New-Generation Heterocyclic Bis-Pentamethinium Salts as Potential Cytostatic Drugs with Dual IL-6R and Mitochondria-Targeting Activity

. 2022 Aug 17 ; 14 (8) : . [epub] 20220817

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36015338

Grantová podpora
SVV260521; UNCE 204064; Progress Q26/LF1 and Q27/LF1 Charles University
LM2018133 (EATRIS-CZ) Ministry of Education Youth and Sports
TN01000013 and FW02020128 Technology Agency of the Czech Republic
NU21-08-00407 and NU22-D-136 Ministry of Health of the Czech
CZ.02.1.01/0.0/0.0/16_019/0000785 the Operational Program 'Research, Development and Education
LX22NPO5102 European Union
SVV - UK26037 Charles University
VFN 64165 Ministry of Health of the Czech

Odkazy

PubMed 36015338
PubMed Central PMC9416741
DOI 10.3390/pharmaceutics14081712
PII: pharmaceutics14081712
Knihovny.cz E-zdroje

IL-6 signaling is involved in the pathogenesis of a number of serious diseases, including chronic inflammation and cancer. Targeting of IL-6 receptor (IL-6R) by small molecules is therefore an intensively studied strategy in cancer treatment. We describe the design, synthesis, and characteristics of two new bis-pentamethinium salts 5 and 6 (meta and para) bearing indole moieties. Molecular docking studies showed that both compounds have the potential to bind IL-6R (free energy of binding -9.5 and -8.1 kcal/mol). The interaction with IL-6R was confirmed using microscale thermophoresis analyses, which revealed that both compounds had strong affinity for the IL-6R (experimentally determined dissociation constants 26.5 ± 2.5 nM and 304 ± 27.6 nM, respectively). In addition, both compounds were cytotoxic for a broad spectrum of cancer cell lines in micromolar concentrations, most likely due to their accumulation in mitochondria and inhibition of mitochondrial respiration. In summary, the structure motif of bis-pentamethinium salts represents a promising starting point for the design of novel multitargeting compounds with the potential to inhibit IL-6 signaling and simultaneously target mitochondrial metabolism in cancer cells.

Zobrazit více v PubMed

Hirano T., Akira S., Taga T., Kishimoto T. Biological and clinical aspects of interleukin 6. Immunol. Today. 1990;11:443–449. doi: 10.1016/0167-5699(90)90173-7. PubMed DOI

Chonov D.C., Ignatova M.M.K., Ananiev J.R., Gulubova M.V. IL-6 Activities in the Tumour Microenvironment. Part 1. Open Access Maced. J. Med Sci. 2019;7:2391–2398. doi: 10.3889/oamjms.2019.589. PubMed DOI PMC

Brábek J., Jakubek M., Vellieux F., Novotný J., Kolář M., Lacina L., Szabo P., Strnadová K., Rösel D., Dvořánková B., et al. Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19. Int. J. Mol. Sci. 2020;21:7937. doi: 10.3390/ijms21217937. PubMed DOI PMC

Hill D.G., Ward A., Nicholson L.B., Jones G.W. Emerging roles for IL-6 family cytokines as positive and negative regulators of ectopic lymphoid structures. Cytokine. 2021;146:155650. doi: 10.1016/j.cyto.2021.155650. PubMed DOI

Slominski R.M., Tuckey R., Manna P.R., Jetten A.M., Postlethwaite A., Raman C., Slominski A.T. Extra-adrenal glucocorticoid biosynthesis: Implications for autoimmune and inflammatory disorders. Genes Immun. 2020;21:150–168. doi: 10.1038/s41435-020-0096-6. PubMed DOI PMC

Mouawad R., Benhammouda A., Rixe O., Antoine E.C., Borel C., Weil M., Khayat D., Soubrane C. Endogenous interleukin 6 levels in patients with metastatic malignant melanoma: Correlation with tumor burden. Clin. Cancer Res. 1996;2:1405–1409. PubMed

Španko M., Strnadová K., Pavlíček A.J., Szabo P., Kodet O., Valach J., Dvořánková B., Smetana K., Jr., Lacina L. IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives. Int. J. Mol. Sci. 2021;22:11027. doi: 10.3390/ijms222011027. PubMed DOI PMC

Johnson D.E., O’Keefe R.A., Grandis J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018;15:234–248. doi: 10.1038/nrclinonc.2018.8. PubMed DOI PMC

Hoejberg L., Bastholt L., Johansen J.S., Christensen I.J., Gehl J., Schmidt H. Serum interleukin-6 as a prognostic biomarker in patients with metastatic melanoma. Melanoma Res. 2012;22:287–293. doi: 10.1097/CMR.0b013e3283550aa5. PubMed DOI

Kumari N., Dwarakanath B.S., Das A., Bhatt A.N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumor Biol. 2016;37:11553–11572. doi: 10.1007/s13277-016-5098-7. PubMed DOI

Gu J., Wang J., Liu X., Sai K., Mai J., Xing F., Chen Z., Yang X., Lu W., Guo C., et al. IL-6 derived from therapy-induced senescence facilitates the glycolytic phenotype in glioblastoma cells. Am. J. Cancer Res. 2021;11:458–478. PubMed PMC

Kadauke S., Myers R.M., Li Y., Aplenc R., Baniewicz D., Barrett D.M., Leahy A.B., Callahan C., Dolan J.G., Fitzgerald J.C., et al. Risk-Adapted Preemptive Tocilizumab to Prevent Severe Cytokine Release Syndrome After CTL019 for Pediatric B-Cell Acute Lymphoblastic Leukemia: A Prospective Clinical Trial. J. Clin. Oncol. 2021;39:920–930. doi: 10.1200/JCO.20.02477. PubMed DOI PMC

Hagi T., Nakamura T., Kita K., Iino T., Asanuma K., Sudo A. Anti-tumour effect of tocilizumab for osteosarcoma cell lines. Bone Jt. Res. 2020;9:821–826. doi: 10.1302/2046-3758.911.BJR-2020-0123.R1. PubMed DOI PMC

Shiroshita K., Kikuchi T., Okayama M., Kasahara H., Kamiya T., Shimizu T., Kurose N., Masaki Y., Okamoto S. Interleukin-6-producing Intravascular Large B-cell Lymphoma with Lymphadenopathy Mimicking the Histology of Multicentric Castleman Disease. Intern. Med. 2020;59:3061–3065. doi: 10.2169/internalmedicine.5046-20. PubMed DOI PMC

Mintz C.S., Crea R. Protein scaffolds: The next generation of protein therapeutics? Bioprocess Int. 2013;11:40–48, 51.

Aqel S.I., Kraus E.E., Jena N., Kumari V., Granitto M.C., Mao L., Farinas M.F., Zhao E.Y., Perottino G., Pei W., et al. Novel small molecule IL-6 inhibitor suppresses autoreactive Th17 development and promotes Treg development. Clin. Exp. Immunol. 2019;196:215–225. doi: 10.1111/cei.13258. PubMed DOI PMC

Enomoto A., Rho M.C., Fukami A., Hiraku O., Komiyama K., Hayashi M. Suppression of cancer cachexia by 20S,21-epoxy-resibufogenin-3-acetate—A novel nonpeptide IL-6 receptor antagonist. Biochem. Biophys. Res. Commun. 2004;323:1096–1102. doi: 10.1016/j.bbrc.2004.08.196. PubMed DOI

Enomoto A., Rho M.C., Komiyama K., Hayashi M. Inhibitory Effects of Bufadienolides on Interleukin-6 in MH-60 Cells. J. Nat. Prod. 2004;67:2070–2072. doi: 10.1021/np049950e. PubMed DOI

Hayashi M., Kim Y.P., Takamatsu S., Enomoto A., Shinose M., Takahashi Y., Tanaka H., Komiyama K., Omura S. Madindoline, a Novel Inhibitor of IL-6 Activity from Streptomyces sp. K93-0711. I. Taxonomy, Fermentation, Isolation and Biological Activities. J. Antibiot. 1996;49:1091–1095. doi: 10.7164/antibiotics.49.1091. PubMed DOI

Hayashi M., Rho M.C., Enomoto A., Fukami A., Kim Y.P., Kikuchi Y., Sunazuka T., Hirose T., Komiyama K., Omura S. Suppression of bone resorption by madindoline A, a novel nonpeptide antagonist to gp130. Proc. Natl. Acad. Sci. USA. 2002;99:14728–14733. doi: 10.1073/pnas.232562799. PubMed DOI PMC

Hayashi M., Rho M.C., Fukami A., Enomoto A., Nonaka S., Sekiguchi Y., Yanagisawa T., Yamashita A., Nogawa T., Kamano Y., et al. Biological Activity of a Novel Nonpeptide Antagonist to the Interleukin-6 Receptor 20S,21-Epoxy-resibufogenin-3-formate. J. Pharmacol. Exp. Ther. 2002;303:104–109. doi: 10.1124/jpet.102.036137. PubMed DOI

Hong S.S., Choi J.H., Lee S.Y., Park Y.H., Park K.Y., Lee J.Y., Kim J., Gajulapati V., Goo J.I., Singh S., et al. A Novel Small-Molecule Inhibitor Targeting the IL-6 Receptor β Subunit, Glycoprotein 130. J. Immunol. 2015;195:237–245. doi: 10.4049/jimmunol.1402908. PubMed DOI

Kino T., Boos T.L., Sulima A., Siegel E.M., Gold P.W., Rice K.C., Chrousos G.P. 3-O-Formyl-20R,21-epoxyresibufogenin suppresses IL-6–type cytokine actions by targeting the glycoprotein 130 subunit: Potential clinical implications. J. Allergy Clin. Immunol. 2007;120:437–444. doi: 10.1016/j.jaci.2007.03.018. PubMed DOI

Saleh A.Z.M., Greenman K.L., Billings S., Van Vranken D.L., Krolewski J.J. Binding of Madindoline A to the Extracellular Domain of gp130. Biochemistry. 2005;44:10822–10827. doi: 10.1021/bi050439+. PubMed DOI

Wang J., Qiao C., Xiao H., Lin Z., Li Y., Zhang J., Shen B., Fu T., Feng J. Structure-based virtual screening and characterization of a novel IL-6 antagonistic compound from synthetic compound database. Drug Des. Dev. Ther. 2016;10:4091–4100. doi: 10.2147/DDDT.S118457. PubMed DOI PMC

Yamamoto D., Sunazuka T., Hirose T., Kojima N., Kaji E., Omura S. Design, synthesis, and biological activities of madindoline analogues. Bioorganic Med. Chem. Lett. 2006;16:2807–2811. doi: 10.1016/j.bmcl.2006.01.107. PubMed DOI

Bříza T., Králová J., Dolenský B., Rimpelová S., Kejík Z., Ruml T., Hajdúch M., Džubák P., Mikula I., Martásek P., et al. Striking Antitumor Activity of a Methinium System with Incorporated Quinoxaline Unit Obtained by Spontaneous Cyclization. ChemBioChem A Eur. J. Chem. Biol. 2015;16:555–558. doi: 10.1002/cbic.201402662. PubMed DOI

Bříza T., Rimpelová S., Králová J., Záruba K., Kejík Z., Ruml T., Martásek P., Král V. Pentamethinium fluorescent probes: The impact of molecular structure on photophysical properties and subcellular localization. Dye. Pigment. 2014;107:51–59. doi: 10.1016/j.dyepig.2013.12.021. DOI

Rimpelová S., Bříza T., Králová J., Záruba K., Kejík Z., Císařová I., Martásek P., Ruml T., Král V. Rational Design of Chemical Ligands for Selective Mitochondrial Targeting. Bioconjugate Chem. 2013;24:1445–1454. doi: 10.1021/bc400291f. PubMed DOI

Krejcir R., Krcova L., Zatloukalova P., Briza T., Coates P.J., Sterba M., Muller P., Kralova J., Martasek P., Kral V., et al. A Cyclic Pentamethinium Salt Induces Cancer Cell Cytotoxicity through Mitochondrial Disintegration and Metabolic Collapse. Int. J. Mol. Sci. 2019;20:4208. doi: 10.3390/ijms20174208. PubMed DOI PMC

Bříza T., Králová J., Rimpelová S., Havlík M., Kaplánek R., Kejík Z., Martásek P., Mikula I., Džubák P., Hajdúch M., et al. Pentamethinium salts as ligands for cancer: Sulfated polysaccharide co-receptors as possible therapeutic target. Bioorganic Chem. 2018;82:74–85. doi: 10.1016/j.bioorg.2018.02.011. PubMed DOI

Krejcir R., Briza T., Sterba M., Simoncik O., Muller P., Coates P.J., Martasek P., Vojtesek B., Zatloukalova P. Anticancer pentamethinium salt is a potent photosensitizer inducing mitochondrial disintegration and apoptosis upon red light illumination. J. Photochem. Photobiol. B Biol. 2020;209:111939. doi: 10.1016/j.jphotobiol.2020.111939. PubMed DOI

Sestito S., Runfola M., Tonelli M., Chiellini G., Rapposelli S. New Multitarget Approaches in the War against Glioblastoma: A Mini-Perspective. Front. Pharmacol. 2018;9:874. doi: 10.3389/fphar.2018.00874. PubMed DOI PMC

Habashi F., Mehranpour A., Jahromi E.B. Synthesis and characterization of new derivatives of bis(1,4-diazepinium) salts and bis(γ-substituted pentamethine cyanine(dyes using vinamidinium salt. J. Heterocycl. Chem. 2020;57:2428–2432. doi: 10.1002/jhet.3958. DOI

Choi H.J., Dincă M., Long J.R. Broadly Hysteretic H2 Adsorption in the Microporous Metal−Organic Framework Co(1,4-benzenedipyrazolate) J. Am. Chem. Soc. 2008;130:7848–7850. doi: 10.1021/ja8024092. PubMed DOI

Lozan V., Solntsev P.Y., Leibeling G., Domasevitch K.V., Kersting B. Tetranuclear Nickel Complexes Composed of Pairs of Dinuclear LNi 2 Fragments Linked by 4,4′-Bipyrazolyl, 1,4-Bis(4′-pyrazolyl)benzene, and 4,4′-Bipyridazine: Synthesis, Structures, and Magnetic Properties. Eur. J. Inorg. Chem. 2007;2007:3217–3226. doi: 10.1002/ejic.200700317. DOI

Church R., Trust R., Albright J.D., Powell D. New Synthetic Routes to 3-, 5-, and 6-Aryl-2-chloropyridines. J. Org. Chem. 1995;60:3750–3758. doi: 10.1021/jo00117a029. DOI

Liu Y., Grimm M., Dai W.T., Hou M.C., Xiao Z.X., Cao Y. CB-Dock: A web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacol. Sin. 2020;41:138–144. doi: 10.1038/s41401-019-0228-6. PubMed DOI PMC

BIOVIA Discovery Studio Modeling Environment. Dassault Systèmes BIOVIA; San Diego, CA, USA: 2017.

Busek P., Stremenova J., Sromova L., Hilser M., Balaziova E., Kosek D., Trylcova J., Strnad H., Krepela E., Sedo A. Dipeptidyl peptidase-IV inhibits glioma cell growth independent of its enzymatic activity. Int. J. Biochem. Cell Biol. 2012;44:738–747. doi: 10.1016/j.biocel.2012.01.011. PubMed DOI

Zdrazilova L., Hansikova H., Gnaiger E. Comparable respiratory activity in attached and suspended human fibroblasts. PLoS ONE. 2022;17:e0264496. doi: 10.1371/journal.pone.0264496. PubMed DOI PMC

Mehranpour A.M., Hashemnia S., Maghamifar R. Synthesis and Characterization of New γ-Substituted Pentamethine Cyanine Dyes. Synth. Commun. 2010;40:3594–3602. doi: 10.1080/00397910903457290. DOI

Matichak J.D., Hales J.M., Barlow S., Perry J.W., Marder S.R. Dioxaborine- and Indole-Terminated Polymethines: Effects of Bridge Substitution on Absorption Spectra and Third-Order Polarizabilities. J. Phys. Chem. A. 2011;115:2160–2168. doi: 10.1021/jp110425r. PubMed DOI

Mehranpour A.M., Hashemnia S., Azamifar F. Synthesis and Characterization of γ-Heteroaryl-substituted Pentamethine Cyanine Dyes with Carboxy or Methoxycarbonyl Substituents at the Two Heterocyclic End Groups. J. Heterocycl. Chem. 2014;51:1457–1462. doi: 10.1002/jhet.1816. DOI

MacKenzie G.G., Huang L., Alston N., Ouyang N., Vrankova K., Mattheolabakis G., Constantinides P.P., Rigas B. Targeting Mitochondrial STAT3 with the Novel Phospho-Valproic Acid (MDC-1112) Inhibits Pancreatic Cancer Growth in Mice. PLoS ONE. 2013;8:e61532. doi: 10.1371/journal.pone.0061532. PubMed DOI PMC

Bříza T., Kejík Z., Císařová I., Králová J., Martásek P., Král V. Optical sensing of sulfate by polymethinium salt receptors: Colorimetric sensor for heparin. Chem. Commun. 2008;16:1901–1903. doi: 10.1039/b718492a. PubMed DOI

Kejík Z., Bříza T., Králová J., Mikula I., Poučková P., Martásek P., Král V. New method for recognition of sterol signalling molecules: Methinium salts as receptors for sulphated steroids. Steroids. 2015;94:15–20. doi: 10.1016/j.steroids.2014.10.009. PubMed DOI

Abeywardena M., Leifert W., Warnes K., Varghese J., Head R. Cardiovascular Biology of Interleukin-6. Curr. Pharm. Des. 2009;15:1809–1821. doi: 10.2174/138161209788186290. PubMed DOI

Mihara M., Kasutani K., Okazaki M., Nakamura A., Kawai S., Sugimoto M., Matsumoto Y., Ohsugi Y. Tocilizumab inhibits signal transduction mediated by both mIL-6R and sIL-6R, but not by the receptors of other members of IL-6 cytokine family. Int. Immunopharmacol. 2005;5:1731–1740. doi: 10.1016/j.intimp.2005.05.010. PubMed DOI

Yang J., Qian S., Cai X., Lu W., Hu C., Sun X., Yang Y., Yu Q., Gao S.P., Cao P. Chikusetsusaponin IVa Butyl Ester (CS-IVa-Be), a Novel IL6R Antagonist, Inhibits IL6/STAT3 Signaling Pathway and Induces Cancer Cell Apoptosis. Mol. Cancer Ther. 2016;15:1190–1200. doi: 10.1158/1535-7163.MCT-15-0551. PubMed DOI

Fialova J.L., Raudenska M., Jakubek M., Kejik Z., Martasek P., Babula P., Matkowski A., Filipensky P., Masarik M. Novel Mitochondria-targeted Drugs for Cancer Therapy. Mini-Rev. Med. Chem. 2021;21:816–832. doi: 10.2174/1389557520666201118153242. PubMed DOI

Wegrzyn J., Potla R., Chwae Y.J., Sepuri N.B.V., Zhang Q., Koeck T., Derecka M., Szczepanek K., Szelag M., Gornicka A., et al. Function of Mitochondrial Stat3 in Cellular Respiration. Science. 2009;323:793–797. doi: 10.1126/science.1164551. PubMed DOI PMC

Mantel C., Messina-Graham S., Moh A., Cooper S., Hangoc G., Fu X.Y., Broxmeyer H.E. Mouse hematopoietic cell–targeted STAT3 deletion: Stem/progenitor cell defects, mitochondrial dysfunction, ROS overproduction, and a rapid aging–like phenotype. Blood. 2012;120:2589–2599. doi: 10.1182/blood-2012-01-404004. PubMed DOI PMC

Gough D.J., Corlett A., Schlessinger K., Wegrzyn J., Larner A.C., Levy D.E. Mitochondrial STAT3 Supports Ras-Dependent Oncogenic Transformation. Science. 2009;324:1713–1716. doi: 10.1126/science.1171721. PubMed DOI PMC

Zhang Q., Raje V., Yakovlev V., Yacoub A., Szczepanek K., Meier J., Derecka M., Chen Q., Hu Y., Sisler J., et al. Mitochondrial Localized Stat3 Promotes Breast Cancer Growth via Phosphorylation of Serine 727. J. Biol. Chem. 2013;288:31280–31288. doi: 10.1074/jbc.M113.505057. PubMed DOI PMC

Tomita K., Kuwahara Y., Igarashi K., Roudkenar M.H., Roushandeh A.M., Kurimasa A., Sato T. Mitochondrial Dysfunction in Diseases, Longevity, and Treatment Resistance: Tuning Mitochondria Function as a Therapeutic Strategy. Genes. 2021;12:1348. doi: 10.3390/genes12091348. PubMed DOI PMC

Scheller J., Berg A., Moll J.M., Floss D.M., Jungesblut C. Current status and relevance of single nucleotide polymorphisms in IL-6-/IL-12-type cytokine receptors. Cytokine. 2021;148:155550. doi: 10.1016/j.cyto.2021.155550. PubMed DOI

To S.Q., Dmello R.S., Richards A.K., Ernst M., Chand A.L. STAT3 Signaling in Breast Cancer: Multicellular Actions and Therapeutic Potential. Cancers. 2022;14:429. doi: 10.3390/cancers14020429. PubMed DOI PMC

Vasan K., Werner M., Chandel N.S. Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metab. 2020;32:341–352. doi: 10.1016/j.cmet.2020.06.019. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...