New-Generation Heterocyclic Bis-Pentamethinium Salts as Potential Cytostatic Drugs with Dual IL-6R and Mitochondria-Targeting Activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV260521; UNCE 204064; Progress Q26/LF1 and Q27/LF1
Charles University
LM2018133 (EATRIS-CZ)
Ministry of Education Youth and Sports
TN01000013 and FW02020128
Technology Agency of the Czech Republic
NU21-08-00407 and NU22-D-136
Ministry of Health of the Czech
CZ.02.1.01/0.0/0.0/16_019/0000785
the Operational Program 'Research, Development and Education
LX22NPO5102
European Union
SVV - UK26037
Charles University
VFN 64165
Ministry of Health of the Czech
PubMed
36015338
PubMed Central
PMC9416741
DOI
10.3390/pharmaceutics14081712
PII: pharmaceutics14081712
Knihovny.cz E-zdroje
- Klíčová slova
- IL-6R synthetic inhibitors, cancer, mitochondria,
- Publikační typ
- časopisecké články MeSH
IL-6 signaling is involved in the pathogenesis of a number of serious diseases, including chronic inflammation and cancer. Targeting of IL-6 receptor (IL-6R) by small molecules is therefore an intensively studied strategy in cancer treatment. We describe the design, synthesis, and characteristics of two new bis-pentamethinium salts 5 and 6 (meta and para) bearing indole moieties. Molecular docking studies showed that both compounds have the potential to bind IL-6R (free energy of binding -9.5 and -8.1 kcal/mol). The interaction with IL-6R was confirmed using microscale thermophoresis analyses, which revealed that both compounds had strong affinity for the IL-6R (experimentally determined dissociation constants 26.5 ± 2.5 nM and 304 ± 27.6 nM, respectively). In addition, both compounds were cytotoxic for a broad spectrum of cancer cell lines in micromolar concentrations, most likely due to their accumulation in mitochondria and inhibition of mitochondrial respiration. In summary, the structure motif of bis-pentamethinium salts represents a promising starting point for the design of novel multitargeting compounds with the potential to inhibit IL-6 signaling and simultaneously target mitochondrial metabolism in cancer cells.
BIOCEV 1st Faculty of Medicine Charles University CZ 252 42 Vestec Czech Republic
Institute of Anatomy 1st Faculty of Medicine Charles University CZ 120 00 Prague Czech Republic
Institute of Molecular Genetics Academy of Sciences CZ 140 00 Prague Czech Republic
Zobrazit více v PubMed
Hirano T., Akira S., Taga T., Kishimoto T. Biological and clinical aspects of interleukin 6. Immunol. Today. 1990;11:443–449. doi: 10.1016/0167-5699(90)90173-7. PubMed DOI
Chonov D.C., Ignatova M.M.K., Ananiev J.R., Gulubova M.V. IL-6 Activities in the Tumour Microenvironment. Part 1. Open Access Maced. J. Med Sci. 2019;7:2391–2398. doi: 10.3889/oamjms.2019.589. PubMed DOI PMC
Brábek J., Jakubek M., Vellieux F., Novotný J., Kolář M., Lacina L., Szabo P., Strnadová K., Rösel D., Dvořánková B., et al. Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19. Int. J. Mol. Sci. 2020;21:7937. doi: 10.3390/ijms21217937. PubMed DOI PMC
Hill D.G., Ward A., Nicholson L.B., Jones G.W. Emerging roles for IL-6 family cytokines as positive and negative regulators of ectopic lymphoid structures. Cytokine. 2021;146:155650. doi: 10.1016/j.cyto.2021.155650. PubMed DOI
Slominski R.M., Tuckey R., Manna P.R., Jetten A.M., Postlethwaite A., Raman C., Slominski A.T. Extra-adrenal glucocorticoid biosynthesis: Implications for autoimmune and inflammatory disorders. Genes Immun. 2020;21:150–168. doi: 10.1038/s41435-020-0096-6. PubMed DOI PMC
Mouawad R., Benhammouda A., Rixe O., Antoine E.C., Borel C., Weil M., Khayat D., Soubrane C. Endogenous interleukin 6 levels in patients with metastatic malignant melanoma: Correlation with tumor burden. Clin. Cancer Res. 1996;2:1405–1409. PubMed
Španko M., Strnadová K., Pavlíček A.J., Szabo P., Kodet O., Valach J., Dvořánková B., Smetana K., Jr., Lacina L. IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives. Int. J. Mol. Sci. 2021;22:11027. doi: 10.3390/ijms222011027. PubMed DOI PMC
Johnson D.E., O’Keefe R.A., Grandis J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018;15:234–248. doi: 10.1038/nrclinonc.2018.8. PubMed DOI PMC
Hoejberg L., Bastholt L., Johansen J.S., Christensen I.J., Gehl J., Schmidt H. Serum interleukin-6 as a prognostic biomarker in patients with metastatic melanoma. Melanoma Res. 2012;22:287–293. doi: 10.1097/CMR.0b013e3283550aa5. PubMed DOI
Kumari N., Dwarakanath B.S., Das A., Bhatt A.N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumor Biol. 2016;37:11553–11572. doi: 10.1007/s13277-016-5098-7. PubMed DOI
Gu J., Wang J., Liu X., Sai K., Mai J., Xing F., Chen Z., Yang X., Lu W., Guo C., et al. IL-6 derived from therapy-induced senescence facilitates the glycolytic phenotype in glioblastoma cells. Am. J. Cancer Res. 2021;11:458–478. PubMed PMC
Kadauke S., Myers R.M., Li Y., Aplenc R., Baniewicz D., Barrett D.M., Leahy A.B., Callahan C., Dolan J.G., Fitzgerald J.C., et al. Risk-Adapted Preemptive Tocilizumab to Prevent Severe Cytokine Release Syndrome After CTL019 for Pediatric B-Cell Acute Lymphoblastic Leukemia: A Prospective Clinical Trial. J. Clin. Oncol. 2021;39:920–930. doi: 10.1200/JCO.20.02477. PubMed DOI PMC
Hagi T., Nakamura T., Kita K., Iino T., Asanuma K., Sudo A. Anti-tumour effect of tocilizumab for osteosarcoma cell lines. Bone Jt. Res. 2020;9:821–826. doi: 10.1302/2046-3758.911.BJR-2020-0123.R1. PubMed DOI PMC
Shiroshita K., Kikuchi T., Okayama M., Kasahara H., Kamiya T., Shimizu T., Kurose N., Masaki Y., Okamoto S. Interleukin-6-producing Intravascular Large B-cell Lymphoma with Lymphadenopathy Mimicking the Histology of Multicentric Castleman Disease. Intern. Med. 2020;59:3061–3065. doi: 10.2169/internalmedicine.5046-20. PubMed DOI PMC
Mintz C.S., Crea R. Protein scaffolds: The next generation of protein therapeutics? Bioprocess Int. 2013;11:40–48, 51.
Aqel S.I., Kraus E.E., Jena N., Kumari V., Granitto M.C., Mao L., Farinas M.F., Zhao E.Y., Perottino G., Pei W., et al. Novel small molecule IL-6 inhibitor suppresses autoreactive Th17 development and promotes Treg development. Clin. Exp. Immunol. 2019;196:215–225. doi: 10.1111/cei.13258. PubMed DOI PMC
Enomoto A., Rho M.C., Fukami A., Hiraku O., Komiyama K., Hayashi M. Suppression of cancer cachexia by 20S,21-epoxy-resibufogenin-3-acetate—A novel nonpeptide IL-6 receptor antagonist. Biochem. Biophys. Res. Commun. 2004;323:1096–1102. doi: 10.1016/j.bbrc.2004.08.196. PubMed DOI
Enomoto A., Rho M.C., Komiyama K., Hayashi M. Inhibitory Effects of Bufadienolides on Interleukin-6 in MH-60 Cells. J. Nat. Prod. 2004;67:2070–2072. doi: 10.1021/np049950e. PubMed DOI
Hayashi M., Kim Y.P., Takamatsu S., Enomoto A., Shinose M., Takahashi Y., Tanaka H., Komiyama K., Omura S. Madindoline, a Novel Inhibitor of IL-6 Activity from Streptomyces sp. K93-0711. I. Taxonomy, Fermentation, Isolation and Biological Activities. J. Antibiot. 1996;49:1091–1095. doi: 10.7164/antibiotics.49.1091. PubMed DOI
Hayashi M., Rho M.C., Enomoto A., Fukami A., Kim Y.P., Kikuchi Y., Sunazuka T., Hirose T., Komiyama K., Omura S. Suppression of bone resorption by madindoline A, a novel nonpeptide antagonist to gp130. Proc. Natl. Acad. Sci. USA. 2002;99:14728–14733. doi: 10.1073/pnas.232562799. PubMed DOI PMC
Hayashi M., Rho M.C., Fukami A., Enomoto A., Nonaka S., Sekiguchi Y., Yanagisawa T., Yamashita A., Nogawa T., Kamano Y., et al. Biological Activity of a Novel Nonpeptide Antagonist to the Interleukin-6 Receptor 20S,21-Epoxy-resibufogenin-3-formate. J. Pharmacol. Exp. Ther. 2002;303:104–109. doi: 10.1124/jpet.102.036137. PubMed DOI
Hong S.S., Choi J.H., Lee S.Y., Park Y.H., Park K.Y., Lee J.Y., Kim J., Gajulapati V., Goo J.I., Singh S., et al. A Novel Small-Molecule Inhibitor Targeting the IL-6 Receptor β Subunit, Glycoprotein 130. J. Immunol. 2015;195:237–245. doi: 10.4049/jimmunol.1402908. PubMed DOI
Kino T., Boos T.L., Sulima A., Siegel E.M., Gold P.W., Rice K.C., Chrousos G.P. 3-O-Formyl-20R,21-epoxyresibufogenin suppresses IL-6–type cytokine actions by targeting the glycoprotein 130 subunit: Potential clinical implications. J. Allergy Clin. Immunol. 2007;120:437–444. doi: 10.1016/j.jaci.2007.03.018. PubMed DOI
Saleh A.Z.M., Greenman K.L., Billings S., Van Vranken D.L., Krolewski J.J. Binding of Madindoline A to the Extracellular Domain of gp130. Biochemistry. 2005;44:10822–10827. doi: 10.1021/bi050439+. PubMed DOI
Wang J., Qiao C., Xiao H., Lin Z., Li Y., Zhang J., Shen B., Fu T., Feng J. Structure-based virtual screening and characterization of a novel IL-6 antagonistic compound from synthetic compound database. Drug Des. Dev. Ther. 2016;10:4091–4100. doi: 10.2147/DDDT.S118457. PubMed DOI PMC
Yamamoto D., Sunazuka T., Hirose T., Kojima N., Kaji E., Omura S. Design, synthesis, and biological activities of madindoline analogues. Bioorganic Med. Chem. Lett. 2006;16:2807–2811. doi: 10.1016/j.bmcl.2006.01.107. PubMed DOI
Bříza T., Králová J., Dolenský B., Rimpelová S., Kejík Z., Ruml T., Hajdúch M., Džubák P., Mikula I., Martásek P., et al. Striking Antitumor Activity of a Methinium System with Incorporated Quinoxaline Unit Obtained by Spontaneous Cyclization. ChemBioChem A Eur. J. Chem. Biol. 2015;16:555–558. doi: 10.1002/cbic.201402662. PubMed DOI
Bříza T., Rimpelová S., Králová J., Záruba K., Kejík Z., Ruml T., Martásek P., Král V. Pentamethinium fluorescent probes: The impact of molecular structure on photophysical properties and subcellular localization. Dye. Pigment. 2014;107:51–59. doi: 10.1016/j.dyepig.2013.12.021. DOI
Rimpelová S., Bříza T., Králová J., Záruba K., Kejík Z., Císařová I., Martásek P., Ruml T., Král V. Rational Design of Chemical Ligands for Selective Mitochondrial Targeting. Bioconjugate Chem. 2013;24:1445–1454. doi: 10.1021/bc400291f. PubMed DOI
Krejcir R., Krcova L., Zatloukalova P., Briza T., Coates P.J., Sterba M., Muller P., Kralova J., Martasek P., Kral V., et al. A Cyclic Pentamethinium Salt Induces Cancer Cell Cytotoxicity through Mitochondrial Disintegration and Metabolic Collapse. Int. J. Mol. Sci. 2019;20:4208. doi: 10.3390/ijms20174208. PubMed DOI PMC
Bříza T., Králová J., Rimpelová S., Havlík M., Kaplánek R., Kejík Z., Martásek P., Mikula I., Džubák P., Hajdúch M., et al. Pentamethinium salts as ligands for cancer: Sulfated polysaccharide co-receptors as possible therapeutic target. Bioorganic Chem. 2018;82:74–85. doi: 10.1016/j.bioorg.2018.02.011. PubMed DOI
Krejcir R., Briza T., Sterba M., Simoncik O., Muller P., Coates P.J., Martasek P., Vojtesek B., Zatloukalova P. Anticancer pentamethinium salt is a potent photosensitizer inducing mitochondrial disintegration and apoptosis upon red light illumination. J. Photochem. Photobiol. B Biol. 2020;209:111939. doi: 10.1016/j.jphotobiol.2020.111939. PubMed DOI
Sestito S., Runfola M., Tonelli M., Chiellini G., Rapposelli S. New Multitarget Approaches in the War against Glioblastoma: A Mini-Perspective. Front. Pharmacol. 2018;9:874. doi: 10.3389/fphar.2018.00874. PubMed DOI PMC
Habashi F., Mehranpour A., Jahromi E.B. Synthesis and characterization of new derivatives of bis(1,4-diazepinium) salts and bis(γ-substituted pentamethine cyanine(dyes using vinamidinium salt. J. Heterocycl. Chem. 2020;57:2428–2432. doi: 10.1002/jhet.3958. DOI
Choi H.J., Dincă M., Long J.R. Broadly Hysteretic H2 Adsorption in the Microporous Metal−Organic Framework Co(1,4-benzenedipyrazolate) J. Am. Chem. Soc. 2008;130:7848–7850. doi: 10.1021/ja8024092. PubMed DOI
Lozan V., Solntsev P.Y., Leibeling G., Domasevitch K.V., Kersting B. Tetranuclear Nickel Complexes Composed of Pairs of Dinuclear LNi 2 Fragments Linked by 4,4′-Bipyrazolyl, 1,4-Bis(4′-pyrazolyl)benzene, and 4,4′-Bipyridazine: Synthesis, Structures, and Magnetic Properties. Eur. J. Inorg. Chem. 2007;2007:3217–3226. doi: 10.1002/ejic.200700317. DOI
Church R., Trust R., Albright J.D., Powell D. New Synthetic Routes to 3-, 5-, and 6-Aryl-2-chloropyridines. J. Org. Chem. 1995;60:3750–3758. doi: 10.1021/jo00117a029. DOI
Liu Y., Grimm M., Dai W.T., Hou M.C., Xiao Z.X., Cao Y. CB-Dock: A web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacol. Sin. 2020;41:138–144. doi: 10.1038/s41401-019-0228-6. PubMed DOI PMC
BIOVIA Discovery Studio Modeling Environment. Dassault Systèmes BIOVIA; San Diego, CA, USA: 2017.
Busek P., Stremenova J., Sromova L., Hilser M., Balaziova E., Kosek D., Trylcova J., Strnad H., Krepela E., Sedo A. Dipeptidyl peptidase-IV inhibits glioma cell growth independent of its enzymatic activity. Int. J. Biochem. Cell Biol. 2012;44:738–747. doi: 10.1016/j.biocel.2012.01.011. PubMed DOI
Zdrazilova L., Hansikova H., Gnaiger E. Comparable respiratory activity in attached and suspended human fibroblasts. PLoS ONE. 2022;17:e0264496. doi: 10.1371/journal.pone.0264496. PubMed DOI PMC
Mehranpour A.M., Hashemnia S., Maghamifar R. Synthesis and Characterization of New γ-Substituted Pentamethine Cyanine Dyes. Synth. Commun. 2010;40:3594–3602. doi: 10.1080/00397910903457290. DOI
Matichak J.D., Hales J.M., Barlow S., Perry J.W., Marder S.R. Dioxaborine- and Indole-Terminated Polymethines: Effects of Bridge Substitution on Absorption Spectra and Third-Order Polarizabilities. J. Phys. Chem. A. 2011;115:2160–2168. doi: 10.1021/jp110425r. PubMed DOI
Mehranpour A.M., Hashemnia S., Azamifar F. Synthesis and Characterization of γ-Heteroaryl-substituted Pentamethine Cyanine Dyes with Carboxy or Methoxycarbonyl Substituents at the Two Heterocyclic End Groups. J. Heterocycl. Chem. 2014;51:1457–1462. doi: 10.1002/jhet.1816. DOI
MacKenzie G.G., Huang L., Alston N., Ouyang N., Vrankova K., Mattheolabakis G., Constantinides P.P., Rigas B. Targeting Mitochondrial STAT3 with the Novel Phospho-Valproic Acid (MDC-1112) Inhibits Pancreatic Cancer Growth in Mice. PLoS ONE. 2013;8:e61532. doi: 10.1371/journal.pone.0061532. PubMed DOI PMC
Bříza T., Kejík Z., Císařová I., Králová J., Martásek P., Král V. Optical sensing of sulfate by polymethinium salt receptors: Colorimetric sensor for heparin. Chem. Commun. 2008;16:1901–1903. doi: 10.1039/b718492a. PubMed DOI
Kejík Z., Bříza T., Králová J., Mikula I., Poučková P., Martásek P., Král V. New method for recognition of sterol signalling molecules: Methinium salts as receptors for sulphated steroids. Steroids. 2015;94:15–20. doi: 10.1016/j.steroids.2014.10.009. PubMed DOI
Abeywardena M., Leifert W., Warnes K., Varghese J., Head R. Cardiovascular Biology of Interleukin-6. Curr. Pharm. Des. 2009;15:1809–1821. doi: 10.2174/138161209788186290. PubMed DOI
Mihara M., Kasutani K., Okazaki M., Nakamura A., Kawai S., Sugimoto M., Matsumoto Y., Ohsugi Y. Tocilizumab inhibits signal transduction mediated by both mIL-6R and sIL-6R, but not by the receptors of other members of IL-6 cytokine family. Int. Immunopharmacol. 2005;5:1731–1740. doi: 10.1016/j.intimp.2005.05.010. PubMed DOI
Yang J., Qian S., Cai X., Lu W., Hu C., Sun X., Yang Y., Yu Q., Gao S.P., Cao P. Chikusetsusaponin IVa Butyl Ester (CS-IVa-Be), a Novel IL6R Antagonist, Inhibits IL6/STAT3 Signaling Pathway and Induces Cancer Cell Apoptosis. Mol. Cancer Ther. 2016;15:1190–1200. doi: 10.1158/1535-7163.MCT-15-0551. PubMed DOI
Fialova J.L., Raudenska M., Jakubek M., Kejik Z., Martasek P., Babula P., Matkowski A., Filipensky P., Masarik M. Novel Mitochondria-targeted Drugs for Cancer Therapy. Mini-Rev. Med. Chem. 2021;21:816–832. doi: 10.2174/1389557520666201118153242. PubMed DOI
Wegrzyn J., Potla R., Chwae Y.J., Sepuri N.B.V., Zhang Q., Koeck T., Derecka M., Szczepanek K., Szelag M., Gornicka A., et al. Function of Mitochondrial Stat3 in Cellular Respiration. Science. 2009;323:793–797. doi: 10.1126/science.1164551. PubMed DOI PMC
Mantel C., Messina-Graham S., Moh A., Cooper S., Hangoc G., Fu X.Y., Broxmeyer H.E. Mouse hematopoietic cell–targeted STAT3 deletion: Stem/progenitor cell defects, mitochondrial dysfunction, ROS overproduction, and a rapid aging–like phenotype. Blood. 2012;120:2589–2599. doi: 10.1182/blood-2012-01-404004. PubMed DOI PMC
Gough D.J., Corlett A., Schlessinger K., Wegrzyn J., Larner A.C., Levy D.E. Mitochondrial STAT3 Supports Ras-Dependent Oncogenic Transformation. Science. 2009;324:1713–1716. doi: 10.1126/science.1171721. PubMed DOI PMC
Zhang Q., Raje V., Yakovlev V., Yacoub A., Szczepanek K., Meier J., Derecka M., Chen Q., Hu Y., Sisler J., et al. Mitochondrial Localized Stat3 Promotes Breast Cancer Growth via Phosphorylation of Serine 727. J. Biol. Chem. 2013;288:31280–31288. doi: 10.1074/jbc.M113.505057. PubMed DOI PMC
Tomita K., Kuwahara Y., Igarashi K., Roudkenar M.H., Roushandeh A.M., Kurimasa A., Sato T. Mitochondrial Dysfunction in Diseases, Longevity, and Treatment Resistance: Tuning Mitochondria Function as a Therapeutic Strategy. Genes. 2021;12:1348. doi: 10.3390/genes12091348. PubMed DOI PMC
Scheller J., Berg A., Moll J.M., Floss D.M., Jungesblut C. Current status and relevance of single nucleotide polymorphisms in IL-6-/IL-12-type cytokine receptors. Cytokine. 2021;148:155550. doi: 10.1016/j.cyto.2021.155550. PubMed DOI
To S.Q., Dmello R.S., Richards A.K., Ernst M., Chand A.L. STAT3 Signaling in Breast Cancer: Multicellular Actions and Therapeutic Potential. Cancers. 2022;14:429. doi: 10.3390/cancers14020429. PubMed DOI PMC
Vasan K., Werner M., Chandel N.S. Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metab. 2020;32:341–352. doi: 10.1016/j.cmet.2020.06.019. PubMed DOI PMC