubMed
Carr H. S., Winge D. R. Assembly of cytochrome c oxidase within mitochondrion. Acc. Chem. Res. 2003;36:309–316. PubMed
Barrientos A., Barros M. H., Valnot I., Rotig A., Rustin P., Tzagoloff A. Cytochrome oxidase in health and disease. Gene. 2002;286:53–63. PubMed
Mootha V. K., Lepage P., Miller K., Bunkenborg J., Reich M., Hjerrild M., Delmonte T., Villeneuve A., Sladek R., Xu F., et al. Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc. Natl. Acad. Sci. U.S.A. 2003;100:605–610. PubMed PMC
Papadopoulou L. C., Sue C. M., Davidson M. M., Tanji K., Nishino I., Sadlock J. E., Krishna S., Walker W., Selby J., Glerum D. M., et al. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat. Genet. 1999;23:333–337. PubMed
Jaksch M., Ogilvie I., Yao J., Kortenhaus G., Bresser H. G., Gerbitz K. D., Shoubridge E. A. Mutations in SCO2 are associated with a distinct form of hypertrophic cardiomyopathy and cytochrome c oxidase deficiency. Hum. Mol. Genet. 2000;9:795–801. PubMed
Jaksch M., Paret C., Stucka R., Horn N., Muller-Hocker J., Horvath R., Trepesch N., Stecker G., Freisinger P., Thirion C., et al. Cytochrome c oxidase deficiency due to mutations in SCO2, encoding a mitochondrial copper-binding protein, is rescued by copper in human myoblasts. Hum. Mol. Genet. 2001;10:3025–3035. PubMed
Tiranti V., Galimberti C., Nijtmans L., Bovolenta S., Perini M. P., Zeviani M. Characterization of SURF-1 expression and Surf-1p function in normal and disease conditions. Hum. Mol. Genet. 1999;8:2533–2540. PubMed
Yao J., Shoubridge E. A. Expression and functional analysis of SURF1 in Leigh syndrome patients with cytochrome c oxidase deficiency. Hum. Mol. Genet. 1999;8:2541–2549. PubMed
Williams S. L., Valnot I., Rustin P., Taanman J. W. Cytochrome c oxidase subassemblies in fibroblast cultures from patients carrying mutations in COX10, SCO1, or SURF1. J. Biol. Chem. 2004;279:7462–7469. PubMed
Nijtmans L. G., Taanman J. W., Muijsers A. O., Speijer D., Van den Bogert C. Assembly of cytochrome-c oxidase in cultured human cells. Eur. J. Biochem. 1998;254:389–394. PubMed
Zhu Z., Yao J., Johns T., Fu K., De Bie I., Macmillan C., Cuthbert A. P., Newbold R. F., Wang J., Chevrette M., et al. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat. Genet. 1998;20:337–343. PubMed
Tiranti V., Hoertnagel K., Carrozzo R., Galimberti C., Munaro M., Granatiero M., Zelante L., Gasparini P., Marzella R., Rocchi M., et al. Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. Am. J. Hum. Genet. 1998;63:1609–1621. PubMed PMC
Pequignot M. O., Dey R., Zeviani M., Tiranti V., Godinot C., Poyau A., Sue C., Di Mauro S., Abitbol M., Marsac C. Mutations in the SURF1 gene associated with Leigh syndrome and cytochrome c oxidase deficiency. Hum. Mutat. 2001;17:374–381. PubMed
Sue C. M., Karadimas C., Checcarelli N., Tanji K., Papadopoulou L. C., Pallotti F., Guo F. L., Shanske S., Hirano M., De Vivo D. C., et al. Differential features of patients with mutations in two COX assembly genes, SURF-1 and SCO2. Ann. Neurol. 2000;47:589–595. PubMed
Vesela K., Hansikova H., Tesarova M., Martasek P., Elleder M., Houstek J., Zeman J. Clinical, biochemical and molecular analyses of six patients with isolated cytochrome c oxidase deficiency due to mutations in the SCO2 gene. Acta Paediatr. 2004;93:1312–1317. PubMed
Williams S. L., Taanman J. W., Hansikova H., Houstkova H., Chowdhury S., Zeman J., Houstek J. A novel mutation in SURF1 causes skipping of exon 8 in a patient with cytochrome c oxidase-deficient Leigh syndrome and hypertrichosis. Mol. Genet. Metab. 2001;73:340–343. PubMed
Pecina P., Capkova M., Chowdhury S. K., Drahota Z., Dubot A., Vojtiskova A., Hansikova H., Houstkova H., Zeman J., Godinot C., et al. Functional alteration of cytochrome c oxidase by SURF1 mutations in Leigh syndrome. Biochim. Biophys. Acta. 2003;1639:53–63. PubMed
Rickwood D., Wilson M. T., Darley-Usmar V. M. Isolation and characteristics of intact mitochondria. In: Darley-Usmar V. M., Rickwood D., Wilson M. T., editors. Mitochondria: A Practical Approach. Oxford, U.K.: IRL Press; 1987. pp. 3–5.
Klement P., Nijtmans L. G., Van den Bogert C., Houstek J. Analysis of oxidative phosphorylation complexes in cultured human fibroblasts and amniocytes by blue-native-electrophoresis using mitoplasts isolated with the help of digitonin. Anal. Biochem. 1995;231:218–224. PubMed
Rustin P., Chretien D., Bourgeron T., Gérard B., Rötig A., Saudubray J. M., Munnich A. Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta. 1994;228:35–51. PubMed
Schägger H., von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 1991;199:223–231. PubMed
Coenen M. J., van den Heuvel L. P., Nijtmans L. G., Morava E., Marquardt I., Girschick H. J., Trijbels F. J., Grivell L. A., Smeitink J. A. SURFEIT-1 gene analysis and two-dimensional blue native gel electrophoresis in cytochrome c oxidase deficiency. Biochem. Biophys. Res. Commun. 1999;265:339–344. PubMed
Leary S. C., Kaufman B. A., Pellecchia G., Guercin G.-H., Mattman A., Jaksch M., Shoubridge E. A. Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. Hum. Mol. Genet. 2004;13:1839–1848. PubMed
Valnot I., Osmond S., Gigarel N., Mehaye B., Amiel J., Cormier-Daire V., Munnich A., Bonnefont J. P., Rustin P., Rotig A. Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am. J. Hum. Genet. 2000;67:1104–1109. PubMed PMC
Foltopoulou P. F., Zachariadis G. A., Politou A. S., Tsiftsoglou A. S., Papadopoulou L. C. Human recombinant mutated forms of the mitochondrial COX assembly Sco2 protein differ from wild-type in physical state and copper binding capacity. Mol. Genet. Metab. 2004;81:225–236. PubMed
Jaksch M., Horvath R., Horn N., Auer D. P., Macmillan C., Peters J., Gerbitz K. D., Kraegeloh-Mann I., Muntau A., Karcagi V., et al. Homozygosity (E140K) in SCO2 causes delayed infantile onset of cardiomyopathy and neuropathy. Neurology. 2001;57:1440–1446. PubMed
Keightley J. A., Hoffbuhr K. C., Burton M. D., Sala V. M., Johnston W. S. W., Penn A. M. W., Buist N. R. M., Kennaway N. G. A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria. Nat. Genet. 1996;12:410–416. PubMed
Comi G. P., Bordoni A., Salani S., Franceschina L., Sciacco M., Prelle M., Fortunato F., Zeviani M., Napoli L., Bresolin L., et al. Cytochrome c oxidase subunit I microdeletion in a patient with motor neuron disease. Ann. Neurol. 1998;43:110–116. PubMed
Bruno C., Martinuzzi A., Tang Y., Andreu A. L., Pallotti F., Bonilla E., Shanske S., Fu J., Sue C. M., Angelini C., et al. A stop-codon mutation in the human mtDNA cytochrome c oxidase I gene disrupts the functional structure of complex IV. Am. J. Hum. Genet. 1999;65:611–620. PubMed PMC
Taanman J.-W., Burton M. D., Marusich M. F., Kennaway N. G., Capaldi R. A. Subunit specific monoclonal antibodies show different steady-state levels of various cytochrome-c oxidase subunits in chronic progressive external ophthalmoplegia. Biochim. Biophys. Acta. 1996;1315:199–207. PubMed
Hoffbuhr K. C., Davidson E., Filiano B. A., Davidson M., Kennaway N. G., King M. P. A pathogenic 15-base pair deletion in mitochondrial DNA-encoded cytochrome c oxidase subunit III results in the absence of functional cytochrome c oxidase. J. Biol. Chem. 2000;275:13994–14003. PubMed
Hanson B. J., Carrozzo R., Piemonte F., Tessa A., Robinson B. H., Capaldi R. A. Cytochrome c oxidase-deficient patients have distinct subunit assembly profiles. J. Biol. Chem. 2001;276:16296–16301. PubMed
Tiranti V., Corona P., Greco M., Taanman J. W., Carrara F., Lamantea E., Nijumans L., Uziel G., Zeviani M. A novel frameshift mutation of the mtDNA COIII gene leads to impaired assembly of cytochrome c oxidase in a patient affected by Leigh-like syndrome. Hum. Mol. Genet. 2000;9:2733–2742. PubMed
Williams S. L., Scholte H. R., Gray R. G., Leonard J. V., Schapira A. H., Taanman J. W. Immunological phenotyping of fibroblast cultures from patients with a mitochondrial respiratory chain deficit. Lab. Invest. 2001;81:1069–1077. PubMed
Taanman J.-W., Williams S. L. Assembly of cytochrome c oxidase: what can we learn from patients with cytochrome c oxidase deficiency? Biochem. Soc. Trans. 2001;29:446–451. PubMed
Hundt E., Trapp M., Kadenbach B. Biosynthesis of cytochrome c oxidase in isolated rat hepatocytes. FEBS Lett. 1980;115:95–99. PubMed
Tarnopolsky M. A., Bourgeois J. M., Fu M.-H., Kataeva G., Shah J., Simon D. K., Mahoney D., Johns D., MacKay N., Robinson B. H. Novel SCO2 mutation (G1521A) presenting as a spinal muscular atrophy type I phenotype. Am. J. Med. Genet. 2004;125:310–314. PubMed
Mitochondrial Dysfunction in a High Intraocular Pressure-Induced Retinal Ischemia Minipig Model
LACE1 interacts with p53 and mediates its mitochondrial translocation and apoptosis
Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects