Presence of Roe Deer Affects the Occurrence of Anaplasma phagocytophilum Ecotypes in Questing Ixodes ricinus in Different Habitat Types of Central Europe
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31783486
PubMed Central
PMC6926711
DOI
10.3390/ijerph16234725
PII: ijerph16234725
Knihovny.cz E-zdroje
- Klíčová slova
- Anaplasma phagocytophilum, Ixodes ricinus, deer, ecotype,
- MeSH
- Anaplasma phagocytophilum genetika izolace a purifikace MeSH
- ekosystém MeSH
- ekotyp MeSH
- klíště genetika mikrobiologie MeSH
- lidé MeSH
- RNA ribozomální 16S genetika MeSH
- vysoká zvěř mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
The way in which European genetic variants of Anaplasma phagocytophilum circulate in their natural foci and which variants cause disease in humans or livestock remains thus far unclear. Red deer and roe deer are suggested to be reservoirs for some European A. phagocytophilum strains, and Ixodes ricinus is their principal vector. Based on groEL gene sequences, five A. phagocytophilum ecotypes have been identified. Ecotype I is associated with the broadest host range, including strains that cause disease in domestic animals and humans. Ecotype II is associated with roe deer and does not include zoonotic strains. In the present study, questing I. ricinus were collected in urban, pasture, and natural habitats in the Czech Republic, Germany, and Slovakia. A fragment of the msp2 gene of A. phagocytophilum was amplified by real-time PCR in DNA isolated from ticks. Positive samples were further analyzed by nested PCRs targeting fragments of the 16S rRNA and groEL genes, followed by sequencing. Samples were stratified according to the presence/absence of roe deer at the sampling sites. Geographic origin, habitat, and tick stage were also considered. The probability that A. phagocytophilum is a particular ecotype was estimated by a generalized linear model. Anaplasma phagocytophilum was identified by genetic typing in 274 I. ricinus ticks. The majority belonged to ecotype I (63.9%), 28.5% were ecotype II, and both ecotypes were identified in 7.7% of ticks. Ecotype II was more frequently identified in ticks originating from a site with presence of roe deer, whereas ecotype I was more frequent in adult ticks than in nymphs. Models taking into account the country-specific, site-specific, and habitat-specific aspects did not improve the goodness of the fit. Thus, roe deer presence in a certain site and the tick developmental stage are suggested to be the two factors consistently influencing the occurrence of a particular A. phagocytophilum ecotype in a positive I. ricinus tick.
Zobrazit více v PubMed
Woldehiwet Z. The natural history of Anaplasma phagocytophilum. Vet. Parasitol. 2010;167:108–122. doi: 10.1016/j.vetpar.2009.09.013. PubMed DOI
Stuen S., Granquist E.G., Silaghi C. Anaplasma phagocytophilum—A widespread multihost pathogen with highly adaptive strategies. Front. Cell. Infect. Microbiol. 2013;3:31. doi: 10.3389/fcimb.2013.00031. PubMed DOI PMC
Jahfari S., Coipan C., Fonville M., van Leeuwen A.D., Hengeveld P., Heylen D., Heyman P., van Maanen C., Butler C.M., Földvári G., et al. Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit. Vectors. 2014;7:365. doi: 10.1186/1756-3305-7-365. PubMed DOI PMC
Dugat T., Lagrée A.-C., Maillard R., Boulouis H.-J., Haddad N. Opening the black box of Anaplasma phagocytophilum diversity: Current situation and future perspectives. Front. Cell. Infect. Microbiol. 2015;5:61. doi: 10.3389/fcimb.2015.00061. PubMed DOI PMC
Jaarsma R.I., Sprong H., Takumi K., Kazimirova M., Silaghi C., Mysterud A., Rudolf I., Beck R., Földvári G., Tomassone L., et al. Anaplasma phagocytophilum evolves in geographical and biotic niches of vertebrates and ticks. Parasit. Vectors. 2019;12:328. doi: 10.1186/s13071-019-3583-8. PubMed DOI PMC
Stuen S. Anaplasma phagocytophilum - the most widespread tick-borne infection in animals in Europe. Vet. Res. Commun. 2007;31(Suppl. 1):79–84. doi: 10.1007/s11259-007-0071-y. PubMed DOI
Stuen S., Pettersen K.S., Granquist E.G., Bergström K., Bown K.J., Birtles R.J. Anaplasma phagocytophilum variants in sympatric red deer (Cervus elaphus) and sheep in southern Norway. Ticks Tick Borne Dis. 2013;4:197–201. doi: 10.1016/j.ttbdis.2012.11.014. PubMed DOI
Víchová B., Majláthová V., Nováková M., Stanko M., Hviščová I., Pangrácová L., Chrudimský T., Čurlík J., Peťko B. Anaplasma infections in ticks and reservoir host in Slovakia. Infect. Genet. Evol. 2014;22:265–272. doi: 10.1016/j.meegid.2013.06.003. PubMed DOI
Baráková I., Derdáková M., Carpi G., Rosso F., Collini M., Tagliapietra V., Ramponi C., Hauffe H.-C., Rizzoli A. Genetic and ecologic variability among Anaplasma phagocytophilum strains in Northern Italy. Emerg. Infect. Dis. 2014;20:1082–1084. doi: 10.3201/eid2006.131023. PubMed DOI PMC
Battilani M., De Arcangeli S., Balboni A., Dondi F. Genetic diversity and molecular epidemiology of Anaplasma. Infect. Genet. Evol. 2017;49:195–211. doi: 10.1016/j.meegid.2017.01.021. PubMed DOI
Petrovec M., Bidovec A., Sumner J.W., Nicholson W.L., Childs J.E., Avsic-Zupanc T. Infection with Anaplasma phagocytophila in cervids from Slovenia: Evidence of two genotypic lineages. Wien. Klin. Wochenschr. 2002;114:641–647. PubMed
Huhn C., Winter C., Wolfsperger T., Wüppenhorst N., Strašek Smrdel K., Skuballa J., Pfäffle M., Petney T., Silaghi C., Dyachenko V., et al. Analysis of the population structure of Anaplasma phagocytophilum using multilocus sequence typing. PLoS ONE. 2014;9:e93725. doi: 10.1371/journal.pone.0093725. PubMed DOI PMC
Dugat T., Chastagner A., Lagrée A.-C., Petit E., Durand B., Thierry S., Corbière F., Verheyden H., Chabanne L., Bailly X., et al. A new multiple-locus variable-number tandem repeat analysis reveals different clusters for Anaplasma phagocytophilum circulating in domestic and wild ruminants. Parasit. Vectors. 2014;7:439. doi: 10.1186/1756-3305-7-439. PubMed DOI PMC
Langenwalder D.B., Schmidt S., Gilli U., Pantche N., Ganter M., Silaghi C., Aardema M.L., von Loewenich F.D. Genetic characterization of Anaplasma phagocytophilum strains from goats (Capra aegagrus hircus) and water buffalo (Bubalus bubalis) by 16S rRNA gene, ankA gene and multilocus sequence typing. Ticks Tick Borne Dis. 2019;10:101267. doi: 10.1016/j.ttbdis.2019.101267. PubMed DOI
Jouglin M., Chagneau S., Faille F., Verheyden H., Bastian S., Malandrin L. Detecting and characterizing mixed infections with genetic variants of Anaplasma phagocytophilum in roe deer (Capreolus capreolus) by developing an ankA cluster-specific nested PCR. Parasit. Vectors. 2017;10:377. doi: 10.1186/s13071-017-2316-0. PubMed DOI PMC
Strasek Smrdel K., Bidovec A., Malovrh T., Petrovec M., Duh D., Avsic Zupanc T. Detection of Anaplasma phagocytophilum in wild boar in Slovenia. Clin. Microbiol. Infect. 2009;15(Suppl. 2):50–52. doi: 10.1111/j.1469-0691.2008.02174.x. PubMed DOI
Michalik J., Stańczak J., Cieniuch S., Racewicz M., Sikora B., Dabert M. Wild boars as hosts of human-pathogenic Anaplasma phagocytophilum variants. Emerg. Infect. Dis. 2012;18:2094–2095. doi: 10.3201/eid1806.110997. PubMed DOI PMC
Santos A.S., de Bruin A., Veloso A.R., Marques C., da Fonseca I.P., de Sousa R., Sprong H., Santos-Silva M.M. Detection of Anaplasma phagocytophilum, Candidatus Neoehrlichia sp., Coxiella burnetii and Rickettsia spp. in questing ticks from a recreational park, Portugal. Ticks Tick Borne Dis. 2018;9:1555–1564. doi: 10.1016/j.ttbdis.2018.07.010. PubMed DOI
Silaghi C., Woll D., Hamel D., Pfister K., Mahling M., Pfeffer M. Babesia spp. and Anaplasma phagocytophilum in questing ticks, ticks parasitizing rodents and the parasitized rodents – Analyzing the host pathogen-vector interface in a metropolitan area. Parasit. Vectors. 2012;5:191. doi: 10.1186/1756-3305-5-191. PubMed DOI PMC
Overzier E., Pfister K., Thiel C., Herb I., Mahling M., Silaghi C. Anaplasma phagocytophilum in questing Ixodes ricinus ticks: A comparison of the prevalence and partial 16S rRNA gene variants in urban, pasture and natural habitats. Appl. Environ. Microbiol. 2013;79:1730–1734. doi: 10.1128/AEM.03300-12. PubMed DOI PMC
Overzier E., Pfister K., Thiel C., Herb I., Mahling M., Silaghi C. Diversity of Babesia and Rickettsia species in questing Ixodes ricinus: A longitudinal study in urban, pasture and natural habitats. Vector Borne Zoonot. Dis. 2013;13:559–564. doi: 10.1089/vbz.2012.1278. PubMed DOI PMC
Venclikova K., Rudolf I., Mendel J., Betasova L., Hubalek Z. Rickettsiae in questing Ixodes ricinus ticks in the Czech Republic. Ticks Tick Borne Dis. 2014;5:135–138. doi: 10.1016/j.ttbdis.2013.09.008. PubMed DOI
Venclíková K., Mendel J., Betášová L., Blažejová H., Jedličková P., Straková P., Hubálek Z., Rudolf I. Neglected tick-borne pathogens in the Czech Republic, 2011–2014. Ticks Tick Borne Dis. 2016;7:107–112. doi: 10.1016/j.ttbdis.2015.09.004. PubMed DOI
Svitálková Z., Haruštiaková D., Mahríková L., Berthová L., Slovák M., Kocianová E., Kazimírová M. Anaplasma phagocytophilum prevalence in ticks and rodents in an urban and natural habitat in South-Western Slovakia. Parasit. Vectors. 2015;8:276. doi: 10.1186/s13071-015-0880-8. PubMed DOI PMC
Kazimírová M., Hamšíková Z., Kocianová E., Marini G., Mojšová M., Mahríková L., Berthová L., Slovák M., Rosá R. Relative density of host-seeking ticks in different habitat types of south-western Slovakia. Exp. Appl. Acarol. 2016;69:205–224. doi: 10.1007/s10493-016-0025-6. PubMed DOI
Courtney J.W., Kostelnik L.M., Zeidner N.S., Massung R.F. Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J. Clin. Microbiol. 2004;42:3164–3168. doi: 10.1128/JCM.42.7.3164-3168.2004. PubMed DOI PMC
Massung R.F., Slater K., Owens J.H., Nicholson W.L., Mather T.N., Solberg V.B., Olson J.G. Nested PCR assay for detection of granulocytic ehrlichiae. J. Clin. Microbiol. 1998;36:1090–1095. PubMed PMC
Alberti A., Zobba R., Chessa B., Addis M.F., Sparagano O., Pinna Parpaglia M.L., Cubeddu T., Pintori G., Pittau M. Equine and canine Anaplasma phagocytophilum strains isolated on the island of Sardinia (Italy) are phylogenetically related to pathogenic strains from the United States. Appl. Environ. Microbiol. 2005;71:6418–6422. doi: 10.1128/AEM.71.10.6418-6422.2005. PubMed DOI PMC
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC
Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Schorn S., Pfister K., Reulen H., Mahling M., Manitz J., Thiel C., Silaghi C. Prevalence of Anaplasma phagocytophilum in Ixodes ricinus in Bavarian public parks, Germany. Ticks Tick Borne Dis. 2011;2:196–203. doi: 10.1016/j.ttbdis.2011.09.009. PubMed DOI
Silaghi C., Hamel D., Thiel C., Pfister K., Passos L.M., Rehbein S. Genetic variants of Anaplasma phagocytophilum in wild caprine and cervid ungulates from the Alps in Tyrol, Austria. Vector Borne Zoonot. Dis. 2011;11:355–362. doi: 10.1089/vbz.2010.0051. PubMed DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2016.
Hammer Ø., Harper D.A.T., Ryan P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001;4:9.
Rizzoli A., Silaghi C., Obiegala A., Rudolf I., Hubálek Z., Földvári G., Plantard O., Vayssier-Taussat M., Bonnet S., Špitalská E., et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: New hazards and relevance for public health. Front. Public Health. 2014;2:251. doi: 10.3389/fpubh.2014.00251. PubMed DOI PMC
Scharf W., Schauer S., Freyburger F., Petrovec M., Schaarschmidt-Kiener D., Liebisch G., Runge M., Ganter M., Kehl A., Dumler J.S., et al. Distinct host species correlate with Anaplasma phagocytophilum ankA gene clusters. J. Clin. Microbiol. 2011;49:790–796. doi: 10.1128/JCM.02051-10. PubMed DOI PMC
Overzier E., Pfister K., Herb I., Mahling M., Bock G. Jr., Silaghi C. Detection of tick-borne pathogens in roe deer (Capreolus capreolus), in questing ticks (Ixodes ricinus), and in ticks infesting roe deer in southern Germany. Ticks Tick Borne Dis. 2013;4:320–328. doi: 10.1016/j.ttbdis.2013.01.004. PubMed DOI
Kauffmann M., Rehbein S., Hamel D., Lutz W., Heddergott M., Pfister K., Silaghi C. Anaplasma phagocytophilum and Babesia spp. in roe deer (Capreolus capreolus), fallow deer (Dama dama) and mouflon (Ovis musimon) in Germany. Mol. Cell. Probes. 2017;31:46–54. doi: 10.1016/j.mcp.2016.08.008. PubMed DOI
Kazimírová M., Hamšíková Z., Špitalská E., Minichová L., Mahríková L., Caban R., Sprong H., Fonville M., Schnittger L., Kocianová E. Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia. Parasit. Vectors. 2018;11:495. doi: 10.1186/s13071-018-3068-1. PubMed DOI PMC
Stigum V.M., Jaarsma R.I., Sprong H., Rolandsen C.M., Mysterud A. Infection prevalence and ecotypes of Anaplasma phagocytophilum in moose Alces alces, red deer Cervus elaphus, roe deer Capreolus capreolus and Ixodes ricinus ticks from Norway. Parasit. Vectors. 2019;12:1. doi: 10.1186/s13071-018-3256-z. PubMed DOI PMC
Telford S.R., Dawson J.E., Katavlos P., Warner C.C., Kolbert K.P., Persing D.H. Perpetuation of the agent of human granulocytic ehrlichiosis in a deer tick-rodent cycle. Proc. Natl. Acad. Sci. USA. 1996;93:6209–6214. doi: 10.1073/pnas.93.12.6209. PubMed DOI PMC
Ogden N.H., Casey A.N.J., Woldehiwet Z., French N.P. Transmission of Anaplasma phagocytophilum to Ixodes ricinus ticks from sheep in the acute and post-acute phases of infection. Infect. Immun. 2003;71:2071–2078. doi: 10.1128/IAI.71.4.2071-2078.2003. PubMed DOI PMC
Chastagner A., Pion A., Verheyden H., Lourtet B., Cargnelutti B., Picot D., Poux V., Bard É., Plantard O., McCoy K.D., et al. Host specificity, pathogen exposure, and superinfections impact the distribution of Anaplasma phagocytophilum genotypes in ticks, roe deer, and livestock in a fragmented agricultural landscape. Infect. Genet. Evol. 2017;55:31–44. doi: 10.1016/j.meegid.2017.08.010. PubMed DOI
Tegtmeyer P., Ganter M., von Loewenich F.D. Simultaneous infection of cattle with different Anaplasma phagocytophilum variants. Ticks Tick Borne Dis. 2019;10:1051–1056. doi: 10.1016/j.ttbdis.2019.05.011. PubMed DOI
Majazki J., Wüppenhorst N., Hartelt K., Birtles R., von Loewenich F.D. Anaplasma phagocytophilum strains from small mammals exhibit specific ankA gene sequences. BMC Vet. Res. 2013;9:235. doi: 10.1186/1746-6148-9-235. PubMed DOI PMC
Silaghi C., Gilles J., Hohle M., Fingerle V., Just F.T., Pfister K. Anaplasma phagocytophilum infection in Ixodes ricinus, Bavaria, Germany. Emerg. Infect. Dis. 2008;14:972–974. doi: 10.3201/eid1406.071095. PubMed DOI PMC
Silaghi C., Kohn B., Chirek A., Thiel C., Nolte I., Liebisch G., Pfister K. Relationship of molecular and clinical findings on Anaplasma phagocytophilum involved in natural infections of dogs. J. Clin. Microbiol. 2011;49:4413–4414. doi: 10.1128/JCM.06041-11. PubMed DOI PMC
Silaghi C., Liebisch G., Pfister K. Genetic variants of Anaplasma phagocytophilum from 14 equine granulocytic anaplasmosis cases. Parasit. Vectors. 2011;4:161. doi: 10.1186/1756-3305-4-161. PubMed DOI PMC