Exploring mitochondrial biomarkers for Friedreich's ataxia: a multifaceted approach

. 2024 Jun ; 271 (6) : 3439-3454. [epub] 20240323

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38520521

Grantová podpora
309121 Grantová Agentura, Univerzita Karlova
226423 Grantová Agentura, Univerzita Karlova
NCT02069509 EFACTS
LX22NPO5107 Program EXCELES - Funded by the European Union - Next Generation EU
MH CZ-DRO-FNM64203 MH CZ - DRO
MH CZ-DRO-VFN64165 MH CZ - DRO

Odkazy

PubMed 38520521
PubMed Central PMC11136723
DOI 10.1007/s00415-024-12223-5
PII: 10.1007/s00415-024-12223-5
Knihovny.cz E-zdroje

This study presents an in-depth analysis of mitochondrial enzyme activities in Friedreich's ataxia (FA) patients, focusing on the Electron Transport Chain complexes I, II, and IV, the Krebs Cycle enzyme Citrate Synthase, and Coenzyme Q10 levels. It examines a cohort of 34 FA patients, comparing their mitochondrial enzyme activities and clinical parameters, including disease duration and cardiac markers, with those of 17 healthy controls. The findings reveal marked reductions in complexes II and, specifically, IV, highlighting mitochondrial impairment in FA. Additionally, elevated Neurofilament Light Chain levels and cardiomarkers were observed in FA patients. This research enhances our understanding of FA pathophysiology and suggests potential biomarkers for monitoring disease progression. The study underscores the need for further clinical trials to validate these findings, emphasizing the critical role of mitochondrial dysfunction in FA assessment and treatment.

Zobrazit více v PubMed

Delatycki MB, Williamson R, Forrest SM. Friedreich ataxia: an overview. J Med Genet. 2000;37(1):1–8. doi: 10.1136/jmg.37.1.1. PubMed DOI PMC

Brice A, Pulst S-M. Spinocerebellar degenerations: the ataxias and spastic paraplegias. Elsevier; 2007.

Pandolfo M. Friedreich ataxia: the clinical picture. J Neurol. 2009;256(Suppl 1):3–8. doi: 10.1007/s00415-009-1002-3. PubMed DOI

Cook A, Giunti P. Friedreich’s ataxia: clinical features, pathogenesis and management. Br Med Bull. 2017;124(1):19–30. doi: 10.1093/bmb/ldx034.PMID:29053830;PMCID:PMC5862303. PubMed DOI PMC

Porcu L, Fichera M, Nanetti L, Rulli E, Giunti P, Parkinson M, Durr A, Ewenczyk C, Boesch S, Nachbauer W, Indelicato E, Klopstock T, Stendel C, Rodriguez de Rivera F, Schöls L, Fleszar Z, Giordano I, Didszun C, Castaldo A, Mariotti C. Longitudinal changes of SARA scale in Friedreich ataxia: Strong influence of baseline score and age at onset. Ann Clin Trans Neurol. 2023 doi: 10.1002/acn3.51886. PubMed DOI PMC

Corben LA, Collins V, Milne S, et al. Clinical management guidelines for Friedreich ataxia: best practice in rare diseases. Orphanet J Rare Dis. 2022;17:415. doi: 10.1186/s13023-022-02568-3. PubMed DOI PMC

Taanman, J.-W., & Williams, S. L. (2002). Structure and Function of the Mitochondrial Oxidative Phosphorylation System. In A. H. V. Schapira & S. DiMauro (Eds.), Blue Books of Practical Neurology (Vol. 26, pp. 1–34). Butterworth-Heinemann. 10.1016/S1877-3419(09)70060-1

Mailloux, Ryan & Jin, Xiaolei & Willmore, William. (2013). Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions. Redox Biol. 2. 10.1016/j.redox.2013.12.011. PubMed PMC

Mailloux RJ. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol. 2015;4:381–398. doi: 10.1016/j.redox.2015.02.001. PubMed DOI PMC

Čapková, M., Hansíková, H., Godinot, C., Houšťková, H., Houštěk, J., & Zeman, J. (2002). Nová missense mutace 574C>T v genu SURF1 - biochemická a molekulárně genetická studie u sedmi dětí s Leighovým syndromem [Novel missense mutation 574C>T in SURF1 gene - biochemical and molecular studies in seven children with Leigh syndrome]. Časopis Lékařů Českých, 141(20), 636–641. ISSN 0008–7335. http://hdl.handle.net/11104/0017363 PubMed

Worth AJ, Basu SS, Deutsch EC, Hwang WT, Snyder NW, Lynch DR, Blair IA. Stable isotopes and LC-MS for monitoring metabolic disturbances in Friedreich's ataxia platelets. Bioanalysis. 2015;7(15):1843–1855. doi: 10.4155/bio.15.118. PubMed DOI PMC

Wang Q, Guo L, Strawser CJ, Hauser LA, Hwang WT, et al. Low apolipoprotein A-I levels in Friedreich’s ataxia and in frataxin-deficient cells: Implications for therapy. PLoS ONE. 2018;13(2):e0192779. doi: 10.1371/journal.pone.0192779. PubMed DOI PMC

Li J, Rozwadowska N, Clark A, et al. Excision of the expanded GAA repeats corrects cardiomyopathy phenotypes of iPSC-derived Friedreich's ataxia cardiomyocytes. Stem Cell Research. 2019;40:101529. doi: 10.1016/j.scr.2019.101529. PubMed DOI PMC

Cotticelli, M. G., Xia, S., Truitt, R., Doliba, N. M., Rozo, A. V., Tobias, J. W., Lee, T., Chen, J., Napierala, J. S., Napierala, M., Yang, W., & Wilson, R. B. (2023). Acute frataxin knockdown in induced pluripotent stem cell-derived cardiomyocytes activates a type I interferon response. *Disease Models & Mechanisms, 16*(5), dmm049497. 10.1242/dmm.049497 PubMed PMC

Sayles, N. M., Napierala, J. S., Anrather, J., Diedhiou, N., Li, J., Napierala, M., Puccio, H., & Manfredi, G. (2023). Comparative multi-omic analyses of cardiac mitochondrial stress in three mouse models of frataxin deficiency. Disease models & mechanisms, 16(10), dmm050114. 10.1242/dmm.050114 PubMed PMC

Tsai CL, Barondeau DP. Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex. Biochemistry. 2010;49(43):9132–9139. doi: 10.1021/bi1013062. PubMed DOI

Rötig A, De Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nature Genet. 1997;17:215–217. doi: 10.1038/ng1097-215. PubMed DOI

Bradley JL, Blake JC, Chamberlain S, Thomas PK, Cooper JM, Schapira AH. Clinical, biochemical and molecular genetic correlations in Friedreich’s ataxia. Hum Mol Genet. 2000;9(2):275–282. doi: 10.1093/hmg/9.2.275. PubMed DOI

Nachbauer W, Boesch S, Reindl M, Eigentler A, Hufler K, Poewe W, Löscher W, Wanschitz J. Skeletal Muscle Involvement in Friedreich Ataxia and Potential Effects of Recombinant Human Erythropoietin Administration on Muscle Regeneration and Neovascularization. J Neuropathol Exp Neurol. 2012;71(8):708–715. doi: 10.1097/NEN.0b013e31825fed76. PubMed DOI

Smith, F. M., & Kosman, D. J. (2020). Molecular Defects in Friedreich’s Ataxia: Convergence of Oxidative Stress and Cytoskeletal Abnormalities. Frontiers in Molecular Biosciences, 7. 10.3389/fmolb.2020.569293 PubMed PMC

Davide D, Federica C, Marco B, Elisa B, Silvia M, Giulia T, Federica D, Ottaviani D, Elena M, Luigi L, Elisa G, Elena Z, Antonella R, Milena B, Geppo S, Donatella C, Leonardo S, Paola C. Human frataxin, the Friedreich ataxia deficient protein, interacts with mitochondrial respiratory chain. Cell Death Dis. 2023;14(12):805. doi: 10.1038/s41419-023-06320-y. PubMed DOI PMC

Cooper JM, Schapira AH. Friedreich's Ataxia: disease mechanisms, antioxidant and Coenzyme Q10 therapy. BioFactors (Oxford, England) 2003;18(1–4):163–171. doi: 10.1002/biof.5520180219. PubMed DOI

Parkinson MH, Schulz JB, Giunti P. Co-enzyme Q10 and idebenone use in Friedreich's ataxia. J Neurochem. 2013;126(Suppl 1):125–141. doi: 10.1111/jnc.12322. PubMed DOI

El-Hattab, A. W., & Scaglia, F. (2016). Mitochondrial Cardiomyopathies. Frontiers in Cardiovascular Medicine, 3. 10.3389/fcvm.2016.00025 PubMed PMC

Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Investig. 2018 doi: 10.1172/JCI120849. PubMed DOI PMC

Kubánek M, Schimerová T, Piherová L, Brodehl A, Krebsová A, Ratnavadivel S, Stanasiuk C, Hansíková H, Zeman J, Paleček T, Houštěk J, Drahota Z, Nůsková H, Mikešová J, Zámečník J, Macek M, Jr, Ridzoň P, Malusková J, Stránecký V, Melenovský V, Milting H, Kmoch S. Desminopathy: novel desmin variants, a new cardiac phenotype, and further evidence for secondary mitochondrial dysfunction. J Clin Med. 2020;9(4):937. doi: 10.3390/jcm9040937. PubMed DOI PMC

Ramaccini, D., Montoya-Uribe, V., Aan, F. J., Modesti, L., Potes, Y., Wieckowski, M. R., et al. (2021). Mitochondrial Function and Dysfunction in Dilated Cardiomyopathy. Frontiers in Cell and Developmental Biology, 8, [Sec. Cellular Biochemistry]. 10.3389/fcell.2020.624216 PubMed PMC

Clark, E. (2018). Role of frataxin protein deficiency and metabolic dysfunction in Friedreich ataxia, an autosomal recessive mitochondrial disease. PubMed PMC

Johnson, J., Mercado-Ayon, E., Mercado-Ayon, Y., Dong, Y. N., Halawani, S., Ngaba, L., & Lynch, D. R. (2021). Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Archives of Biochemistry and Biophysics, 702: 108698. ISSN 0003–9861. 10.1016/j.abb.2020.108698 PubMed

Friedreich Ataxia Research Alliance. (2023). FA Research Pipeline. Retrieved December 30, 2023, from https://www.curefa.org/research/research-pipeline

U.S. Food and Drug Administration. (2023). FDA approves first treatment for Friedreich’s ataxia. Retrieved December 30, 2023, https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-first-treatment-friedreichs-ataxia

Lynch DR, Chin MP, Boesch S, Delatycki MB, Giunti P, Goldsberry A, Hoyle JC, Mariotti C, Mathews KD, Nachbauer W, O'Grady M, Perlman S, Subramony SH, Wilmot G, Zesiewicz T, Meyer CJ. Efficacy of omaveloxolone in friedreich's ataxia: delayed-start analysis of the MOXIe extension. Mov Disord. 2023;38(2):313–320. doi: 10.1002/mds.29286. PubMed DOI

Chhimpa V. The novel role of mitochondrial citrate synthase and citrate in the pathophysiology of Alzheimer’s disease. J Alzheimer’s Disease. 2023;94(s1):S453–S472. doi: 10.3233/JAD-220514. PubMed DOI PMC

Melancon S (1979) Pyruvate dehydrogenase, lipoamide dehydrogenase and citrate synthase activity in fibroblasts from patients with friedreich’s and charlevoix-saguenay ataxia. PubMed

Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol. 2012;590:3349–3360. doi: 10.1113/jphysiol.2012.230185. PubMed DOI PMC

Vigelsø A, Andersen NB, Dela F. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training. Int J Physiol Pathophysiol Pharmacol. 2014;6(2):84–101. PubMed PMC

Hayer SN, Liepelt I, Barro C, Wilke C, Kuhle J, Martus P, Schöls L, EFACTS study group NfL and pNfH are increased in Friedreich's ataxia. J Neurol. 2020;267(5):1420–1430. doi: 10.1007/s00415-020-09722-6. PubMed DOI PMC

Clay A, Obrochta KM, Soon RK, et al. Neurofilament light chain as a potential biomarker of disease status in Friedreich ataxia. J Neurol. 2020;267:2594–2598. doi: 10.1007/s00415-020-09868-3. PubMed DOI

Frempong, B., Wilson, R. B., Schadt, K., & Lynch, D. R. (2021). The Role of Serum Levels of Neurofilament Light (NfL) Chain as a Biomarker in Friedreich Ataxia. Frontiers in neuroscience, 15, 653241. 10.3389/fnins.2021. PubMed PMC

Clay, A., Obrochta, K.M., Soon, R.K. et al. Neurofilament light chain as a potential biomarker of disease status in Friedreich ataxia. J Neurol 267, 2594–2598 (2020). 10.1007/s00415-020-09868-3 PubMed

Fox JE, Austin CD, Reynolds CC, Steffen PK. Evidence that agonist-induced activation of calpain causes the shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets. J Biol Chem. 1991;266(20):13289–13295. doi: 10.1016/S0021-9258(18)98837-X. PubMed DOI

Rustin, P., Chretien, D., Bourgeron, T., Gérard, B., Rötig, A., Saudubray, J. M., & Munnich, A. (1994). Biochemical and molecular investigations in respiratory chain deficiencies. Clinica chimica acta; international journal of clinical chemistry, 228(1), 35–51. 10.1016/0009-8981(94)90055-8 PubMed

Srere PA. Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)] Methods Enzymol. 1969;13:3–11. doi: 10.1016/0076-6879(69)13005-0. DOI

Mosca F, Fattorini D, Bompadre S, Littarru GP. Assay of Coenzyme Q10 in plasma by a single dilution step. Anal Biochem. 2002;305:49–54. doi: 10.1006/abio.2002.5653. PubMed DOI

Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275. doi: 10.1016/S0021-9258(19)52451-6. PubMed DOI

UmanDiagnostics. (n.d.). NF-light® serum ELISA. Retrieved [Date you accessed the website], https://www.umandiagnostics.se/cms/nf-light-serum-elisa/

Fakultní nemocnice v Motole. (2021). Laboratorní příručka: Oddělení klinické hematologie FN Motol (č. IIILP_1OKH_1/2010–19). Retrieved December 30, 2023, from https://www.fnmotol.cz/wp-content/uploads/laboratorni-prirucka-2021.pdf

Fakultní nemocnice v Motole. (2022). Laboratorní příručka: Ústav lékařské chemie a klinické biochemie UK 2. LF a FN Motol (č. IIILP_8UKBP_1/2022–1). Retrieved December 30, 2023, from https://www.fnmotol.cz/wp-content/uploads/labprirucka2022.pdf

Yang ZP, Dettbarn W-D. Lipid peroxidation and changes in cytochrome c oxidase and xanthine oxidase activity in organophosphorus anticholinesterase induced myopathy. J Physiol-Paris. 1998;92(3–4):157–161. doi: 10.1016/S0928-4257(98)80002-8. PubMed DOI

Abeti, R., Parkinson, M., Hargreaves, I., et al. (2016). Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich's ataxia. Cell Death & Disease, 7, e2237.10.1038/cddis.2016.111.. PubMed PMC

Mayr JA, Haack TB, Freisinger P, Karall D, Makowski C, Koch J, Feichtinger RG, Zimmermann FA, Rolinski B, Ahting U, Meitinger T, Prokisch H, Sperl W. Spectrum of combined respiratory chain defects. J Inherit Metab Dis. 2015;38(4):629–640. doi: 10.1007/s10545-015-9831-y. PubMed DOI PMC

Danhelovska T, Kolarova H, Zeman J, Hansikova H, Vaneckova M, Lambert L, Kucerova-Vidrova V, Berankova K, Honzik T, Tesarova M. Multisystem mitochondrial diseases due to mutations in mtDNA-encoded subunits of complex I. BMC Pediatr. 2020;20(1):41. doi: 10.1186/s12887-020-1912-x. PubMed DOI PMC

Protasoni, M., Pérez-Pérez, R., Lobo-Jarne, T., Harbour, M. E., Ding, S., Peñas, A., Diaz, F., Moraes, C. T., Fearnley, I. M., Zeviani, M., Ugalde, C., & Fernández-Vizarra, E. (2020). Respiratory supercomplexes act as a platform for complex III-mediated maturation of human mitochondrial complexes I and IV. EMBO Journal, 39(3), e102817. 10.15252/embj.2019102817 PubMed PMC

Rákosníková, T., Kelifová, S., Štufková, H., Lokvencová, K., Lišková, P., Kousal, B., Honzík, T., Hansíková, H., Martínek, V., & Tesařová, M. (2023). Case report: A rare variant m.4135T>C in the MT-ND1 gene leads to Leber hereditary optic neuropathy and altered respiratory chain supercomplexes. Frontiers in Genetics, 14, 1182288. 10.3389/fgene.2023.1182288 PubMed PMC

Chiabrando D, Bertino F, Tolosano E. Hereditary Ataxia: A Focus on Heme Metabolism and Fe-S Cluster Biogenesis. Int J Mol Sci. 2020;21(11):3760. doi: 10.3390/ijms21113760. PubMed DOI PMC

Télot, L., Rousseau, E., Lesuisse, E., Garcia, C., Morlet, B., Léger, T., Camadro, J. M., & Serre, V. (2018). Quantitative proteomics in Friedreich's ataxia B-lymphocytes: A valuable approach to decipher the biochemical events responsible for pathogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1864(4 Pt A), 997–1009. 10.1016/j.bbadis.2018.01.010 PubMed

Dionisi, C., Chazalon, M., Rai, M., Keime, C., Imbault, V., Communi, D., Puccio, H., Schiffmann, S. N., & Pandolfo, M. (2023). Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties. Brain communications, 5(1): fcad007. 10.1093/braincomms/fcad007 PubMed PMC

Indelicato E, Faserl K, Amprosi M, Nachbauer W, Schneider R, Wanschitz J, Sarg B, Boesch S. Skeletal muscle proteome analysis underpins multifaceted mitochondrial dysfunction in Friedreich's ataxia. Front Neurosci. 2023;17:1289027. doi: 10.3389/fnins.2023.1289027. PubMed DOI PMC

Sohal RS, Kamzalov S, Sumien N, Ferguson M, Rebrin I, Heinrich KR, Forster MJ. Effect of coenzyme Q10 intake on endogenous coenzyme Q content, mitochondrial electron transport chain, antioxidative defenses, and life span of mice. Free Radical Biol Med. 2006;40(3):480–487. doi: 10.1016/j.freeradbiomed.2005.08.037. PubMed DOI PMC

González-Cabo P, Vázquez-Manrique RP, García-Gimeno MA, Sanz P, Palau F. Frataxin interacts functionally with mitochondrial electron transport chain proteins. Hum Mol Genet. 2005;14(15):2091–2098. doi: 10.1093/hmg/ddi214. PubMed DOI

Bay M, Kirk V, Parner J, Hassager C, Nielsen H, Krogsgaard K, Trawinski J, Boesgaard S, Aldershvile J. NT-proBNP: a new diagnostic screening tool to differentiate between patients with normal and reduced left ventricular systolic function. Heart (British Cardiac Society) 2003;89(2):150–154. doi: 10.1136/heart.89.2.150. PubMed DOI PMC

Weber MA, Kinscherf R, Krakowski-Roosen H, Aulmann M, Renk H, Künkele A, Edler L, Kauczor HU, Hildebrandt W. Myoglobin plasma level related to muscle mass and fiber composition: a clinical marker of muscle wasting? J Mol Med (Berl) 2007;85(8):887–896. doi: 10.1007/s00109-007-0220-3. PubMed DOI

Rodden LN, Gilliam KM, Lam C et al. (2022) DNA methylation in Friedreich ataxia silences expression of frataxin isoform E. Scientific Reports 12: 5031.10.1038/s41598-022-09002-55 PubMed PMC

Wang Q, Laboureur L, Weng L, Eskenazi NM, Hauser LA, Mesaros C, Lynch DR, Blair IA. Simultaneous quantification of mitochondrial mature frataxin and extra-mitochondrial frataxin isoform e in Friedreich's ataxia blood. Front Neurosci. 2022;16:874768. doi: 10.3389/fnins.2022.874768. PubMed DOI PMC

Bohm M, Honzík T, Šnajperková A, Knopová Z, Zeman J, Hansíková H. Activities of the respiratory chain complexes in platelets. Klinická Biochemie a Metabolismus. 2003;11(32):97–101.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...