Valproic Acid Increases CD133 Positive Cells that Show Low Sensitivity to Cytostatics in Neuroblastoma
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27627801
PubMed Central
PMC5023141
DOI
10.1371/journal.pone.0162916
PII: PONE-D-16-06872
Knihovny.cz E-zdroje
- MeSH
- antigen AC133 metabolismus MeSH
- antitumorózní látky farmakologie MeSH
- buněčný cyklus účinky léků MeSH
- cytostatické látky farmakologie MeSH
- fluorescenční protilátková technika MeSH
- kaspasa 3 metabolismus MeSH
- kyselina valproová farmakologie MeSH
- lidé MeSH
- nádorové biomarkery metabolismus MeSH
- nádorové buněčné linie MeSH
- neuroblastom farmakoterapie MeSH
- průtoková cytometrie MeSH
- western blotting MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigen AC133 MeSH
- antitumorózní látky MeSH
- cytostatické látky MeSH
- kaspasa 3 MeSH
- kyselina valproová MeSH
- nádorové biomarkery MeSH
Valproic acid (VPA) is a well-known antiepileptic drug that exhibits antitumor activities through its action as a histone deacetylase inhibitor. CD133 is considered to be a cancer stem cell marker in several tumors including neuroblastoma. CD133 transcription is strictly regulated by epigenetic modifications. We evaluated the epigenetic effects of treatment with 1mM VPA and its influence on the expression of CD133 in four human neuroblastoma cell lines. Chemoresistance and cell cycle of CD133+ and CD133- populations were examined by flow cytometry. We performed bisulfite conversion followed by methylation-sensitive high resolution melting analysis to assess the methylation status of CD133 promoters P1 and P3. Our results revealed that VPA induced CD133 expression that was associated with increased acetylation of histones H3 and H4. On treatment with VPA and cytostatics, CD133+ cells were mainly detected in the S and G2/M phases of the cell cycle and they showed less activated caspase-3 compared to CD133- cells. UKF-NB-3 neuroblastoma cells which express CD133 displayed higher colony and neurosphere formation capacities when treated with VPA, unlike IMR-32 which lacks for CD133 protein. Induction of CD133 in UKF-NB-3 was associated with increased expression of phosphorylated Akt and pluripotency transcription factors Nanog, Oct-4 and Sox2. VPA did not induce CD133 expression in cell lines with methylated P1 and P3 promoters, where the CD133 protein was not detected. Applying the demethylating agent 5-aza-2'-deoxycytidine to the cell lines with methylated promoters resulted in CD133 re-expression that was associated with a drop in P1 and P3 methylation level. In conclusion, CD133 expression in neuroblastoma can be regulated by histone acetylation and/or methylation of its CpG promoters. VPA can induce CD133+ cells which display high proliferation potential and low sensitivity to cytostatics in neuroblastoma. These results give new insight into the possible limitations to use VPA in cancer therapy.
Department of Biochemistry Faculty of Science Prague Czech Republic
Institute of Experimental Medicine Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Chateauvieux S, Morceau F, Dicato M, Diederich M. Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol. 2010;2010: 1–18. 10.1155/2010/479364 PubMed DOI PMC
Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997;389: 349–352. 10.1038/38664 PubMed DOI
Boudadi E, Stower H, Halsall JA, Rutledge CE, Leeb M, Wutz A, et al. The histone deacetylase inhibitor sodium valproate causes limited transcriptional change in mouse embryonic stem cells but selectively overrides Polycomb-mediated Hoxb silencing. Epigenetics Chromatin. 2013;6: 11 10.1186/1756-8935-6-11 PubMed DOI PMC
Hrebackova J, Hrabeta J, Eckschlager T. Valproic acid in the complex therapy of malignant tumors. Curr Drug Targets. 2010;11: 361–379. 10.2174/138945010790711923 PubMed DOI
Lee H-Z, Kwitkowski VE, Del Valle PL, Ricci MS, Saber H, Habtemariam BA, et al. FDA Approval: Belinostat for the Treatment of Patients with Relapsed or Refractory Peripheral T-cell Lymphoma. Clin Cancer Res. 2015;21: 2666–2670. 10.1158/1078-0432.CCR-14-3119 PubMed DOI
Chen CL, Sung J, Cohen M, Chowdhury WH, Sachs MD, Li Y, et al. Valproic acid inhibits invasiveness in bladder cancer but not in prostate cancer cells. J Pharmacol Exp Ther. 2006;319: 533–542. 10.1124/jpet.106.106658 PubMed DOI
Stockhausen M-T, Sjölund J, Manetopoulos C, Axelson H. Effects of the histone deacetylase inhibitor valproic acid on Notch signalling in human neuroblastoma cells. Br J Cancer. 2005;92: 751–9. 10.1038/sj.bjc.6602309 PubMed DOI PMC
Shi G, Gao F, Jin Y. The regulatory role of histone deacetylase inhibitors in Fgf4 expression is dependent on the differentiation state of pluripotent stem cells. J Cell Physiol. 2011;226: 3190–3196. 10.1002/jcp.22679 PubMed DOI
Kretsovali A, Hadjimichael C, Charmpilas N. Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells Int. 2012;2012: 184154 10.1155/2012/184154 PubMed DOI PMC
Higuchi A, Ling Q-D, Kumar SS, Munusamy MA, Alarfaj AA, Chang Y, et al. Generation of pluripotent stem cells without the use of genetic material. Lab Invest. 2015;95: 26–42. 10.1038/labinvest.2014.132 PubMed DOI
De Felice L, Tatarelli C, Mascolo MG, Gregorj C, Agostini F, Fiorini R, et al. Histone deacetylase inhibitor valproic acid enhances the cytokine-induced expansion of human hematopoietic stem cells. Cancer Res. 2005;65: 1505–1513. 10.1158/0008-5472.CAN-04-3063 PubMed DOI
Burba I, Colombo GI, Staszewsky LI, De Simone M, Devanna P, Nanni S, et al. Histone deacetylase inhibition enhances self renewal and cardioprotection by human cord blood-derived CD34 cells. PLoS One. 2011;6: e22158 10.1371/journal.pone.0022158 PubMed DOI PMC
Feng J, Cen J, Li J, Zhao R, Zhu C, Wang Z, et al. Histone deacetylase inhibitor valproic acid (VPA) promotes the epithelial mesenchymal transition of colorectal cancer cells via up regulation of Snail. Cell Adh Migr. 2015;9: 495–501. 10.1080/19336918.2015.1112486 PubMed DOI PMC
Tabu K, Sasai K, Kimura T, Wang L, Aoyanagi E, Kohsaka S, et al. Promoter hypomethylation regulates CD133 expression in human gliomas. Cell Res. 2008;18: 1037–46. 10.1038/cr.2008.270 PubMed DOI
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414: 105–111. 10.1038/35102167 PubMed DOI
Kamijo T. Role of stemness-related molecules in neuroblastoma. Pediatr Res. 2012;71: 511–5. 10.1038/pr.2011.54 PubMed DOI
Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, et al. Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci. 2005;8: 723–729. 10.1038/nn1473 PubMed DOI PMC
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432: 396–401. 10.1038/nature03031 PubMed DOI
Irollo E, Pirozzi G. CD133: to be or not to be, is this the real question? Am J Transl Res. 2013;5: 563–581. PubMed PMC
Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, Perry T, et al. Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene. 2009;28: 209–18. 10.1038/onc.2008.374 PubMed DOI
Yi JM, Tsai H-C, Glöckner SC, Lin S, Ohm JE, Easwaran H, et al. Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Res. 2008;68: 8094–103. 10.1158/0008-5472.CAN-07-6208 PubMed DOI PMC
Shmelkov S V, St Clair R, Lyden D, Rafii S. AC133/CD133/Prominin-1. Int J Biochem Cell Biol. 2005;37: 715–9. 10.1016/j.biocel.2004.08.010 PubMed DOI
Lathia JD, Hitomi M, Gallagher J, Gadani SP, Adkins J, Vasanji A, et al. Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Dis. 2011;2: e200 10.1038/cddis.2011.80 PubMed DOI PMC
Yin S, Li J, Hu C, Chen X, Yao M, Yan M, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer. 2007;120: 1444–1450. 10.1002/ijc.22476 PubMed DOI
Tirino V, Desiderio V, D’Aquino R, De Francesco F, Pirozzi G, Graziano A, et al. Detection and characterization of CD133+ cancer stem cells in human solid tumours. PLoS One. 2008;3: e3469 10.1371/journal.pone.0003469 PubMed DOI PMC
Brescia P, Ortensi B, Fornasari L, Levi D, Broggi G, Pelicci G. CD133 is essential for glioblastoma stem cell maintenance. Stem Cells. 2013;31: 857–869. 10.1002/stem.1317 PubMed DOI
Wu CP, Xie M, Zhou L, Tao L, Zhang M, Tian J. Cooperation of side population cells with CD133 to enrich cancer stem cells in a laryngeal cancer cell line. Head Neck. 2013;36: 1279–1287. 10.1002/hed.23447 DOI
Vangipuram SD, Wang ZJ, Lyman WD. Resistance of stem-like cells from neuroblastoma cell lines to commonly used chemotherapeutic agents. Pediatr Blood Cancer. 2010;54: 361–368. 10.1002/pbc.22351 PubMed DOI
Koyama-Nasu R, Takahashi R, Yanagida S, Nasu-Nishimura Y, Oyama M, Kozuka-Hata H, et al. The Cancer Stem Cell Marker CD133 Interacts with Plakoglobin and Controls Desmoglein-2 Protein Levels. PLoS One. 2013;8: e53710 10.1371/journal.pone.0053710 PubMed DOI PMC
O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445: 106–110. 10.1038/nature05372 PubMed DOI
Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, et al. Colon Cancer Stem Cells Dictate Tumor Growth and Resist Cell Death by Production of Interleukin-4. Cell Stem Cell. 2007;1: 389–402. 10.1016/j.stem.2007.08.001 PubMed DOI
Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, et al. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci USA. 2013;110: 6829–34. 10.1073/pnas.1217002110 PubMed DOI PMC
Opel D, Poremba C, Simon T, Debatin K-M, Fulda S. Activation of Akt predicts poor outcome in neuroblastoma. Cancer Res. 2007;67: 735–45. 10.1158/0008-5472.CAN-06-2201 PubMed DOI
Pezzolo A, Parodi F, Marimpietri D, Raffaghello L, Cocco C, Pistorio A, et al. Oct-4+/Tenascin C+ neuroblastoma cells serve as progenitors of tumor-derived endothelial cells. Cell Res. 2011;21: 1470–86. 10.1038/cr.2011.38 PubMed DOI PMC
Tong Q-S, Zheng L-D, Tang S-T, Ruan Q-L, Liu Y, Li S-W, et al. Expression and clinical significance of stem cell marker CD133 in human neuroblastoma. WJP. 2008;4: 58–62. 10.1007/s12519-008-0012-z PubMed DOI
Sartelet H, Imbriglio T, Nyalendo C, Haddad E, Annabi B, Duval M, et al. CD133 expression is associated with poor outcome in neuroblastoma via chemoresistance mediated by the AKT pathway. Histopathology. 2012;60: 1144–1155. 10.1111/j.1365-2559.2012.04191.x PubMed DOI
Horst D, Scheel SK, Liebmann S, Neumann J, Maatz S, Kirchner T, et al. The cancer stem cell marker CD133 has high prognostic impact but unknown functional relevance for the metastasis of human colon cancer. J Pathol. 2009;219: 427–434. 10.1002/path.2597 PubMed DOI
Shin JH, Lee YS, Hong Y-K, Kang CS. Correlation between the prognostic value and the expression of the stem cell marker CD133 and isocitrate dehydrogenase1 in glioblastomas. J Neurooncol. 2013;115: 333–41. 10.1007/s11060-013-1234-z PubMed DOI
Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5: 67 10.1186/1476-4598-5-67 PubMed DOI PMC
Cinatl J, Gussetis ES, Cinatl J Jr., Ebener U, Mainke M, Schwabe D, Doerr HW, Kornhuber BGV. Differentiation arrest in neuroblastoma cell culture. J Cancer Res Clin Oncol. 1990;116 Suppl: 9–14.
Shechter D, Dormann HL, Allis CD, Hake SB. Extraction, purification and analysis of histones. Nat Protoc. 2007;2: 1445–1457. 10.1038/nprot.2007.202 PubMed DOI
Groh T, Hrabeta J, Khalil MA, Doktorova H, Eckschlager T, Stiborova M. The synergistic effects of DNA-damaging drugs cisplatin and etoposide with a histone deacetylase inhibitor valproate in high-risk neuroblastoma cells. Int J Oncol. 2015;47: 343–52. 10.3892/ijo.2015.2996 PubMed DOI
Shmelkov SV, Jun L, St Clair R, McGarrigle D, Derderian CA, Usenko JK, et al. Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood. 2004;103: 2055–61. 10.1182/blood-2003-06-1881 PubMed DOI
Groh T, Hrabeta J, Poljakova J, Eckschlager T, Stiborova M. Impact of histone deacetylase inhibitor valproic acid on the anticancer effect of etoposide on neuroblastoma cells. Neuro Endocrinol Lett. 2012;33 Suppl 3: 16–24. Available: http://www.ncbi.nlm.nih.gov/pubmed/23353839 PubMed
Wheler JJ, Janku F, Falchook GS, Jackson TL, Fu S, Naing A, et al. Phase I study of anti-VEGF monoclonal antibody bevacizumab and histone deacetylase inhibitor valproic acid in patients with advanced cancers. Cancer Chemother Pharmacol. 2014;73: 495–501. 10.1007/s00280-014-2384-1 PubMed DOI PMC
Khalil MA, Hrabeta J, Cipro S, Stiborova M, Vicha A, Eckschlager T. Neuroblastoma stem cells—Mechanisms of chemoresistance and histonedeacetylase inhibitors. Neoplasma. 2012. pp. 737–746. 10.4149/neo_2012_093 PubMed DOI
Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001;276: 36734–41. 10.1074/jbc.M101287200 PubMed DOI
Kovalevich J, Langford D. Considerations for the Use of SH—SY5Y Neuroblastoma Cells in Neurobiology. Methods Mol Biol. 2013;1078: 9–21. 10.1007/978-1-62703-640-5 PubMed DOI PMC
Poljaková J, Groh T, Gudino ZO, Hraběta J, Bořek-Dohalská L, Kizek R, et al. Hypoxia-mediated histone acetylation and expression of N-myc transcription factor dictate aggressiveness of neuroblastoma cells. Oncol Rep. 2014;31: 1928–34. 10.3892/or.2014.2999 PubMed DOI
Veas-Perez de Tudela M, Delgado-Esteban M, Cuende J, Bolaños JP, Almeida A. Human neuroblastoma cells with MYCN amplification are selectively resistant to oxidative stress by transcriptionally up-regulating glutamate cysteine ligase. J Neurochem. 2010;113: 819–25. 10.1111/j.1471-4159.2010.06648.x PubMed DOI
Meng X, Li M, Wang X, Wang Y, Ma D. Both CD133+ and CD133- subpopulations of A549 and H446 cells contain cancer-initiating cells. Cancer Sci. 2009;100: 1040–6. 10.1111/j.1349-7006.2009.01144.x PubMed DOI PMC
Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, et al. CD133 expression is not restricted to stem cells, and both CD133 + and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest. 2008;118: 2111–2120. 10.1172/JCI34401 PubMed DOI PMC
Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M, et al. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res. 2010;70: 719–29. 10.1158/0008-5472.CAN-09-1820 PubMed DOI
Griguer CE, Oliva CR, Gobin E, Marcorelles P, Benos DJ, Lancaster JR, et al. CD133 is a marker of bioenergetic stress in human glioma. PLoS One. 2008;3: e3655 10.1371/journal.pone.0003655 PubMed DOI PMC
Barrantes-Freer A, Renovanz M, Eich M, Braukmann A, Sprang B, Spirin P, et al. CD133 Expression Is Not Synonymous to Immunoreactivity for AC133 and Fluctuates throughout the Cell Cycle in Glioma Stem-Like Cells. PLoS One. 2015;10: e0130519 10.1371/journal.pone.0130519 PubMed DOI PMC
Feng JM, Miao ZH, Jiang Y, Chen Y, Li JX, Tong LJ, et al. Characterization of the conversion between CD133+and CD133—cells in colon cancer SW620 cell line. Cancer Biol Ther. 2012;13: 1396–1406. 10.4161/cbt.22000 PubMed DOI PMC
Rizzino A. Sox2 and Oct-3/4: a versatile pair of master regulators that orchestrate the self-renewal and pluripotency of embryonic stem cells. Wiley Interdiscip Rev Syst Biol Med. 2009;1: 228–36. 10.1002/wsbm.12 PubMed DOI PMC
Hämmerle B, Yañez Y, Palanca S, Cañete A, Burks DJ, Castel V, et al. Targeting neuroblastoma stem cells with retinoic acid and proteasome inhibitor. PLoS One. 2013;8: e76761 10.1371/journal.pone.0076761 PubMed DOI PMC
Kaneko Y, Suenaga Y, Islam SMR, Matsumoto D, Nakamura Y, Ohira M, et al. Functional interplay between MYCN, NCYM, and OCT4 promotes aggressiveness of human neuroblastomas. Cancer Sci. 2015;106: 840–847. 10.1111/cas.12677 PubMed DOI PMC
Ross RA, Biedler JL, Spengler BA. A role for distinct cell types in determining malignancy in human neuroblastoma cell lines and tumors. Cancer Lett. 2003;197: 35–39. 10.1016/S0304-3835(03)00079-X PubMed DOI
Wakao S, Kuroda Y, Ogura F, Shigemoto T, Dezawa M. Regenerative Effects of Mesenchymal Stem Cells: Contribution of Muse Cells, a Novel Pluripotent Stem Cell Type that Resides in Mesenchymal Cells. Cells. 2012;1: 1045–60. 10.3390/cells1041045 PubMed DOI PMC
Han L, Shi S, Gong T, Zhang Z, Sun X. Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharm Sin B. 2013;3: 65–75. 10.1016/j.apsb.2013.02.006 DOI
Sun Y, Kong W, Falk A, Hu J, Zhou L, Pollard S, et al. CD133 (Prominin) negative human neural stem cells are clonogenic and tripotent. PLoS One. 2009;4: e5498 10.1371/journal.pone.0005498 PubMed DOI PMC
O’Donovan N, Crown J, Stunell H. Caspase 3 in breast cancer. Clin Cancer Res. 2003;9: 738–742. PubMed
Ma S, Lee TK, Zheng B-J, Chan KW, Guan X-Y. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene. 2008;27: 1749–1758. 10.1038/sj.onc.1210811 PubMed DOI
Ellis L, Ku S, Ramakrishnan S, Lasorsa E, Azabdaftari G, Godoy A, et al. Combinatorial antitumor effect of HDACs and the PI3K-Akt-mTOR pathway inhibition in a Pten deficient model of prostate cancer. Oncotarget. 2013;4: 2225–36. PubMed PMC
Histone Deacetylase Inhibitors as Anticancer Drugs