Multisystem mitochondrial diseases due to mutations in mtDNA-encoded subunits of complex I

. 2020 Jan 29 ; 20 (1) : 41. [epub] 20200129

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31996177

Grantová podpora
AZV 17-30965A Ministerstvo Zdravotnictví Ceské Republiky - International
RVO VFN 64165 Ministerstvo Zdravotnictví Ceské Republiky - International
Q26/LF1 Univerzita Karlova v Praze - International
UNCE 204064 Univerzita Karlova v Praze - International
SVV260367 Univerzita Karlova v Praze - International

Odkazy

PubMed 31996177
PubMed Central PMC6988306
DOI 10.1186/s12887-020-1912-x
PII: 10.1186/s12887-020-1912-x
Knihovny.cz E-zdroje

BACKGROUND: Maternally inherited complex I deficiencies due to mutations in MT-ND genes represent a heterogeneous group of multisystem mitochondrial disorders (MD) with a unfavourable prognosis. The aim of the study was to characterize the impact of the mutations in MT-ND genes, including the novel m.13091 T > C variant, on the course of the disease, and to analyse the activities of respiratory chain complexes, the amount of protein subunits, and the mitochondrial energy-generating system (MEGS) in available muscle biopsies and cultivated fibroblasts. METHODS: The respiratory chain complex activities were measured by spectrophotometry, MEGS were analysed using radiolabelled substrates, and protein amount by SDS-PAGE or BN-PAGE in muscle or fibroblasts. RESULTS: In our cohort of 106 unrelated families carrying different mtDNA mutations, we found heteroplasmic mutations in the genes MT-ND1, MT-ND3, and MT-ND5, including the novel variant m.13091 T > C, in 13 patients with MD from 12 families. First symptoms developed between early childhood and adolescence and progressed to multisystem disease with a phenotype of Leigh or MELAS syndromes. MRI revealed bilateral symmetrical involvement of deep grey matter typical of Leigh syndrome in 6 children, cortical/white matter stroke-like lesions suggesting MELAS syndrome in 3 patients, and a combination of cortico-subcortical lesions and grey matter involvement in 4 patients. MEGS indicated mitochondrial disturbances in all available muscle samples, as well as a significantly decreased oxidation of [1-14C] pyruvate in fibroblasts. Spectrophotometric analyses revealed a low activity of complex I and/or complex I + III in all muscle samples except one, but the activities in fibroblasts were mostly normal. No correlation was found between complex I activities and mtDNA mutation load, but higher levels of heteroplasmy were generally found in more severely affected patients. CONCLUSIONS: Maternally inherited complex I deficiencies were found in 11% of families with mitochondrial diseases in our region. Six patients manifested with Leigh, three with MELAS. The remaining four patients presented with an overlap between these two syndromes. MEGS, especially the oxidation of [1-14C] pyruvate in fibroblasts might serve as a sensitive indicator of functional impairment due to MT-ND mutations. Early onset of the disease and higher level of mtDNA heteroplasmy were associated with a worse prognosis.

Zobrazit více v PubMed

Fassone E, Rahman S. Complex I deficiency: clinical features, biochemistry and molecular genetics. J Med Genet. 2012;49(9):578–590. doi: 10.1136/jmedgenet-2012-101159. PubMed DOI

Alston CL, Heidler J, Dibley MG, Kremer LS, Taylor LS, Fratter C, et al. Bi-allelic mutations in NDUFA6 establish its role in early-onset isolated mitochondrial complex I deficiency. Am J Hum Genet. 2018;103(4):592–601. doi: 10.1016/j.ajhg.2018.08.013. PubMed DOI PMC

Kolarova H, Liskova P, Tesarova M, Kucerova Vidrova V, Forgac M, Zamecnik J, et al. Unique presentation of LHON/MELAS overlap syndrome caused by m.13046T>C in MTND5. Ophthalmic Genet. 2016;37(4):419–423. doi: 10.3109/13816810.2015.1092045. PubMed DOI

Ng YS, Lax NZ, Maddison P, Alston CL, Blakely EL, Hepplewhite PD, et al. MT-ND5 mutation exhibits highly variable neurological manifestations at low mutant load. EBioMedicine. 2018;30:86–93. doi: 10.1016/j.ebiom.2018.02.010. PubMed DOI PMC

Leng Y, Liu Y, Fang X, Li Y, Yu L, Yuan Y, et al. The mitochondrial DNA 10197 G > a mutation causes MELAS/Leigh overlap syndrome presenting with acute auditory agnosia. Mitochondrial DNA. 2015;26(2):208–212. doi: 10.3109/19401736.2014.905860. PubMed DOI

Vondrackova A, Vesela K, Hansikova H, Zajicova Docekalova D, Rozsypalova E, Zeman J, et al. High-resolution melting analysis of 15 genes in 60 patients with cytochrome-c oxidase deficiency. J Hum Genet. 2012;57(7):442–448. doi: 10.1038/jhg.2012.49. PubMed DOI

Makinen MW, Lee CP. Biochemical studies of skeletal muscle mitochondria. I. Microanalysis of cytochrome content, oxidative and phosphorylative activities of mammalian skeletal muscle mitochondria. Arch Biochem Biophys. 1968;126(1):75–82. doi: 10.1016/0003-9861(68)90561-4. PubMed DOI

Jesina P, Tesarová M, Fornůsková D, Vojtísková A, Pecina P, Kaplanová V, et al. Diminished synthesis of subunit a (ATP6) and altered function of ATP synthase and cytochrome c oxidase due to the mtDNA 2 bp microdeletion of TA at positions 9205 and 9206. Biochem J. 2004;383(Pt. 3):561–571. doi: 10.1042/BJ20040407. PubMed DOI PMC

Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, et al. Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta. 1994;228(1):35–51. doi: 10.1016/0009-8981(94)90055-8. PubMed DOI

Srere PA. [1] Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. In: Lowenstein JM, editor. Methods in Enzymology [Internet]. Academic Press; 1969. p. 3–11. (Citric Acid Cycle; vol. 13). Available from: http://www.sciencedirect.com/science/article/pii/0076687969130050. [cited 2015 Apr 5]

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275. PubMed

Schägger H, von Jagow G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem. 1991;199(2):223–231. doi: 10.1016/0003-2697(91)90094-A. PubMed DOI

Fornuskova D, Brantova O, Tesarova M, Stiburek L, Honzik T, Wenchich L, et al. The impact of mitochondrial tRNA mutations on the amount of ATP synthase differs in the brain compared to other tissues. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2008;1782(5):317–325. doi: 10.1016/j.bbadis.2008.02.001. PubMed DOI

Schägger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. PubMed DOI

Janssen TFJM, Sengers RCA, Wintjes LTM. Ruitenbeek W, Smeitink JAM, et al. measurement of the energy-generating capacity of human muscle mitochondria: diagnostic procedure and application to human pathology. Clin Chem. 2006;52(5):860–871. doi: 10.1373/clinchem.2005.062414. PubMed DOI

Swalwell H, Kirby DM, Blakely EL, Mitchell A, Salemi R, Sugiana C, et al. Respiratory chain complex I deficiency caused by mitochondrial DNA mutations. Eur J Hum Genet. 2011;19(7):769–775. doi: 10.1038/ejhg.2011.18. PubMed DOI PMC

Ma Yan-Yan, Li Xi-Yuan, Li Zhi-Qin, Song Ji-Qing, Hou Jing, Li Jian-Hua, Sun Li, Jiang Jun, Yang Yan-Ling. Clinical, biochemical, and genetic analysis of the mitochondrial respiratory chain complex I deficiency. Medicine. 2018;97(32):e11606. doi: 10.1097/MD.0000000000011606. PubMed DOI PMC

Liolitsa D, Rahman S, Benton S, Carr LJ, Hanna MG. Is the mitochondrial complex I ND5 gene a hot-spot for MELAS causing mutations? Ann Neurol. 2003;53(1):128–132. doi: 10.1002/ana.10435. PubMed DOI

Shanske S, Coku J, Lu J, Ganesh J, Krishna S, Tanji K, et al. The G13513A mutation in the ND5 gene of mitochondrial DNA as a common cause of MELAS or Leigh syndrome: evidence from 12 cases. Arch Neurol. 2008;65(3):368–372. doi: 10.1001/archneurol.2007.67. PubMed DOI

Blok MJ, Spruijt L, de Coo IFM, Schoonderwoerd K, Hendrickx A, Smeets HJ. Mutations in the ND5 subunit of complex I of the mitochondrial DNA are a frequent cause of oxidative phosphorylation disease. J Med Genet. 2007;44(4):e74. doi: 10.1136/jmg.2006.045716. PubMed DOI PMC

Sudo A, Honzawa S, Nonaka I, Goto Y. Leigh syndrome caused by mitochondrial DNA G13513A mutation: frequency and clinical features in Japan. J Hum Genet. 2004;49(2):92–96. doi: 10.1007/s10038-003-0116-1. PubMed DOI

Chol M. The mitochondrial DNA G13513A MELAS mutation in the NADH dehydrogenase 5 gene is a frequent cause of Leigh-like syndrome with isolated complex I deficiency. J Med Genet. 2003;40(3):188–191. doi: 10.1136/jmg.40.3.188. PubMed DOI PMC

Kirby DM. Mutations of the mitochondrial ND1 gene as a cause of MELAS. J Med Genet. 2004;41(10):784–789. doi: 10.1136/jmg.2004.020537. PubMed DOI PMC

Ruiter EM, Siers MH, van den Elzen C, van Engelen BG, Smeitink JAM, Rodenburg RJ, et al. The mitochondrial 13513G > a mutation is most frequent in Leigh syndrome combined with reduced complex I activity, optic atrophy and/or Wolff-Parkinson-white. Eur J Hum Genet EJHG. 2007;15(2):155–161. doi: 10.1038/sj.ejhg.5201735. PubMed DOI

Wang S-B, Weng W-C, Lee N-C, Hwu W-L, Fan P-C, Lee W-T. Mutation of mitochondrial DNA G13513A presenting with Leigh syndrome, Wolff-Parkinson-white syndrome and cardiomyopathy. Pediatr Neonatol. 2008;49(4):145–149. doi: 10.1016/S1875-9572(08)60030-3. PubMed DOI

Dvorakova V, Kolarova H, Magner M, Tesarova M, Hansikova H, Zeman J, et al. The phenotypic spectrum of fifty Czech m.3243A>G carriers. Mol Genet Metab. 2016;118(4):288–295. doi: 10.1016/j.ymgme.2016.06.003. PubMed DOI

Tzoulis C, Bindoff LA. Acute mitochondrial encephalopathy reflects neuronal energy failure irrespective of which genome the genetic defect affects. Brain. 2012;135(12):3627–3634. doi: 10.1093/brain/aws223. PubMed DOI

Knepper LE, Biller J, Tranel D, Adams HP, Marsh EE. Etiology of stroke in patients with Wernicke’s aphasia. Stroke. 1989;20(12):1730–1732. doi: 10.1161/01.STR.20.12.1730. PubMed DOI

Kim JH, Lim MK, Jeon TY, Rha JH, Rha JH, Eo H, et al. Diffusion and perfusion characteristics of MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode) in thirteen patients. Korean J Radiol. 2011;12(1):15–24. doi: 10.3348/kjr.2011.12.1.15. PubMed DOI PMC

Napolitano A, Salvetti S, Vista M, Lombardi V, Siciliano G, Giraldi C. Long-term treatment with idebenone and riboflavin in a patient with MELAS. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol. 2000;21(5 Suppl):S981–S982. PubMed

Ito H, Mori K, Kagami S. Neuroimaging of stroke-like episodes in MELAS. Brain and Development. 2011;33(4):283–288. doi: 10.1016/j.braindev.2010.06.010. PubMed DOI

Sproule DM, Kaufmann P. Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes: basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome. Ann N Y Acad Sci. 2008;1142:133–158. doi: 10.1196/annals.1444.011. PubMed DOI

Iizuka T, Sakai F, Suzuki N, Hata T, Tsukahara S, Fukuda M, et al. Neuronal hyperexcitability in stroke-like episodes of MELAS syndrome. Neurology. 2002;59(6):816–824. doi: 10.1212/WNL.59.6.816. PubMed DOI

Lebre AS, Rio M, Faivre d’Arcier L, Vernerey D, Landrieu P, Slama A, et al. A common pattern of brain MRI imaging in mitochondrial diseases with complex I deficiency. J Med Genet. 2011;48(1):16–23. doi: 10.1136/jmg.2010.079624. PubMed DOI

Lerman-Sagie T, Leshinsky-Silver E, Watemberg N, Luckman Y, Lev D. White matter involvement in mitochondrial diseases. Mol Genet Metab. 2005;84(2):127–136. doi: 10.1016/j.ymgme.2004.09.008. PubMed DOI

Lake NJ, Bird MJ, Isohanni P, Paetau A. Leigh syndrome: neuropathology and pathogenesis. J Neuropathol Exp Neurol. 2015;74(6):482–492. doi: 10.1097/NEN.0000000000000195. PubMed DOI

Finsterer J, Zarrouk-Mahjoub S. Cerebral imaging in paediatric mitochondrial disorders. Neuroradiol J. 2018;31(6):596–608. doi: 10.1177/1971400918786054. PubMed DOI PMC

Mascalchi M, Montomoli M, Guerrini R. Neuroimaging in mitochondrial disorders. Essays Biochem. 2018;62(3):409–421. doi: 10.1042/EBC20170109. PubMed DOI

Harris JJ, Attwell D. The energetics of CNS white matter. J Neurosci. 2012;32(1):356–371. doi: 10.1523/JNEUROSCI.3430-11.2012. PubMed DOI PMC

Petruzzella V, Di Giacinto G, Scacco S, Piemonte F, Torraco A, Carrozzo R, et al. Atypical Leigh syndrome associated with the D393N mutation in the mitochondrial ND5 subunit. Neurology. 2003;61(7):1017–1018. doi: 10.1212/01.WNL.0000080363.10902.E9. PubMed DOI

Corona P, Antozzi C, Carrara F, D’Incerti L, Lamantea E, Tiranti V, et al. A novel mtDNA mutation in the ND5 subunit of complex I in two MELAS patients. Ann Neurol. 2001;49(1):106–110. doi: 10.1002/1531-8249(200101)49:1<106::AID-ANA16>3.0.CO;2-T. PubMed DOI

Hanna MG, Nelson IP, Morgan-Hughes JA, Wood NW. MELAS: a new disease associated mitochondrial DNA mutation and evidence for further genetic heterogeneity. J Neurol Neurosurg Psychiatry. 1998;65(4):512–517. doi: 10.1136/jnnp.65.4.512. PubMed DOI PMC

Brautbar A, Wang J, Abdenur JE, Chang RC, Thomas JA, Grebe TA, et al. The mitochondrial 13513G>a mutation is associated with Leigh disease phenotypes independent of complex I deficiency in muscle. Mol Genet Metab. 2008;94(4):485–490. doi: 10.1016/j.ymgme.2008.04.004. PubMed DOI

Kirby DM, Boneh A, Chow CW, Ohtake A, Ryan MT, Thyagarajan D, et al. Low mutant load of mitochondrial DNA G13513A mutation can cause Leigh’s disease. Ann Neurol. 2003;54(4):473–478. doi: 10.1002/ana.10687. PubMed DOI

Ganetzky RD, Falk MJ. 8-year retrospective analysis of intravenous arginine therapy for acute metabolic strokes in pediatric mitochondrial disease. Mol Genet Metab. 2018;123(3):301–308. doi: 10.1016/j.ymgme.2018.01.010. PubMed DOI PMC

Yahata N, Matsumoto Y, Omi M, Yamamoto N, Hata R, et al. Sci Rep. 2017;7(1):15557. doi: 10.1038/s41598-017-15871-y. PubMed DOI PMC

Angerer H, Zwicker K, Wumaier Z, Sokolova L, Heide H, Steger M, et al. A scaffold of accessory subunits links the peripheral arm and the distal proton-pumping module of mitochondrial complex I. Biochem J. 2011;437(2):279–288. doi: 10.1042/BJ20110359. PubMed DOI PMC

Malfatti E, Bugiani M, Invernizzi F, de Souza CF-M, Farina L, Carrara F, et al. Novel mutations of ND genes in complex I deficiency associated with mitochondrial encephalopathy. Brain. 2007;130(7):1894–1904. doi: 10.1093/brain/awm114. PubMed DOI

McFarland R, Kirby DM, Fowler KJ, Ohtake A, Ryan MT, Amor DJ, et al. De novo mutations in the mitochondrialND3 gene as a cause of infantile mitochondrial encephalopathy and complex I deficiency. Ann Neurol. 2004;55(1):58–64. doi: 10.1002/ana.10787. PubMed DOI

Kopinski PK, Janssen KA, Schaefer PM, Trefely S, Perry CE, Potluri P, et al. Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy. Proc Natl Acad Sci U S A. 2019;116(32):16028–16035. doi: 10.1073/pnas.1906896116. PubMed DOI PMC

Hoefs SJG, Dieteren CEJ, Distelmaier F, Janssen RJRJ, Epplen A, Swarts HGP, et al. NDUFA2 complex I mutation leads to Leigh disease. Am J Hum Genet. 2008;82(6):1306–1315. doi: 10.1016/j.ajhg.2008.05.007. PubMed DOI PMC

Janssen AJM, Schuelke M, Smeitink JAM, Trijbels FJM, Sengers RCA, Lucke B, et al. Muscle 3243A-->G mutation load and capacity of the mitochondrial energy-generating system. Ann Neurol. 2008;63(4):473–481. doi: 10.1002/ana.21328. PubMed DOI

Smits P, Antonicka H, van Hasselt PM, Weraarpachai W, Haller W, Schreurs M, et al. Mutation in subdomain G’ of mitochondrial elongation factor G1 is associated with combined OXPHOS deficiency in fibroblasts but not in muscle. Eur J Hum Genet. 2011;19(3):275–279. doi: 10.1038/ejhg.2010.208. PubMed DOI PMC

Cameron JM, Levandovskiy V, MacKay N, Robinson BH. Respiratory chain analysis of skin fibroblasts in mitochondrial disease. Mitochondrion. 2004;4(5–6):387–394. doi: 10.1016/j.mito.2004.07.039. PubMed DOI

Patel MS, Korotchkina LG. Regulation of the pyruvate dehydrogenase complex. Biochem Soc Trans. 2006;34(Pt 2):217–222. doi: 10.1042/BST0340217. PubMed DOI

Harris RA, Bowker-Kinley MM, Huang B, Wu P. Regulation of the activity of the pyruvate dehydrogenase complex. Adv Enzym Regul. 2002;42:249–259. doi: 10.1016/S0065-2571(01)00061-9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...