Exploring mitochondrial biomarkers for Friedreich's ataxia: a multifaceted approach
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
309121
Grantová Agentura, Univerzita Karlova
226423
Grantová Agentura, Univerzita Karlova
NCT02069509
EFACTS
LX22NPO5107
Program EXCELES - Funded by the European Union - Next Generation EU
MH CZ-DRO-FNM64203
MH CZ - DRO
MH CZ-DRO-VFN64165
MH CZ - DRO
PubMed
38520521
PubMed Central
PMC11136723
DOI
10.1007/s00415-024-12223-5
PII: 10.1007/s00415-024-12223-5
Knihovny.cz E-zdroje
- Klíčová slova
- Biomarkers, Complex I (NQR), Complex II (SQR), Complex IV (COX), Disease monitoring, Friedreich's ataxia, Mitochondrial dysfunction, Neurofilament light chain (NFL), Therapeutic monitoring, Ubiquinone (Coenzyme Q10),
- MeSH
- biologické markery * metabolismus MeSH
- citrátsynthasa metabolismus MeSH
- dospělí MeSH
- Friedreichova ataxie * diagnóza MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mitochondrie metabolismus MeSH
- mladiství MeSH
- mladý dospělý MeSH
- ubichinon * analogy a deriváty MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery * MeSH
- citrátsynthasa MeSH
- coenzyme Q10 MeSH Prohlížeč
- ubichinon * MeSH
This study presents an in-depth analysis of mitochondrial enzyme activities in Friedreich's ataxia (FA) patients, focusing on the Electron Transport Chain complexes I, II, and IV, the Krebs Cycle enzyme Citrate Synthase, and Coenzyme Q10 levels. It examines a cohort of 34 FA patients, comparing their mitochondrial enzyme activities and clinical parameters, including disease duration and cardiac markers, with those of 17 healthy controls. The findings reveal marked reductions in complexes II and, specifically, IV, highlighting mitochondrial impairment in FA. Additionally, elevated Neurofilament Light Chain levels and cardiomarkers were observed in FA patients. This research enhances our understanding of FA pathophysiology and suggests potential biomarkers for monitoring disease progression. The study underscores the need for further clinical trials to validate these findings, emphasizing the critical role of mitochondrial dysfunction in FA assessment and treatment.
Zobrazit více v PubMed
Delatycki MB, Williamson R, Forrest SM. Friedreich ataxia: an overview. J Med Genet. 2000;37(1):1–8. doi: 10.1136/jmg.37.1.1. PubMed DOI PMC
Brice A, Pulst S-M. Spinocerebellar degenerations: the ataxias and spastic paraplegias. Elsevier; 2007.
Pandolfo M. Friedreich ataxia: the clinical picture. J Neurol. 2009;256(Suppl 1):3–8. doi: 10.1007/s00415-009-1002-3. PubMed DOI
Cook A, Giunti P. Friedreich’s ataxia: clinical features, pathogenesis and management. Br Med Bull. 2017;124(1):19–30. doi: 10.1093/bmb/ldx034.PMID:29053830;PMCID:PMC5862303. PubMed DOI PMC
Porcu L, Fichera M, Nanetti L, Rulli E, Giunti P, Parkinson M, Durr A, Ewenczyk C, Boesch S, Nachbauer W, Indelicato E, Klopstock T, Stendel C, Rodriguez de Rivera F, Schöls L, Fleszar Z, Giordano I, Didszun C, Castaldo A, Mariotti C. Longitudinal changes of SARA scale in Friedreich ataxia: Strong influence of baseline score and age at onset. Ann Clin Trans Neurol. 2023 doi: 10.1002/acn3.51886. PubMed DOI PMC
Corben LA, Collins V, Milne S, et al. Clinical management guidelines for Friedreich ataxia: best practice in rare diseases. Orphanet J Rare Dis. 2022;17:415. doi: 10.1186/s13023-022-02568-3. PubMed DOI PMC
Taanman, J.-W., & Williams, S. L. (2002). Structure and Function of the Mitochondrial Oxidative Phosphorylation System. In A. H. V. Schapira & S. DiMauro (Eds.), Blue Books of Practical Neurology (Vol. 26, pp. 1–34). Butterworth-Heinemann. 10.1016/S1877-3419(09)70060-1
Mailloux, Ryan & Jin, Xiaolei & Willmore, William. (2013). Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol. 2. 10.1016/j.redox.2013.12.011. PubMed PMC
Mailloux RJ. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol. 2015;4:381–398. doi: 10.1016/j.redox.2015.02.001. PubMed DOI PMC
Čapková, M., Hansíková, H., Godinot, C., Houšťková, H., Houštěk, J., & Zeman, J. (2002). Nová missense mutace 574C>T v genu SURF1 - biochemická a molekulárně genetická studie u sedmi dětí s Leighovým syndromem [Novel missense mutation 574C>T in SURF1 gene - biochemical and molecular studies in seven children with Leigh syndrome]. Časopis Lékařů Českých, 141(20), 636–641. ISSN 0008–7335. http://hdl.handle.net/11104/0017363 PubMed
Worth AJ, Basu SS, Deutsch EC, Hwang WT, Snyder NW, Lynch DR, Blair IA. Stable isotopes and LC-MS for monitoring metabolic disturbances in Friedreich's ataxia platelets. Bioanalysis. 2015;7(15):1843–1855. doi: 10.4155/bio.15.118. PubMed DOI PMC
Wang Q, Guo L, Strawser CJ, Hauser LA, Hwang WT, et al. Low apolipoprotein A-I levels in Friedreich’s ataxia and in frataxin-deficient cells: Implications for therapy. PLoS ONE. 2018;13(2):e0192779. doi: 10.1371/journal.pone.0192779. PubMed DOI PMC
Li J, Rozwadowska N, Clark A, et al. Excision of the expanded GAA repeats corrects cardiomyopathy phenotypes of iPSC-derived Friedreich's ataxia cardiomyocytes. Stem Cell Research. 2019;40:101529. doi: 10.1016/j.scr.2019.101529. PubMed DOI PMC
Cotticelli, M. G., Xia, S., Truitt, R., Doliba, N. M., Rozo, A. V., Tobias, J. W., Lee, T., Chen, J., Napierala, J. S., Napierala, M., Yang, W., & Wilson, R. B. (2023). Acute frataxin knockdown in induced pluripotent stem cell-derived cardiomyocytes activates a type I interferon response. *Disease Models & Mechanisms, 16*(5), dmm049497. 10.1242/dmm.049497 PubMed PMC
Sayles, N. M., Napierala, J. S., Anrather, J., Diedhiou, N., Li, J., Napierala, M., Puccio, H., & Manfredi, G. (2023). Comparative multi-omic analyses of cardiac mitochondrial stress in three mouse models of frataxin deficiency. Disease models & mechanisms, 16(10), dmm050114. 10.1242/dmm.050114 PubMed PMC
Tsai CL, Barondeau DP. Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex. Biochemistry. 2010;49(43):9132–9139. doi: 10.1021/bi1013062. PubMed DOI
Rötig A, De Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nature Genet. 1997;17:215–217. doi: 10.1038/ng1097-215. PubMed DOI
Bradley JL, Blake JC, Chamberlain S, Thomas PK, Cooper JM, Schapira AH. Clinical, biochemical and molecular genetic correlations in Friedreich’s ataxia. Hum Mol Genet. 2000;9(2):275–282. doi: 10.1093/hmg/9.2.275. PubMed DOI
Nachbauer W, Boesch S, Reindl M, Eigentler A, Hufler K, Poewe W, Löscher W, Wanschitz J. Skeletal Muscle Involvement in Friedreich Ataxia and Potential Effects of Recombinant Human Erythropoietin Administration on Muscle Regeneration and Neovascularization. J Neuropathol Exp Neurol. 2012;71(8):708–715. doi: 10.1097/NEN.0b013e31825fed76. PubMed DOI
Smith, F. M., & Kosman, D. J. (2020). Molecular Defects in Friedreich’s Ataxia: Convergence of Oxidative Stress and Cytoskeletal Abnormalities. Frontiers in Molecular Biosciences, 7. 10.3389/fmolb.2020.569293 PubMed PMC
Davide D, Federica C, Marco B, Elisa B, Silvia M, Giulia T, Federica D, Ottaviani D, Elena M, Luigi L, Elisa G, Elena Z, Antonella R, Milena B, Geppo S, Donatella C, Leonardo S, Paola C. Human frataxin, the Friedreich ataxia deficient protein, interacts with mitochondrial respiratory chain. Cell Death Dis. 2023;14(12):805. doi: 10.1038/s41419-023-06320-y. PubMed DOI PMC
Cooper JM, Schapira AH. Friedreich's Ataxia: disease mechanisms, antioxidant and Coenzyme Q10 therapy. BioFactors (Oxford, England) 2003;18(1–4):163–171. doi: 10.1002/biof.5520180219. PubMed DOI
Parkinson MH, Schulz JB, Giunti P. Co-enzyme Q10 and idebenone use in Friedreich's ataxia. J Neurochem. 2013;126(Suppl 1):125–141. doi: 10.1111/jnc.12322. PubMed DOI
El-Hattab, A. W., & Scaglia, F. (2016). Mitochondrial Cardiomyopathies. Frontiers in Cardiovascular Medicine, 3. 10.3389/fcvm.2016.00025 PubMed PMC
Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Investig. 2018 doi: 10.1172/JCI120849. PubMed DOI PMC
Kubánek M, Schimerová T, Piherová L, Brodehl A, Krebsová A, Ratnavadivel S, Stanasiuk C, Hansíková H, Zeman J, Paleček T, Houštěk J, Drahota Z, Nůsková H, Mikešová J, Zámečník J, Macek M, Jr, Ridzoň P, Malusková J, Stránecký V, Melenovský V, Milting H, Kmoch S. Desminopathy: novel desmin variants, a new cardiac phenotype, and further evidence for secondary mitochondrial dysfunction. J Clin Med. 2020;9(4):937. doi: 10.3390/jcm9040937. PubMed DOI PMC
Ramaccini, D., Montoya-Uribe, V., Aan, F. J., Modesti, L., Potes, Y., Wieckowski, M. R., et al. (2021). Mitochondrial Function and Dysfunction in Dilated Cardiomyopathy. Frontiers in Cell and Developmental Biology, 8, [Sec. Cellular Biochemistry]. 10.3389/fcell.2020.624216 PubMed PMC
Clark, E. (2018). Role of frataxin protein deficiency and metabolic dysfunction in Friedreich ataxia, an autosomal recessive mitochondrial disease. PubMed PMC
Johnson, J., Mercado-Ayon, E., Mercado-Ayon, Y., Dong, Y. N., Halawani, S., Ngaba, L., & Lynch, D. R. (2021). Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Archives of Biochemistry and Biophysics, 702: 108698. ISSN 0003–9861. 10.1016/j.abb.2020.108698 PubMed
Friedreich Ataxia Research Alliance. (2023). FA Research Pipeline. Retrieved December 30, 2023, from https://www.curefa.org/research/research-pipeline
U.S. Food and Drug Administration. (2023). FDA approves first treatment for Friedreich’s ataxia. Retrieved December 30, 2023, https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-first-treatment-friedreichs-ataxia
Lynch DR, Chin MP, Boesch S, Delatycki MB, Giunti P, Goldsberry A, Hoyle JC, Mariotti C, Mathews KD, Nachbauer W, O'Grady M, Perlman S, Subramony SH, Wilmot G, Zesiewicz T, Meyer CJ. Efficacy of omaveloxolone in friedreich's ataxia: delayed-start analysis of the MOXIe extension. Mov Disord. 2023;38(2):313–320. doi: 10.1002/mds.29286. PubMed DOI
Chhimpa V. The novel role of mitochondrial citrate synthase and citrate in the pathophysiology of Alzheimer’s disease. J Alzheimer’s Disease. 2023;94(s1):S453–S472. doi: 10.3233/JAD-220514. PubMed DOI PMC
Melancon S (1979) Pyruvate dehydrogenase, lipoamide dehydrogenase and citrate synthase activity in fibroblasts from patients with friedreich’s and charlevoix-saguenay ataxia. PubMed
Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol. 2012;590:3349–3360. doi: 10.1113/jphysiol.2012.230185. PubMed DOI PMC
Vigelsø A, Andersen NB, Dela F. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training. Int J Physiol Pathophysiol Pharmacol. 2014;6(2):84–101. PubMed PMC
Hayer SN, Liepelt I, Barro C, Wilke C, Kuhle J, Martus P, Schöls L, EFACTS study group NfL and pNfH are increased in Friedreich's ataxia. J Neurol. 2020;267(5):1420–1430. doi: 10.1007/s00415-020-09722-6. PubMed DOI PMC
Clay A, Obrochta KM, Soon RK, et al. Neurofilament light chain as a potential biomarker of disease status in Friedreich ataxia. J Neurol. 2020;267:2594–2598. doi: 10.1007/s00415-020-09868-3. PubMed DOI
Frempong, B., Wilson, R. B., Schadt, K., & Lynch, D. R. (2021). The Role of Serum Levels of Neurofilament Light (NfL) Chain as a Biomarker in Friedreich Ataxia. Frontiers in neuroscience, 15, 653241. 10.3389/fnins.2021. PubMed PMC
Clay, A., Obrochta, K.M., Soon, R.K. et al. Neurofilament light chain as a potential biomarker of disease status in Friedreich ataxia. J Neurol 267, 2594–2598 (2020). 10.1007/s00415-020-09868-3 PubMed
Fox JE, Austin CD, Reynolds CC, Steffen PK. Evidence that agonist-induced activation of calpain causes the shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets. J Biol Chem. 1991;266(20):13289–13295. doi: 10.1016/S0021-9258(18)98837-X. PubMed DOI
Rustin, P., Chretien, D., Bourgeron, T., Gérard, B., Rötig, A., Saudubray, J. M., & Munnich, A. (1994). Biochemical and molecular investigations in respiratory chain deficiencies. Clinica chimica acta; international journal of clinical chemistry, 228(1), 35–51. 10.1016/0009-8981(94)90055-8 PubMed
Srere PA. Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)] Methods Enzymol. 1969;13:3–11. doi: 10.1016/0076-6879(69)13005-0. DOI
Mosca F, Fattorini D, Bompadre S, Littarru GP. Assay of Coenzyme Q10 in plasma by a single dilution step. Anal Biochem. 2002;305:49–54. doi: 10.1006/abio.2002.5653. PubMed DOI
Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275. doi: 10.1016/S0021-9258(19)52451-6. PubMed DOI
UmanDiagnostics. (n.d.). NF-light® serum ELISA. Retrieved [Date you accessed the website], https://www.umandiagnostics.se/cms/nf-light-serum-elisa/
Fakultní nemocnice v Motole. (2021). Laboratorní příručka: Oddělení klinické hematologie FN Motol (č. IIILP_1OKH_1/2010–19). Retrieved December 30, 2023, from https://www.fnmotol.cz/wp-content/uploads/laboratorni-prirucka-2021.pdf
Fakultní nemocnice v Motole. (2022). Laboratorní příručka: Ústav lékařské chemie a klinické biochemie UK 2. LF a FN Motol (č. IIILP_8UKBP_1/2022–1). Retrieved December 30, 2023, from https://www.fnmotol.cz/wp-content/uploads/labprirucka2022.pdf
Yang ZP, Dettbarn W-D. Lipid peroxidation and changes in cytochrome c oxidase and xanthine oxidase activity in organophosphorus anticholinesterase induced myopathy. J Physiol-Paris. 1998;92(3–4):157–161. doi: 10.1016/S0928-4257(98)80002-8. PubMed DOI
Abeti, R., Parkinson, M., Hargreaves, I., et al. (2016). Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich's ataxia. Cell Death & Disease, 7, e2237.10.1038/cddis.2016.111.. PubMed PMC
Mayr JA, Haack TB, Freisinger P, Karall D, Makowski C, Koch J, Feichtinger RG, Zimmermann FA, Rolinski B, Ahting U, Meitinger T, Prokisch H, Sperl W. Spectrum of combined respiratory chain defects. J Inherit Metab Dis. 2015;38(4):629–640. doi: 10.1007/s10545-015-9831-y. PubMed DOI PMC
Danhelovska T, Kolarova H, Zeman J, Hansikova H, Vaneckova M, Lambert L, Kucerova-Vidrova V, Berankova K, Honzik T, Tesarova M. Multisystem mitochondrial diseases due to mutations in mtDNA-encoded subunits of complex I. BMC Pediatr. 2020;20(1):41. doi: 10.1186/s12887-020-1912-x. PubMed DOI PMC
Protasoni, M., Pérez-Pérez, R., Lobo-Jarne, T., Harbour, M. E., Ding, S., Peñas, A., Diaz, F., Moraes, C. T., Fearnley, I. M., Zeviani, M., Ugalde, C., & Fernández-Vizarra, E. (2020). Respiratory supercomplexes act as a platform for complex III-mediated maturation of human mitochondrial complexes I and IV. EMBO Journal, 39(3), e102817. 10.15252/embj.2019102817 PubMed PMC
Rákosníková, T., Kelifová, S., Štufková, H., Lokvencová, K., Lišková, P., Kousal, B., Honzík, T., Hansíková, H., Martínek, V., & Tesařová, M. (2023). Case report: A rare variant m.4135T>C in the MT-ND1 gene leads to Leber hereditary optic neuropathy and altered respiratory chain supercomplexes. Frontiers in Genetics, 14, 1182288. 10.3389/fgene.2023.1182288 PubMed PMC
Chiabrando D, Bertino F, Tolosano E. Hereditary Ataxia: A Focus on Heme Metabolism and Fe-S Cluster Biogenesis. Int J Mol Sci. 2020;21(11):3760. doi: 10.3390/ijms21113760. PubMed DOI PMC
Télot, L., Rousseau, E., Lesuisse, E., Garcia, C., Morlet, B., Léger, T., Camadro, J. M., & Serre, V. (2018). Quantitative proteomics in Friedreich's ataxia B-lymphocytes: A valuable approach to decipher the biochemical events responsible for pathogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1864(4 Pt A), 997–1009. 10.1016/j.bbadis.2018.01.010 PubMed
Dionisi, C., Chazalon, M., Rai, M., Keime, C., Imbault, V., Communi, D., Puccio, H., Schiffmann, S. N., & Pandolfo, M. (2023). Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties. Brain communications, 5(1): fcad007. 10.1093/braincomms/fcad007 PubMed PMC
Indelicato E, Faserl K, Amprosi M, Nachbauer W, Schneider R, Wanschitz J, Sarg B, Boesch S. Skeletal muscle proteome analysis underpins multifaceted mitochondrial dysfunction in Friedreich's ataxia. Front Neurosci. 2023;17:1289027. doi: 10.3389/fnins.2023.1289027. PubMed DOI PMC
Sohal RS, Kamzalov S, Sumien N, Ferguson M, Rebrin I, Heinrich KR, Forster MJ. Effect of coenzyme Q10 intake on endogenous coenzyme Q content, mitochondrial electron transport chain, antioxidative defenses, and life span of mice. Free Radical Biol Med. 2006;40(3):480–487. doi: 10.1016/j.freeradbiomed.2005.08.037. PubMed DOI PMC
González-Cabo P, Vázquez-Manrique RP, García-Gimeno MA, Sanz P, Palau F. Frataxin interacts functionally with mitochondrial electron transport chain proteins. Hum Mol Genet. 2005;14(15):2091–2098. doi: 10.1093/hmg/ddi214. PubMed DOI
Bay M, Kirk V, Parner J, Hassager C, Nielsen H, Krogsgaard K, Trawinski J, Boesgaard S, Aldershvile J. NT-proBNP: a new diagnostic screening tool to differentiate between patients with normal and reduced left ventricular systolic function. Heart (British Cardiac Society) 2003;89(2):150–154. doi: 10.1136/heart.89.2.150. PubMed DOI PMC
Weber MA, Kinscherf R, Krakowski-Roosen H, Aulmann M, Renk H, Künkele A, Edler L, Kauczor HU, Hildebrandt W. Myoglobin plasma level related to muscle mass and fiber composition: a clinical marker of muscle wasting? J Mol Med (Berl) 2007;85(8):887–896. doi: 10.1007/s00109-007-0220-3. PubMed DOI
Rodden LN, Gilliam KM, Lam C et al. (2022) DNA methylation in Friedreich ataxia silences expression of frataxin isoform E. Scientific Reports 12: 5031.10.1038/s41598-022-09002-55 PubMed PMC
Wang Q, Laboureur L, Weng L, Eskenazi NM, Hauser LA, Mesaros C, Lynch DR, Blair IA. Simultaneous quantification of mitochondrial mature frataxin and extra-mitochondrial frataxin isoform e in Friedreich's ataxia blood. Front Neurosci. 2022;16:874768. doi: 10.3389/fnins.2022.874768. PubMed DOI PMC
Bohm M, Honzík T, Šnajperková A, Knopová Z, Zeman J, Hansíková H. Activities of the respiratory chain complexes in platelets. Klinická Biochemie a Metabolismus. 2003;11(32):97–101.