Case report: A rare variant m.4135T>C in the MT-ND1 gene leads to Leber hereditary optic neuropathy and altered respiratory chain supercomplexes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu kazuistiky, časopisecké články
PubMed
37274791
PubMed Central
PMC10233053
DOI
10.3389/fgene.2023.1182288
PII: 1182288
Knihovny.cz E-zdroje
- Klíčová slova
- complex I, mitochondria, mtDNA, optic neuropathy, supercomplexes,
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
Leber hereditary optic neuropathy is a primary mitochondrial disease characterized by acute visual loss due to the degeneration of retinal ganglion cells. In this study, we describe a patient carrying a rare missense heteroplasmic variant in MT-ND1, NC_012920.1:m.4135T>C (p.Tyr277His) manifesting with a typical bilateral painless decrease of the visual function, triggered by physical exercise or higher ambient temperature. Functional studies in muscle and fibroblasts show that amino acid substitution Tyr277 with His leads to only a negligibly decreased level of respiratory chain complex I (CI), but the formation of supercomplexes and the activity of the enzyme are disturbed noticeably. Our data indicate that although CI is successfully assembled in the patient's mitochondria, its function is hampered by the m.4135T>C variant, probably by stabilizing CI in its inactive form. We conclude that the m.4135T>C variant together with a combination of external factors is necessary to manifest the phenotype.
Zobrazit více v PubMed
Ashkenazy H., Abadi S., Martz E., Chay O., Mayrose I., Pupko T., et al. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 44, W344–W350. 10.1093/nar/gkw408 PubMed DOI PMC
Bolze A., Mendez F., White S., Tanudjaja F., Isaksson M., Jiang R., et al. (2019). A catalog of homoplasmic and heteroplasmic mitochondrial DNA variants in humans. Genetics. 10.1101/798264 DOI
Calvo E., Cogliati S., Hernansanz-Agustín P., Loureiro-López M., Guarás A., Casuso R. A., et al. (2020). Functional role of respiratory supercomplexes in mice: SCAF1 relevance and segmentation of the qpool. Sci. Adv. 6, eaba7509. 10.1126/sciadv.aba7509 PubMed DOI PMC
Carelli V., Ross-Cisneros F. N., Sadun A. A. (2004). Mitochondrial dysfunction as a cause of optic neuropathies. Prog. Retin Eye Res. 23, 53–89. 10.1016/j.preteyeres.2003.10.003 PubMed DOI
Castellana S., Biagini T., Petrizzelli F., Parca L., Panzironi N., Caputo V., et al. (2021). MitImpact 3: Modeling the residue interaction network of the respiratory chain subunits. Nucleic Acids Res. 49, D1282–D1288. 10.1093/nar/gkaa1032 PubMed DOI PMC
Castellana S., Fusilli C., Mazzoccoli G., Biagini T., Capocefalo D., Carella M., et al. (2017). High-confidence assessment of functional impact of human mitochondrial non-synonymous genome variations by APOGEE. PLoS Comput. Biol. 13, e1005628. 10.1371/journal.pcbi.1005628 PubMed DOI PMC
Chun B. Y., Rizzo J. F. (2017). Dominant optic atrophy and leber’s hereditary optic neuropathy: Update on clinical features and current therapeutic approaches. Semin. Pediatr. Neurol. 24, 129–134. 10.1016/j.spen.2017.06.001 PubMed DOI
Chung I., Wright J. J., Bridges H. R., Ivanov B. S., Biner O., Pereira C. S., et al. (2022). Cryo-EM structures define ubiquinone-10 binding to mitochondrial complex I and conformational transitions accompanying Q-site occupancy. Nat. Commun. 13, 2758. 10.1038/s41467-022-30506-1 PubMed DOI PMC
Danhelovska T., Kolarova H., Zeman J., Hansikova H., Vaneckova M., Lambert L., et al. (2020). Multisystem mitochondrial diseases due to mutations in mtDNA-encoded subunits of complex I. BMC Pediatr. 20, 41. 10.1186/s12887-020-1912-x PubMed DOI PMC
Daňhelovská T., Zdražilová L., Štufková H., Vanišová M., Volfová N., Křížová J., et al. (2021). Knock-out of ACBD3 leads to dispersed golgi structure, but unaffected mitochondrial functions in HEK293 and HeLa cells. IJMS 22, 7270. 10.3390/ijms22147270 PubMed DOI PMC
Désir J., Coppieters F., Van Regemorter N., De Baere E., Abramowicz M., Cordonnier M. (2012). TMEM126A mutation in a Moroccan family with autosomal recessive optic atrophy. Mol. Vis. 18, 1849–1857. PubMed PMC
Guo R., Zong S., Wu M., Gu J., Yang M. (2017). Architecture of human mitochondrial respiratory megacomplex I2III2IV2. Cell 170, 1247–1257. 10.1016/j.cell.2017.07.050 PubMed DOI
Kampjut D., Sazanov L. A. (2020). The coupling mechanism of mammalian respiratory complex I. Science 370, eabc4209. 10.1126/science.abc4209 PubMed DOI
Karczewski K. J., Francioli L. C., Tiao G., Cummings B. B., Alföldi J., Wang Q., et al. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443. 10.1038/s41586-020-2308-7 PubMed DOI PMC
Kirkman M. A., Yu-Wai-Man P., Korsten A., Leonhardt M., Dimitriadis K., De Coo I. F., et al. (2009). Gene–environment interactions in Leber hereditary optic neuropathy. Brain 132, 2317–2326. 10.1093/brain/awp158 PubMed DOI PMC
Laricchia K. M., Lake N. J., Watts N. A., Shand M., Haessly A., Gauthier L., et al. (2022). Mitochondrial DNA variation across 56,434 individuals in gnomAD. Genome Res. 32, 569–582. 10.1101/gr.276013.121 PubMed DOI PMC
Lim S. C., Hroudová J., Van Bergen N. J., Lopez Sanchez M. I. G., Trounce I. A., McKenzie M. (2016). Loss of mitochondrial DNA-encoded protein ND1 results in disruption of complex I biogenesis during early stages of assembly. FASEB J. 30, 2236–2248. 10.1096/fj.201500137R PubMed DOI
Lott M. T., Leipzig J. N., Derbeneva O., Xie H. M., Chalkia D., Sarmady M., et al. (2013). mtDNA variation and analysis using Mitomap and mitomaster. Curr. Protoc. Bioinforma. 44, 1–26. 10.1002/0471250953.bi0123s44 PubMed DOI PMC
Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275. 10.1016/s0021-9258(19)52451-6 PubMed DOI
Marco-Brualla J., Al-Wasaby S., Soler R., Romanos E., Conde B., Justo-Méndez R., et al. (2019). Mutations in the ND2 subunit of mitochondrial complex I are sufficient to confer increased tumorigenic and metastatic potential to cancer cells. Cancers 11, 1027. 10.3390/cancers11071027 PubMed DOI PMC
Maresca A., Carelli V. (2021). Molecular mechanisms behind inherited neurodegeneration of the optic nerve. Biomolecules 11, 496. 10.3390/biom11040496 PubMed DOI PMC
McCormick E. M., Lott M. T., Dulik M. C., Shen L., Attimonelli M., Vitale O., et al. (2020). Specifications of the ACMG/AMP standards and guidelines for mitochondrial DNA variant interpretation. Hum. Mutat. 41, 2028–2057. 10.1002/humu.24107 PubMed DOI PMC
Neřoldová M., Stránecký V., Hodaňová K., Hartmannová H., Piherová L., Přistoupilová A., et al. (2016). Rare variants in known and novel candidate genes predisposing to statin-associated myopathy. Pharmacogenomics 17, 1405–1414. 10.2217/pgs-2016-0071 PubMed DOI
Newman N. J., Carelli V., Taiel M., Yu-Wai-Man P. (2020). Visual outcomes in leber hereditary optic neuropathy patients with the m.11778G>A (MTND4) mitochondrial DNA mutation. J. Neuroophthalmol. 40, 547–557. 10.1097/WNO.0000000000001045 PubMed DOI
Rákosníková T. (2023). Study of etiopathology of mitochondrial disorders. Prague, 2023. PhD thesis. Charles University, First Faculty of Medicine, Department of Pediatric and Inherited Metabolic Disorders, Supervisor Tesařová, Markéta. Available at: http://hdl.handle.net/20.500.11956/178854 .
Riordan-Eva P., Sanders M. D., Govan G. G., Sweeney M. G., Da Costa J., Harding A. E. (1995). The clinical features of Leber’s hereditary optic neuropathy defined by the presence of a pathogenic mitochondrial DNA mutation. Brain 118 (2), 319–337. 10.1093/brain/118.2.319 PubMed DOI
Rodrigues C. H., Pires D. E., Ascher D. B. (2018). DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res. 46, W350–W355. 10.1093/nar/gky300 PubMed DOI PMC
Rustin P., Chretien D., Bourgeron T., Gérard B., Rötig A., Saudubray J. M., et al. (1994). Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta 228, 35–51. 10.1016/0009-8981(94)90055-8 PubMed DOI
Srere P. A. (1969). “[1] citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)],” in Methods in enzymology citric acid cycle. Editor Lowenstein J. M. (Cambridge: Academic Press; ), 3–11.
Stiburek L., Vesela K., Hansikova H., Pecina P., Tesarova M., Cerna L., et al. (2005). Tissue-specific cytochrome c oxidase assembly defects due to mutations in SCO2 and SURF1. Biochem. J. 392, 625–632. 10.1042/BJ20050807 PubMed DOI PMC
Xu M., Kopajtich R., Elstner M., Li H., Liu Z., Wang J., et al. (2022). Identification of a novel m.3955G > A variant in MT-ND1 associated with Leigh syndrome. Mitochondrion 62, 13–23. 10.1016/j.mito.2021.10.002 PubMed DOI
Exploring mitochondrial biomarkers for Friedreich's ataxia: a multifaceted approach