Multisystem mitochondrial diseases due to mutations in mtDNA-encoded subunits of complex I
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AZV 17-30965A
Ministerstvo Zdravotnictví Ceské Republiky - International
RVO VFN 64165
Ministerstvo Zdravotnictví Ceské Republiky - International
Q26/LF1
Univerzita Karlova v Praze - International
UNCE 204064
Univerzita Karlova v Praze - International
SVV260367
Univerzita Karlova v Praze - International
PubMed
31996177
PubMed Central
PMC6988306
DOI
10.1186/s12887-020-1912-x
PII: 10.1186/s12887-020-1912-x
Knihovny.cz E-zdroje
- Klíčová slova
- Complex I, Leigh syndrome, MEGS, MELAS syndrome, MT-ND genes, Mitochondria, mtDNA,
- MeSH
- biopsie MeSH
- dítě MeSH
- dospělí MeSH
- fibroblasty metabolismus MeSH
- kojenec MeSH
- kosterní svaly metabolismus MeSH
- kultivované buňky MeSH
- Leighova nemoc genetika MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mitochondriální DNA * MeSH
- mitochondriální nemoci genetika MeSH
- mladiství MeSH
- mozek diagnostické zobrazování patologie MeSH
- mutace * MeSH
- novorozenec MeSH
- respirační komplex I nedostatek genetika metabolismus MeSH
- syndrom MELAS genetika MeSH
- věk při počátku nemoci MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mitochondriální DNA * MeSH
- respirační komplex I MeSH
BACKGROUND: Maternally inherited complex I deficiencies due to mutations in MT-ND genes represent a heterogeneous group of multisystem mitochondrial disorders (MD) with a unfavourable prognosis. The aim of the study was to characterize the impact of the mutations in MT-ND genes, including the novel m.13091 T > C variant, on the course of the disease, and to analyse the activities of respiratory chain complexes, the amount of protein subunits, and the mitochondrial energy-generating system (MEGS) in available muscle biopsies and cultivated fibroblasts. METHODS: The respiratory chain complex activities were measured by spectrophotometry, MEGS were analysed using radiolabelled substrates, and protein amount by SDS-PAGE or BN-PAGE in muscle or fibroblasts. RESULTS: In our cohort of 106 unrelated families carrying different mtDNA mutations, we found heteroplasmic mutations in the genes MT-ND1, MT-ND3, and MT-ND5, including the novel variant m.13091 T > C, in 13 patients with MD from 12 families. First symptoms developed between early childhood and adolescence and progressed to multisystem disease with a phenotype of Leigh or MELAS syndromes. MRI revealed bilateral symmetrical involvement of deep grey matter typical of Leigh syndrome in 6 children, cortical/white matter stroke-like lesions suggesting MELAS syndrome in 3 patients, and a combination of cortico-subcortical lesions and grey matter involvement in 4 patients. MEGS indicated mitochondrial disturbances in all available muscle samples, as well as a significantly decreased oxidation of [1-14C] pyruvate in fibroblasts. Spectrophotometric analyses revealed a low activity of complex I and/or complex I + III in all muscle samples except one, but the activities in fibroblasts were mostly normal. No correlation was found between complex I activities and mtDNA mutation load, but higher levels of heteroplasmy were generally found in more severely affected patients. CONCLUSIONS: Maternally inherited complex I deficiencies were found in 11% of families with mitochondrial diseases in our region. Six patients manifested with Leigh, three with MELAS. The remaining four patients presented with an overlap between these two syndromes. MEGS, especially the oxidation of [1-14C] pyruvate in fibroblasts might serve as a sensitive indicator of functional impairment due to MT-ND mutations. Early onset of the disease and higher level of mtDNA heteroplasmy were associated with a worse prognosis.
Zobrazit více v PubMed
Fassone E, Rahman S. Complex I deficiency: clinical features, biochemistry and molecular genetics. J Med Genet. 2012;49(9):578–590. doi: 10.1136/jmedgenet-2012-101159. PubMed DOI
Alston CL, Heidler J, Dibley MG, Kremer LS, Taylor LS, Fratter C, et al. Bi-allelic mutations in NDUFA6 establish its role in early-onset isolated mitochondrial complex I deficiency. Am J Hum Genet. 2018;103(4):592–601. doi: 10.1016/j.ajhg.2018.08.013. PubMed DOI PMC
Kolarova H, Liskova P, Tesarova M, Kucerova Vidrova V, Forgac M, Zamecnik J, et al. Unique presentation of LHON/MELAS overlap syndrome caused by m.13046T>C in MTND5. Ophthalmic Genet. 2016;37(4):419–423. doi: 10.3109/13816810.2015.1092045. PubMed DOI
Ng YS, Lax NZ, Maddison P, Alston CL, Blakely EL, Hepplewhite PD, et al. MT-ND5 mutation exhibits highly variable neurological manifestations at low mutant load. EBioMedicine. 2018;30:86–93. doi: 10.1016/j.ebiom.2018.02.010. PubMed DOI PMC
Leng Y, Liu Y, Fang X, Li Y, Yu L, Yuan Y, et al. The mitochondrial DNA 10197 G > a mutation causes MELAS/Leigh overlap syndrome presenting with acute auditory agnosia. Mitochondrial DNA. 2015;26(2):208–212. doi: 10.3109/19401736.2014.905860. PubMed DOI
Vondrackova A, Vesela K, Hansikova H, Zajicova Docekalova D, Rozsypalova E, Zeman J, et al. High-resolution melting analysis of 15 genes in 60 patients with cytochrome-c oxidase deficiency. J Hum Genet. 2012;57(7):442–448. doi: 10.1038/jhg.2012.49. PubMed DOI
Makinen MW, Lee CP. Biochemical studies of skeletal muscle mitochondria. I. Microanalysis of cytochrome content, oxidative and phosphorylative activities of mammalian skeletal muscle mitochondria. Arch Biochem Biophys. 1968;126(1):75–82. doi: 10.1016/0003-9861(68)90561-4. PubMed DOI
Jesina P, Tesarová M, Fornůsková D, Vojtísková A, Pecina P, Kaplanová V, et al. Diminished synthesis of subunit a (ATP6) and altered function of ATP synthase and cytochrome c oxidase due to the mtDNA 2 bp microdeletion of TA at positions 9205 and 9206. Biochem J. 2004;383(Pt. 3):561–571. doi: 10.1042/BJ20040407. PubMed DOI PMC
Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, et al. Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta. 1994;228(1):35–51. doi: 10.1016/0009-8981(94)90055-8. PubMed DOI
Srere PA. [1] Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. In: Lowenstein JM, editor. Methods in Enzymology [Internet]. Academic Press; 1969. p. 3–11. (Citric Acid Cycle; vol. 13). Available from: http://www.sciencedirect.com/science/article/pii/0076687969130050. [cited 2015 Apr 5]
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275. PubMed
Schägger H, von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem. 1991;199(2):223–231. doi: 10.1016/0003-2697(91)90094-A. PubMed DOI
Fornuskova D, Brantova O, Tesarova M, Stiburek L, Honzik T, Wenchich L, et al. The impact of mitochondrial tRNA mutations on the amount of ATP synthase differs in the brain compared to other tissues. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2008;1782(5):317–325. doi: 10.1016/j.bbadis.2008.02.001. PubMed DOI
Schägger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. PubMed DOI
Janssen TFJM, Sengers RCA, Wintjes LTM. Ruitenbeek W, Smeitink JAM, et al. measurement of the energy-generating capacity of human muscle mitochondria: diagnostic procedure and application to human pathology. Clin Chem. 2006;52(5):860–871. doi: 10.1373/clinchem.2005.062414. PubMed DOI
Swalwell H, Kirby DM, Blakely EL, Mitchell A, Salemi R, Sugiana C, et al. Respiratory chain complex I deficiency caused by mitochondrial DNA mutations. Eur J Hum Genet. 2011;19(7):769–775. doi: 10.1038/ejhg.2011.18. PubMed DOI PMC
Ma Yan-Yan, Li Xi-Yuan, Li Zhi-Qin, Song Ji-Qing, Hou Jing, Li Jian-Hua, Sun Li, Jiang Jun, Yang Yan-Ling. Clinical, biochemical, and genetic analysis of the mitochondrial respiratory chain complex I deficiency. Medicine. 2018;97(32):e11606. doi: 10.1097/MD.0000000000011606. PubMed DOI PMC
Liolitsa D, Rahman S, Benton S, Carr LJ, Hanna MG. Is the mitochondrial complex I ND5 gene a hot-spot for MELAS causing mutations? Ann Neurol. 2003;53(1):128–132. doi: 10.1002/ana.10435. PubMed DOI
Shanske S, Coku J, Lu J, Ganesh J, Krishna S, Tanji K, et al. The G13513A mutation in the ND5 gene of mitochondrial DNA as a common cause of MELAS or Leigh syndrome: evidence from 12 cases. Arch Neurol. 2008;65(3):368–372. doi: 10.1001/archneurol.2007.67. PubMed DOI
Blok MJ, Spruijt L, de Coo IFM, Schoonderwoerd K, Hendrickx A, Smeets HJ. Mutations in the ND5 subunit of complex I of the mitochondrial DNA are a frequent cause of oxidative phosphorylation disease. J Med Genet. 2007;44(4):e74. doi: 10.1136/jmg.2006.045716. PubMed DOI PMC
Sudo A, Honzawa S, Nonaka I, Goto Y. Leigh syndrome caused by mitochondrial DNA G13513A mutation: frequency and clinical features in Japan. J Hum Genet. 2004;49(2):92–96. doi: 10.1007/s10038-003-0116-1. PubMed DOI
Chol M. The mitochondrial DNA G13513A MELAS mutation in the NADH dehydrogenase 5 gene is a frequent cause of Leigh-like syndrome with isolated complex I deficiency. J Med Genet. 2003;40(3):188–191. doi: 10.1136/jmg.40.3.188. PubMed DOI PMC
Kirby DM. Mutations of the mitochondrial ND1 gene as a cause of MELAS. J Med Genet. 2004;41(10):784–789. doi: 10.1136/jmg.2004.020537. PubMed DOI PMC
Ruiter EM, Siers MH, van den Elzen C, van Engelen BG, Smeitink JAM, Rodenburg RJ, et al. The mitochondrial 13513G > a mutation is most frequent in Leigh syndrome combined with reduced complex I activity, optic atrophy and/or Wolff-Parkinson-white. Eur J Hum Genet EJHG. 2007;15(2):155–161. doi: 10.1038/sj.ejhg.5201735. PubMed DOI
Wang S-B, Weng W-C, Lee N-C, Hwu W-L, Fan P-C, Lee W-T. Mutation of mitochondrial DNA G13513A presenting with Leigh syndrome, Wolff-Parkinson-white syndrome and cardiomyopathy. Pediatr Neonatol. 2008;49(4):145–149. doi: 10.1016/S1875-9572(08)60030-3. PubMed DOI
Dvorakova V, Kolarova H, Magner M, Tesarova M, Hansikova H, Zeman J, et al. The phenotypic spectrum of fifty Czech m.3243A>G carriers. Mol Genet Metab. 2016;118(4):288–295. doi: 10.1016/j.ymgme.2016.06.003. PubMed DOI
Tzoulis C, Bindoff LA. Acute mitochondrial encephalopathy reflects neuronal energy failure irrespective of which genome the genetic defect affects. Brain. 2012;135(12):3627–3634. doi: 10.1093/brain/aws223. PubMed DOI
Knepper LE, Biller J, Tranel D, Adams HP, Marsh EE. Etiology of stroke in patients with Wernicke’s aphasia. Stroke. 1989;20(12):1730–1732. doi: 10.1161/01.STR.20.12.1730. PubMed DOI
Kim JH, Lim MK, Jeon TY, Rha JH, Rha JH, Eo H, et al. Diffusion and perfusion characteristics of MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode) in thirteen patients. Korean J Radiol. 2011;12(1):15–24. doi: 10.3348/kjr.2011.12.1.15. PubMed DOI PMC
Napolitano A, Salvetti S, Vista M, Lombardi V, Siciliano G, Giraldi C. Long-term treatment with idebenone and riboflavin in a patient with MELAS. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol. 2000;21(5 Suppl):S981–S982. PubMed
Ito H, Mori K, Kagami S. Neuroimaging of stroke-like episodes in MELAS. Brain and Development. 2011;33(4):283–288. doi: 10.1016/j.braindev.2010.06.010. PubMed DOI
Sproule DM, Kaufmann P. Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes: basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome. Ann N Y Acad Sci. 2008;1142:133–158. doi: 10.1196/annals.1444.011. PubMed DOI
Iizuka T, Sakai F, Suzuki N, Hata T, Tsukahara S, Fukuda M, et al. Neuronal hyperexcitability in stroke-like episodes of MELAS syndrome. Neurology. 2002;59(6):816–824. doi: 10.1212/WNL.59.6.816. PubMed DOI
Lebre AS, Rio M, Faivre d’Arcier L, Vernerey D, Landrieu P, Slama A, et al. A common pattern of brain MRI imaging in mitochondrial diseases with complex I deficiency. J Med Genet. 2011;48(1):16–23. doi: 10.1136/jmg.2010.079624. PubMed DOI
Lerman-Sagie T, Leshinsky-Silver E, Watemberg N, Luckman Y, Lev D. White matter involvement in mitochondrial diseases. Mol Genet Metab. 2005;84(2):127–136. doi: 10.1016/j.ymgme.2004.09.008. PubMed DOI
Lake NJ, Bird MJ, Isohanni P, Paetau A. Leigh syndrome: neuropathology and pathogenesis. J Neuropathol Exp Neurol. 2015;74(6):482–492. doi: 10.1097/NEN.0000000000000195. PubMed DOI
Finsterer J, Zarrouk-Mahjoub S. Cerebral imaging in paediatric mitochondrial disorders. Neuroradiol J. 2018;31(6):596–608. doi: 10.1177/1971400918786054. PubMed DOI PMC
Mascalchi M, Montomoli M, Guerrini R. Neuroimaging in mitochondrial disorders. Essays Biochem. 2018;62(3):409–421. doi: 10.1042/EBC20170109. PubMed DOI
Harris JJ, Attwell D. The energetics of CNS white matter. J Neurosci. 2012;32(1):356–371. doi: 10.1523/JNEUROSCI.3430-11.2012. PubMed DOI PMC
Petruzzella V, Di Giacinto G, Scacco S, Piemonte F, Torraco A, Carrozzo R, et al. Atypical Leigh syndrome associated with the D393N mutation in the mitochondrial ND5 subunit. Neurology. 2003;61(7):1017–1018. doi: 10.1212/01.WNL.0000080363.10902.E9. PubMed DOI
Corona P, Antozzi C, Carrara F, D’Incerti L, Lamantea E, Tiranti V, et al. A novel mtDNA mutation in the ND5 subunit of complex I in two MELAS patients. Ann Neurol. 2001;49(1):106–110. doi: 10.1002/1531-8249(200101)49:1<106::AID-ANA16>3.0.CO;2-T. PubMed DOI
Hanna MG, Nelson IP, Morgan-Hughes JA, Wood NW. MELAS: a new disease associated mitochondrial DNA mutation and evidence for further genetic heterogeneity. J Neurol Neurosurg Psychiatry. 1998;65(4):512–517. doi: 10.1136/jnnp.65.4.512. PubMed DOI PMC
Brautbar A, Wang J, Abdenur JE, Chang RC, Thomas JA, Grebe TA, et al. The mitochondrial 13513G>a mutation is associated with Leigh disease phenotypes independent of complex I deficiency in muscle. Mol Genet Metab. 2008;94(4):485–490. doi: 10.1016/j.ymgme.2008.04.004. PubMed DOI
Kirby DM, Boneh A, Chow CW, Ohtake A, Ryan MT, Thyagarajan D, et al. Low mutant load of mitochondrial DNA G13513A mutation can cause Leigh’s disease. Ann Neurol. 2003;54(4):473–478. doi: 10.1002/ana.10687. PubMed DOI
Ganetzky RD, Falk MJ. 8-year retrospective analysis of intravenous arginine therapy for acute metabolic strokes in pediatric mitochondrial disease. Mol Genet Metab. 2018;123(3):301–308. doi: 10.1016/j.ymgme.2018.01.010. PubMed DOI PMC
Yahata N, Matsumoto Y, Omi M, Yamamoto N, Hata R, et al. Sci Rep. 2017;7(1):15557. doi: 10.1038/s41598-017-15871-y. PubMed DOI PMC
Angerer H, Zwicker K, Wumaier Z, Sokolova L, Heide H, Steger M, et al. A scaffold of accessory subunits links the peripheral arm and the distal proton-pumping module of mitochondrial complex I. Biochem J. 2011;437(2):279–288. doi: 10.1042/BJ20110359. PubMed DOI PMC
Malfatti E, Bugiani M, Invernizzi F, de Souza CF-M, Farina L, Carrara F, et al. Novel mutations of ND genes in complex I deficiency associated with mitochondrial encephalopathy. Brain. 2007;130(7):1894–1904. doi: 10.1093/brain/awm114. PubMed DOI
McFarland R, Kirby DM, Fowler KJ, Ohtake A, Ryan MT, Amor DJ, et al. De novo mutations in the mitochondrialND3 gene as a cause of infantile mitochondrial encephalopathy and complex I deficiency. Ann Neurol. 2004;55(1):58–64. doi: 10.1002/ana.10787. PubMed DOI
Kopinski PK, Janssen KA, Schaefer PM, Trefely S, Perry CE, Potluri P, et al. Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy. Proc Natl Acad Sci U S A. 2019;116(32):16028–16035. doi: 10.1073/pnas.1906896116. PubMed DOI PMC
Hoefs SJG, Dieteren CEJ, Distelmaier F, Janssen RJRJ, Epplen A, Swarts HGP, et al. NDUFA2 complex I mutation leads to Leigh disease. Am J Hum Genet. 2008;82(6):1306–1315. doi: 10.1016/j.ajhg.2008.05.007. PubMed DOI PMC
Janssen AJM, Schuelke M, Smeitink JAM, Trijbels FJM, Sengers RCA, Lucke B, et al. Muscle 3243A-->G mutation load and capacity of the mitochondrial energy-generating system. Ann Neurol. 2008;63(4):473–481. doi: 10.1002/ana.21328. PubMed DOI
Smits P, Antonicka H, van Hasselt PM, Weraarpachai W, Haller W, Schreurs M, et al. Mutation in subdomain G’ of mitochondrial elongation factor G1 is associated with combined OXPHOS deficiency in fibroblasts but not in muscle. Eur J Hum Genet. 2011;19(3):275–279. doi: 10.1038/ejhg.2010.208. PubMed DOI PMC
Cameron JM, Levandovskiy V, MacKay N, Robinson BH. Respiratory chain analysis of skin fibroblasts in mitochondrial disease. Mitochondrion. 2004;4(5–6):387–394. doi: 10.1016/j.mito.2004.07.039. PubMed DOI
Patel MS, Korotchkina LG. Regulation of the pyruvate dehydrogenase complex. Biochem Soc Trans. 2006;34(Pt 2):217–222. doi: 10.1042/BST0340217. PubMed DOI
Harris RA, Bowker-Kinley MM, Huang B, Wu P. Regulation of the activity of the pyruvate dehydrogenase complex. Adv Enzym Regul. 2002;42:249–259. doi: 10.1016/S0065-2571(01)00061-9. PubMed DOI
Exploring mitochondrial biomarkers for Friedreich's ataxia: a multifaceted approach
Comparable respiratory activity in attached and suspended human fibroblasts
The Phenotypic Spectrum of 47 Czech Patients with Single, Large-Scale Mitochondrial DNA Deletions