Comparable respiratory activity in attached and suspended human fibroblasts
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35239701
PubMed Central
PMC8893708
DOI
10.1371/journal.pone.0264496
PII: PONE-D-21-34792
Knihovny.cz E-zdroje
- MeSH
- buněčné dýchání * fyziologie MeSH
- fibroblasty MeSH
- lidé MeSH
- oxidativní fosforylace * MeSH
- reprodukovatelnost výsledků MeSH
- spotřeba kyslíku fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Measurement of oxygen consumption of cultured cells is widely used for diagnosis of mitochondrial diseases, drug testing, biotechnology, and toxicology. Fibroblasts are cultured in monolayers, but physiological measurements are carried out in suspended or attached cells. We address the question whether respiration differs in attached versus suspended cells using multiwell respirometry (Agilent Seahorse XF24) and high-resolution respirometry (Oroboros O2k), respectively. Respiration of human dermal fibroblasts measured in culture medium was baseline-corrected for residual oxygen consumption and expressed as oxygen flow per cell. No differences were observed between attached and suspended cells in ROUTINE respiration of living cells and LEAK respiration obtained after inhibition of ATP synthase by oligomycin. The electron transfer capacity was higher in the O2k than in the XF24. This could be explained by a limitation to two uncoupler titrations in the XF24 which led to an underestimation compared to multiple titration steps in the O2k. A quantitative evaluation of respiration measured via different platforms revealed that short-term suspension of fibroblasts did not affect respiratory activity and coupling control. Evaluation of results obtained by different platforms provides a test for reproducibility beyond repeatability. Repeatability and reproducibility are required for building a validated respirometric database.
Zobrazit více v PubMed
Lazdins JK, Koech DK, Karnovsky ML. Oxidation of glucose by mouse peritoneal macrophages: a comparison of suspensions and monolayers. J Cell Physiol. 1980. Nov;105(2):191–6. doi: 10.1002/jcp.1041050202 PubMed DOI
Pofit JF, Strauss PR. Membrane transport by macrophages in suspension and adherent to glass. J Cell Physiol. 1977. Aug;92(2):249–55. doi: 10.1002/jcp.1040920213 PubMed DOI
Harrison CJ, Allen TD. Cell surface morphology after trypsinisation depends on initial cell shape. Differentiation. 1979;15(1):61–6. doi: 10.1111/j.1432-0436.1979.tb01035.x PubMed DOI
Park JY, Jeong AL, Joo HJ, Han S, Kim SH, Kim HY, et al.. Development of suspension cell culture model to mimic circulating tumor cells. Oncotarget. 2017. Dec 7;9(1):622–640. doi: 10.18632/oncotarget.23079 PubMed DOI PMC
Shen CF, Guilbault C, Li X, Elahi SM, Ansorge S, Kamen A, et al.. Development of suspension adapted Vero cell culture process technology for production of viral vaccines. Vaccine. 2019. Nov 8;37(47):6996–7002. doi: 10.1016/j.vaccine.2019.07.003 PubMed DOI
Yépez VA, Kremer LS, Iuso A, Gusic M, Kopajtich R, Koňaříková E, et al.. OCR-Stats: Robust estimation and statistical testing of mitochondrial respiration activities using Seahorse XF Analyzer. PLoS One. 2018. Jul 11;13(7): e0199938. doi: 10.1371/journal.pone.0199938 PubMed DOI PMC
Danhelovska T, Kolarova H, Zeman J, Hansikova H, Vaneckova M, Lambert L, et al.. Multisystem mitochondrial diseases due to mutations in mtDNA-encoded subunits of complex I. BMC Pediatr. 2020. Jan 29; 20(1):41. doi: 10.1186/s12887-020-1912-x PubMed DOI PMC
Burska D, Stiburek L, Krizova J, Vanisova M, Martinek V, Sladkova J, et al.. Homozygous missense mutation in UQCRC2 associated with severe encephalomyopathy, mitochondrial complex III assembly defect and activation of mitochondrial protein quality control. Biochim Biophys Acta Mol Basis Dis. 2021. Aug 1;1867(8):166147. doi: 10.1016/j.bbadis.2021.166147 PubMed DOI
Ye F, Hoppel CL. Measuring oxidative phosphorylation in human skin fibroblasts. Anal Biochem. 2013; 437:52–8. doi: 10.1016/j.ab.2013.02.010 PubMed DOI
Benecke BJ, Ben-Ze’ev A, Penman S. The control of mRNA production, translation and turnover in suspended and reattached anchorage-dependent fibroblasts. Cell. 1978. Aug; 14(4):931–9. doi: 10.1016/0092-8674(78)90347-1 PubMed DOI
Farmer SR, Ben-Ze’ev A, Benecke BJ, Penman S. (1978). Altered translatability of messenger RNA from suspended anchorage-dependent fibroblasts: reversal upon cell attachment to a surface. Cell. 1978 Oct 1; 15(2):627–37. doi: 10.1016/0092-8674(78)90031-4 PubMed DOI
Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, et al.. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol. 2007. Jan;292(1):C125–36. doi: 10.1152/ajpcell.00247.2006 PubMed DOI
Doerrier C, Garcia-Souza LF, Krumschnabel G, Wohlfarter Y, Mészáros AT, Gnaiger E. High-Resolution FluoRespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria. Methods Mol Biol. 2018;1782:31–70. doi: 10.1007/978-1-4939-7831-1_3 PubMed DOI
Gnaiger E. Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis (5th ed.). Bioenerg Commun. 2020; 2, 112 pp. doi: 10.26124/bec:2020–0002 DOI
Zhang J, Nuebel E, Wisidagama DR, Setoguchi K, Hong JS, Van Horn CM, et al.. Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells. Nat Protoc. 2012. May 10; 7(6):1068–85. doi: 10.1038/nprot.2012.048 PubMed DOI PMC
Gnaiger E. Polarographic oxygen sensors, the oxygraph and high-resolution respirometry to assess mitochondrial function. In: Mitochondrial dysfunction in drug-induced toxicity (Dykens JA, Will Y, eds) John Wiley & Sons, Inc, Hoboken, NJ,2008; 327–52. doi: 10.1002/9780470372531.ch12 DOI
Gnaiger E. O2k Quality Control 1: Polarographic oxygen sensors and accuracy of calibration. Mitochondrial Physiology Network. 2019; 1–19. [posted 2019, March 6, revised 2021 January 19, cited 2021 September 10] Available from: https://wiki.oroboros.at/index.php/MiPNet06.03_POS-calibration-SOP
Gnaiger E. Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir Physiol. 2001. Nov 15;128(3):277–97. doi: 10.1016/s0034-5687(01)00307-3 PubMed DOI
Scandurra FM, Gnaiger E. Cell respiration under hypoxia: facts and artefacts in mitochondrial oxygen kinetics. Adv. Exp. Med. 2010; 662: 7–25. doi: 10.1007/978-1-4419-1241-1_2 PubMed DOI
Komlódi T, Sobotka O, Gnaiger E. Facts and artefacts on the oxygen dependence of hydrogen peroxide production using Amplex UltraRed. Bioenerg Commun. 2021; 4. doi: 10.26124/bec:2020–0004 DOI
Hutter E, Renner K, Pfister G, Stöckl P, Jansen-Dürr P, Gnaiger E. Senescence-associated changes in respiration and oxidative phosphorylation in primary human fibroblasts. Biochem J. 2004. Jun 15;380(Pt 3):919–28. doi: 10.1042/BJ20040095 PubMed DOI PMC
Gnaiger E.–MitoEAGLE task group. Mitochondrial physiology. Bioenergetics Communication, 2020; 1, 1–44. doi: 10.26124/bec:2020-0001.v1 DOI
Agilent Technologies . Mito Stress Test Kit, User Guide. 2019. [cited 2021 September 10]. Available from: https://www.agilent.com/cs/library/usermanuals/public/XF_Cell_Mito_Stress_Test_Kit_User_Guide.pdf
Gnaiger, E. (2021) The elementary unit—canonical reviewer’s comments on: Bureau International des Poids et Mesures (2019) The International System of Units (SI) 9th ed. MitoFit Preprints 2020.4.v2 [preprint]. Available from: doi: 10.26124/mitofit:200004.v2 DOI
Gnaiger E. Bioenergetic cluster analysis–mitochondrial respiratory control in human fibroblasts. MitoFit Preprints [preprint]. 2021; 8. doi: 10.26124/mitofit:2021–0008 DOI
Abelson HT, Johnson LF, Penman S, Green H. Changes in RNA in relation to growth of the fibroblast: II. The lifetime of mRNA, rRNA, and tRNA in resting and growing cells. Cell. 1974. Apr 01; 1(40), 161–5. doi: 10.1016/0092-8674(74)90107-X DOI
Ben-Ze’ev A., Reiss R., Bendori R., Gorodecki B. (1990). Transient induction of vinculin gene expression in 3T3 fibroblasts stimulated by serum-growth factors. Cell Regulation. 1990 Aug 1; 1(9), 621–6. doi: 10.1091/mbc.1.9.621 PubMed DOI PMC
Benecke BJ, Ben-Ze’ev A, Penman S. The regulation of RNA metabolism in suspended and reattached anchorage-dependent 3T6 fibroblasts. J Cell Physiol. 1980. May;103(2):247–54. doi: 10.1002/jcp.1041030209 PubMed DOI