Histone Deacetylase Inhibitors as Anticancer Drugs

. 2017 Jul 01 ; 18 (7) : . [epub] 20170701

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28671573

Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

Zobrazit více v PubMed

Li G., Margueron R., Hu G., Stokes D., Wang Y.H., Reinberg D. Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo. Mol. Cell. 2010;38:41–53. doi: 10.1016/j.molcel.2010.01.042. PubMed DOI PMC

Perri F., Longo F., Giuliano M., Sabbatino F., Favia G., Ionna F., Addeo R., Scarpati G.D.V., Di Lorenzo G., Pisconti S. Epigenetic control of gene expression: Potential implications for cancer treatment. Crit. Rev. Oncol. Hematol. 2017;111:166–172. doi: 10.1016/j.critrevonc.2017.01.020. PubMed DOI

Haberland M., Montgomery R.L., Olson E.N. The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat. Rev. Genet. 2009;10:32–42. doi: 10.1038/nrg2485. PubMed DOI PMC

Yang X.-J., Seto E. The Rpd3/Hda1 family of lysine deacetylases: From bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 2008;9:206–218. doi: 10.1038/nrm2346. PubMed DOI PMC

Yan W., Herman J.G., Guo M. Epigenome-based personalized medicine in human cancer. Epigenomics. 2015;8:119–133. doi: 10.2217/epi.15.84. PubMed DOI

Halkidou K., Gaughan L., Cook S., Leung H.Y., Neal D.E., Robson C.N. Upregulation and nuclear recruitment of HDACl in hormone refractory prostate cancer. Prostate. 2004;59:177–189. doi: 10.1002/pros.20022. PubMed DOI

Choi J.-H., Kwon H.J., Yoon B.-I., Kim J.-H., Han S.U., Joo H.J., Kim D.-Y. Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn. J. Cancer Res. 2001;92:1300–1304. doi: 10.1111/j.1349-7006.2001.tb02153.x. PubMed DOI PMC

Zhang Z., Yamashita H., Toyama T., Sugiura H., Ando Y., Mita K., Hamaguchi M., Hara Y., Kobayashi S., Iwase H. Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast. Breast Cancer Res. Treat. 2005;94:11–16. doi: 10.1007/s10549-005-6001-1. PubMed DOI

Song J., Noh J.H., Lee J.H., Eun J.W., Ahn Y.M., Kim S.Y., Lee S.H., Park W.S., Yoo N.J., Lee J.Y., et al. Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS. 2005;113:264–268. doi: 10.1111/j.1600-0463.2005.apm_04.x. PubMed DOI

Zhu P., Martin E., Mengwasser J., Schlag P., Janssen K.P., Göttlicher M. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell. 2004;5:455–463. doi: 10.1016/S1535-6108(04)00114-X. PubMed DOI

Wilson A.J., Byun D.S., Popova N., Murray L.B., L’Italien K., Sowa Y., Arango D., Velcich A., Augenlicht L.H., Mariadason J.M. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J. Biol. Chem. 2006;281:13548–13558. doi: 10.1074/jbc.M510023200. PubMed DOI

Bolden J.E., Peart M.M.J., Johnstone R.R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 2006;5:769–784. doi: 10.1038/nrd2133. PubMed DOI

Nakagawa M., Oda Y., Eguchi T., Aishima S.-I., Yao T., Hosoi F., Basaki Y., Ono M., Kuwano M., Tanaka M., et al. Expression profile of class I histone deacetylases in human cancer tissues. Oncol. Rep. 2007;18:769–774. doi: 10.3892/or.18.4.769. PubMed DOI

Oehme I., Deubzer H.E., Wegener D., Pickert D., Linke J.P., Hero B., Kopp-Schneider A., Westermann F., Ulrich S.M., Von Deimling A., et al. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin. Cancer Res. 2009;15:91–99. doi: 10.1158/1078-0432.CCR-08-0684. PubMed DOI

Hayashi A., Horiuchi A., Kikuchi N., Hayashi T., Fuseya C., Suzuki A., Konishi I., Shiozawa T. Type-specific roles of histone deacetylase (HDAC) overexpression in ovarian carcinoma: HDAC1 enhances cell proliferation and HDAC3 stimulates cell migration with downregulation of E-cadherin. Int. J. Cancer. 2010;127:1332–1346. doi: 10.1002/ijc.25151. PubMed DOI

Roth S.Y., Allis C.D. Histone acetylation and chromatin assembly: A single escort, multiple dances? Cell. 1996;87:5–8. doi: 10.1016/S0092-8674(00)81316-1. PubMed DOI

Kazanets A., Shorstova T., Hilmi K., Marques M., Witcher M. Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential. Biochim. Biophys. Acta Rev. Cancer. 2016;1865:275–288. doi: 10.1016/j.bbcan.2016.04.001. PubMed DOI

Spange S., Wagner T., Heinzel T., Krämer O.H. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int. J. Biochem. Cell Biol. 2009;41:185–198. doi: 10.1016/j.biocel.2008.08.027. PubMed DOI

Hull E.E., Montgomery M.R., Leyva K.J. HDAC Inhibitors as epigenetic regulators of the immune system: Impacts on cancer therapy and inflammatory diseases. BioMed Res. Int. 2016;2016:8797206. doi: 10.1155/2016/8797206. PubMed DOI PMC

Tang J., Yan H., Zhuang S. Histone deacetylases as targets for treatment of multiple diseases. Clin. Sci. 2013;124:651–662. doi: 10.1042/CS20120504. PubMed DOI PMC

Finnin M.S., Donigian J.R., Cohen A., Richon V.M., Rifkind R.A., Marks P.A., Breslow R., Pavletich N.P. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999;401:188–193. PubMed

Trapp J., Jung M. The role of NAD+ dependent histone deacetylases (sirtuins) in ageing. Curr. Drug Targets. 2006;7:1553–1560. doi: 10.2174/1389450110607011553. PubMed DOI

Yang X.J., Seto E. Lysine acetylation: Codified crosstalk with other posttranslational modifications. Mol. Cell. 2008;31:449–461. doi: 10.1016/j.molcel.2008.07.002. PubMed DOI PMC

Karagianni P., Wong J. HDAC3: Taking the SMRT-N-CoRrect road to repression. Oncogene. 2007;26:5439–5449. doi: 10.1038/sj.onc.1210612. PubMed DOI

Li J., Wang J., Wang J., Nawaz Z., Liu J.M., Qin J., Wong J. Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J. 2000;19:4342–4350. doi: 10.1093/emboj/19.16.4342. PubMed DOI PMC

Lee K.K., Workman J.L. Histone acetyltransferase complexes: One size doesn’t fit all. Nat. Rev. Mol. Cell Biol. 2007;8:284–295. doi: 10.1038/nrm2145. PubMed DOI

Mariadason J.M., Corner G.A., Augenlicht L.H. Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: Comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res. 2000;60:4561–4572. PubMed

Ceccacci E., Minucci S. Inhibition of histone deacetylases in cancer therapy: Lessons from leukaemia. Br. J. Cancer. 2016;114:605–611. doi: 10.1038/bjc.2016.36. PubMed DOI PMC

Furumai R., Matsuyama A., Kobashi N., Lee K.H., Nishiyama M., Nakajima H., Tanaka A., Komatsu Y., Nishino N., Yoshida M., et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 2002;62:4916–4921. PubMed

Lavu S., Boss O., Elliott P.J., Lambert P.D. Sirtuins—Novel therapeutic targets to treat age-associated diseases. Nat. Rev. Drug Discov. 2008;7:841–853. doi: 10.1038/nrd2665. PubMed DOI

Falkenberg K.J., Johnstone R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 2014;13:673–691. doi: 10.1038/nrd4360. PubMed DOI

Valente S., Mai A. Small-molecule inhibitors of histone deacetylase for the treatment of cancer and non-cancer diseases: A patent review (2011–2013) Expert Opin. Ther. Pat. 2014;24:401–415. doi: 10.1517/13543776.2014.877446. PubMed DOI

West A.C., Johnstone R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Investig. 2014;124:30–39. doi: 10.1172/JCI69738. PubMed DOI PMC

Dokmanovic M., Marks P.A. Prospects: Histone deacetylase inhibitors. J. Cell Biochem. 2005;96:293–304. doi: 10.1002/jcb.20532. PubMed DOI

Rasheed W.K., Johnstone R.W., Prince H.M. Histone deacetylase inhibitors in cancer therapy. Expert Opin Investig. Drugs. 2007;16:659–678. doi: 10.1517/13543784.16.5.659. PubMed DOI

Xu W.S., Parmigiani R.B., Marks P.A. Histone deacetylase inhibitors: Molecular mechanisms of action. Oncogene. 2007;26:5541–5552. doi: 10.1038/sj.onc.1210620. PubMed DOI

Stiborova M., Eckschlager T., Poljakova J., Hrabeta J., Adam V., Kizek R., Frei E. The synergistic effects of DNA-targeted chemotherapeutics and histone deacetylase inhibitors as therapeutic strategies for cancer treatment. Curr. Med. Chem. 2012;19:4218–4238. doi: 10.2174/092986712802884286. PubMed DOI

Dawson M.A., Kouzarides T. Cancer epigenetics: From mechanism to therapy. Cell. 2012;150:12–27. doi: 10.1016/j.cell.2012.06.013. PubMed DOI

Kretsovali A., Hadjimichael C., Charmpilas N. Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells Int. 2012;2012:184154. doi: 10.1155/2012/184154. PubMed DOI PMC

Chen C.L., Sung J., Cohen M., Chowdhury W.H., Sachs M.D., Li Y., Lakshmanan Y., Yung B.Y., Lupold S.E., Rodriguez R. Valproic acid inhibits invasiveness in bladder cancer but not in prostate cancer cells. J. Pharmacol. Exp. Ther. 2006;319:533–542. doi: 10.1124/jpet.106.106658. PubMed DOI

Stockhausen M.-T., Sjölund J., Manetopoulos C., Axelson H. Effects of the histone deacetylase inhibitor valproic acid on Notch signalling in human neuroblastoma cells. Br. J. Cancer. 2005;92:751–759. doi: 10.1038/sj.bjc.6602309. PubMed DOI PMC

Vrana J.A., Decker R.H., Johnson C.R., Wang Z., Jarvis W.D., Richon V.M., Ehinger M., Fisher P.B., Grant S. Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53. Oncogene. 1999;18:7016–7025. doi: 10.1038/sj.onc.1203176. PubMed DOI

Richon V.M., Sandhoff T.W., Rifkind R.A., Marks P.A. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. USA. 2000;97:10014–10019. doi: 10.1073/pnas.180316197. PubMed DOI PMC

Sandor V., Senderowicz A., Mertins S., Sackett D., Sausville E., Blagosklonny M.V., Bates S.E. P21-dependent G1arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitor FR901228. Br. J. Cancer. 2000;83:817–825. doi: 10.1054/bjoc.2000.1327. PubMed DOI PMC

Ocker M., Schneider-Stock R. Histone deacetylase inhibitors: Signalling towards p21cip1/waf1. Int. J. Biochem. Cell Biol. 2007;39:1367–1374. doi: 10.1016/j.biocel.2007.03.001. PubMed DOI

Gius D., Cui H., Bradbury C.M., Cook J., Smart D.D.K., Zhao S., Young L., Brandenburg S.A., Hu Y., Bisht K.S., et al. Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach. Cancer Cell. 2004;6:361–371. doi: 10.1016/j.ccr.2004.08.029. PubMed DOI

Zhao Y., Lu S., Wu L., Chai G., Wang H., Chen Y., Sun J., Yu Y., Zhou W., Zheng Q., et al. Acetylation of p53 at lysine 373/382 by the histone deacetylase inhibitor depsipeptide induces expression of p21(Waf1/Cip1) Mol. Cell. Biol. 2006;26:2782–2790. doi: 10.1128/MCB.26.7.2782-2790.2006. PubMed DOI PMC

Tang Y., Zhao W., Chen Y., Zhao Y., Gu W. Acetylation is indispensable for p53 Activation. Cell. 2008;133:612–626. doi: 10.1016/j.cell.2008.03.025. PubMed DOI PMC

Mahyar-Roemer M., Roemer K. p21 Waf1/Cip1 can protect human colon carcinoma cells against p53-dependent and p53-independent apoptosis induced by natural chemopreventive and therapeutic agents. Oncogene. 2001;20:3387–3398. doi: 10.1038/sj.onc.1204440. PubMed DOI

Suzuki T., Yokozaki H., Kuniyasu H., Hayashi K., Naka K., Ono S., Ishikawa T., Tahara E., Yasui W. Effect of trichostatin A on cell growth and expression of cell cycle- and apoptosis-related molecules in human gastric and oral carcinoma cell lines. Int. J. Cancer. 2000;88:992–997. doi: 10.1002/1097-0215(20001215)88:6<992::AID-IJC24>3.0.CO;2-9. PubMed DOI

Qiu L., Burgess A., Fairlie D.P., Leonard H., Parsons P.G., Gabrielli B.G. Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol. Biol. Cell. 2000;11:2069–2083. doi: 10.1091/mbc.11.6.2069. PubMed DOI PMC

Cecconi D., Donadelli M., Pozza E.D., Rinalducci S., Zolla L., Scupoli M.T., Righetti P.G., Scarpa A., Palmieri M. Synergistic effect of trichostatin A and 5-aza-2′-deoxycytidine on growth inhibition of pancreatic endocrine tumour cell lines: A proteomic study. Proteomics. 2009;9:1952–1966. doi: 10.1002/pmic.200701089. PubMed DOI

Gu W., Roeder R.G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90:595–606. doi: 10.1016/S0092-8674(00)80521-8. PubMed DOI

Li Q.L., Ito K., Sakakura C., Fukamachi H., Inoue K.I., Chi X.Z., Lee K.Y., Nomura S., Lee C.W., Han S.B., et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell. 2002;109:113–124. doi: 10.1016/S0092-8674(02)00690-6. PubMed DOI

Walton T.J., Li G., Seth R., McArdle S.E., Bishop M.C., Rees R.C. DNA demethylation and histone deacetylation inhibition co-operate to re-express estrogen receptor β and induce apoptosis in prostate cancer cell-lines. Prostate. 2008;68:210–222. doi: 10.1002/pros.20673. PubMed DOI

Kim H.J., Bae S.C. Histone deacetylase inhibitors: Molecular mechanisms of action and clinical trials as anti-cancer drugs. Am. J. Transl. Res. 2011;3:166–179. PubMed PMC

Minucci S., Pelicci P.G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer. 2006;6:38–51. doi: 10.1038/nrc1779. PubMed DOI

Miller C.P., Singh M.M., Rivera-Del Valle N., Manton C.A., Chandra J. Therapeutic strategies to enhance the anticancer efficacy of histone deacetylase inhibitors. J. Biomed. Biotechnol. 2011;2011:514261. doi: 10.1155/2011/514261. PubMed DOI PMC

Fulda S. Modulation of TRAIL-induced apoptosis by HDAC inhibitors. Curr. Cancer Drug Targets. 2008;8:132–140. doi: 10.2174/156800908783769355. PubMed DOI

Kwon S.H., Ahn S.H., Kim Y.K., Bae G.U., Yoon J.W., Hong S., Lee H.Y., Lee Y.W., Lee H.W., Han J.W. Apicidin, a Histone Deacetylase Inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells. J. Biol. Chem. 2002;277:2073–2080. doi: 10.1074/jbc.M106699200. PubMed DOI

Nebbioso A., Clarke N., Voltz E., Germain E., Ambrosino C., Bontempo P., Alvarez R., Schiavone E.M., Ferrara F., Bresciani F., et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat. Med. 2005;11:77–84. doi: 10.1038/nm1161. PubMed DOI

Insinga A., Monestiroli S., Ronzoni S., Gelmetti V., Marchesi F., Viale A., Altucci L., Nervi C., Minucci S., Pelicci P.G. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat. Med. 2005;11:71–76. doi: 10.1038/nm1160. PubMed DOI

Ruefli A.A., Ausserlechner M.J., Bernhard D., Sutton V.R., Tainton K.M., Kofler R., Smyth M.J., Johnstone R.W. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc. Natl. Acad. Sci. USA. 2001;98:10833–10838. doi: 10.1073/pnas.191208598. PubMed DOI PMC

Zhao Y., Tan J., Zhuang L., Jiang X., Liu E.T., Yu Q. Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proc. Natl. Acad. Sci. USA. 2005;102:16090–16095. doi: 10.1073/pnas.0505585102. PubMed DOI PMC

Yuan P.X., Huang L.D., Jiang Y.M., Gutkind J.S., Manji H.K., Chen G. The Mood Stabilizer Valproic Acid Activates Mitogen-activated Protein Kinases and Promotes Neurite Growth. J. Biol. Chem. 2001;276:31674–31683. doi: 10.1074/jbc.M104309200. PubMed DOI

Gao S., Mobley A., Miller C., Boklan J., Chandra J. Potentiation of reactive oxygen species is a marker for synergistic cytotoxicity of MS-275 and 5-azacytidine in leukemic cells. Leuk. Res. 2008;32:771–780. doi: 10.1016/j.leukres.2007.09.007. PubMed DOI PMC

Rosato R.R., Almenara J.A., Grant S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res. 2003;63:3637–3645. PubMed

Butler L.M., Zhou X., Xu W.-S., Scher H.I., Rifkind R.A., Marks P.A., Richon V.M. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc. Natl. Acad. Sci. USA. 2002;99:11700–11705. doi: 10.1073/pnas.182372299. PubMed DOI PMC

Lincoln D.T., Ali Emadi E.M., Tonissen K.F., Clarke F.M. The thioredoxin-thioredoxin reductase system: Over-expression in human cancer. Anticancer Res. 2003;23:2425–2433. PubMed

Shao L.E., Diccianni M.B., Tanaka T., Gribi R., Yu A.L., Pullen J.D., Camitta B.M., Yu J. Thioredoxin expression in primary T-cell acute lymphoblastic leukemia and its therapeutic implication. Cancer Res. 2001;61:7333–7338. PubMed

Cipro Š., Hřebačková J., Hraběta J., Poljaková J., Eckschlager T. Valproic acid overcomes hypoxia-induced resistance to apoptosis. Oncol. Rep. 2012;27:1219–1226. PubMed PMC

Jeong J.W., Bae M.K., Ahn M.Y., Kim S.H., Sohn T.K., Bae M.H., Yoo M.A., Song E.J., Lee K.J., Kim K.W. Regulation and destabilization of HIF-1α by ARD1-mediated acetylation. Cell. 2002;111:709–720. doi: 10.1016/S0092-8674(02)01085-1. PubMed DOI

Zhang J., Zhong Q. Histone deacetylase inhibitors and cell death. Cell. Mol. Life Sci. 2014:3885–3901. doi: 10.1007/s00018-014-1656-6. PubMed DOI PMC

Brunet A., Sweeney L.B., Sturgill J.F., Chua K.F., Greer P.L., Lin Y., Tran H., Ross S.E., Mostoslavsky R., Cohen H.Y., et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303:2011–2015. doi: 10.1126/science.1094637. PubMed DOI

Cao D.J., Wang Z.V., Battiprolu P.K., Jiang N., Morales C.R., Kong Y., Rothermel B.A., Gillette T.G., Hill J.A. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc. Natl. Acad. Sci. USA. 2011;108:4123–4128. doi: 10.1073/pnas.1015081108. PubMed DOI PMC

Oh M., Choi I.K., Kwon H.J. Inhibition of histone deacetylase1 induces autophagy. Biochem. Biophys. Res. Commun. 2008;369:1179–1183. doi: 10.1016/j.bbrc.2008.03.019. PubMed DOI

Oehme I., Linke J.-P., Böck B.C., Milde T., Lodrini M., Hartenstein B., Wiegand I., Eckert C., Roth W., Kool M., et al. Histone deacetylase 10 promotes autophagy-mediated cell survival. Proc. Natl. Acad. Sci. USA. 2013;110:E2592–E2601. doi: 10.1073/pnas.1300113110. PubMed DOI PMC

Lee I.H., Cao L., Mostoslavsky R., Lombard D.B., Liu J., Bruns N.E., Tsokos M., Alt F.W., Finkel T. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA. 2008;105:3374–3379. doi: 10.1073/pnas.0712145105. PubMed DOI PMC

Zhang J., Ng S., Wang J., Zhou J., Tan S.H., Yang N., Lin Q., Xia D., Shen H.M. Histone deacetylase inhibitors induce autophagy through FOXO1-dependent pathways. Autophagy. 2015;11:629–642. doi: 10.1080/15548627.2015.1023981. PubMed DOI PMC

Liu Y.L., Yang P.M., Shun C.T., Wu M.S., Weng J.R., Chen C.C. Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma. Autophagy. 2010;6:1057–1065. doi: 10.4161/auto.6.8.13365. PubMed DOI

Hrzenjak A., Kremser M.L., Strohmeier B., Moinfar F., Zatloukal K., Denk H. SAHA induces caspase-independent, autophagic cell death of endometrial stromal sarcoma cells by influencing the mTOR pathway. J. Pathol. 2008;216:495–504. doi: 10.1002/path.2434. PubMed DOI

Fröhlich L.F., Mrakovcic M., Smole C., Zatloukal K. Molecular mechanism leading to SAHA-induced autophagy in tumor cells: Evidence for a p53-dependent pathway. Cancer Cell Int. 2016;16:68. doi: 10.1186/s12935-016-0343-0. PubMed DOI PMC

Gammoh N., Lam D., Puente C., Ganley I., Marks P.A., Jiang X. Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death. Proc. Natl. Acad. Sci. USA. 2012;109:6561–6565. doi: 10.1073/pnas.1204429109. PubMed DOI PMC

Li J., Liu R., Lei Y., Wang K., Lau Q.C., Xie N., Zhou S., Nie C., Chen L., Wei Y., et al. Proteomic analysis revealed association of aberrant ROS signaling with suberoylanilide hydroxamic acid-induced autophagy in jurkat T-leukemia cells. Autophagy. 2010;6:711–724. doi: 10.4161/auto.6.6.12397. PubMed DOI

Autophagy B., Shulak L., Beljanski V., Chiang C., Dutta M., Van Grevenynghe J., Belgnaoui S.M., Nguyên L., Di Lenardo T., Semmes O.J., et al. Histone deacetylase inhibitors potentiate vesicular stomatitis virus oncolysis in prostate cancer cells by modulating NF-κB-dependent autophagy. J. Virol. 2014;88:2927–2940. PubMed PMC

Park M.A., Reinehr R., Haussinger D., Voelkel-Johnson C., Ogretmen B., Yacoub A., Grant S., Dent P. Sorafenib activates CD95 and promotes autophagy and cell death via Src family kinases in gastrointestinal tumor cells. Mol. Cancer Ther. 2010;9:2220–2231. doi: 10.1158/1535-7163.MCT-10-0274. PubMed DOI PMC

Chiao M.T., Cheng W.Y., Yang Y.C., Shen C.C., Ko J.L. Suberoylanilide hydroxamic acid (SAHA) causes tumor growth slowdown and triggers autophagy in glioblastoma stem cells. Autophagy. 2013;9:1509–1526. doi: 10.4161/auto.25664. PubMed DOI

Brest P., Lassalle S., Hofman V., Bordone O., Tanga V.G., Bonnetaud C., Moreilhon C., Rios G., Santini J., Barbry P., et al. MiR-129–5p is required for histone deacetylase inhibitor-induced cell death in thyroid cancer cells. Endocr. Relat. Cancer. 2011;18:711–719. doi: 10.1530/ERC-10-0257. PubMed DOI

Cho J.H., Dimri M., Dimri G.P. MicroRNA-31 is a transcriptional target of histone deacetylase inhibitors and a regulator of cellular senescence. J. Biol. Chem. 2015;290:10555–10567. doi: 10.1074/jbc.M114.624361. PubMed DOI PMC

Adams C.M., Hiebert S.W., Eischen C.M. Myc Induces miRNA-mediated apoptosis in response to HDAC inhibition in hematologic malignancies. Cancer Res. 2016;76:736–748. doi: 10.1158/0008-5472.CAN-15-1751. PubMed DOI PMC

Wada T., Kikuchi J., Furukawa Y. Histone deacetylase 1 enhances microRNA processing via deacetylation of DGCR8. EMBO Rep. 2012;13:142–149. doi: 10.1038/embor.2011.247. PubMed DOI PMC

Noonan E.J., Place R.F., Pookot D., Basak S., Whitson J.M., Hirata H., Giardina C., Dahiya R. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene. 2009;28:1714–1724. doi: 10.1038/onc.2009.19. PubMed DOI

Moran V.A., Perera R.J., Khalil A.M. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res. 2012;40:6391–6400. doi: 10.1093/nar/gks296. PubMed DOI PMC

Brockdorff N. Noncoding RNA and Polycomb recruitment. RNA. 2013;19:429–442. doi: 10.1261/rna.037598.112. PubMed DOI PMC

Yang H., Zhong Y., Xie H., Lai X., Xu M., Nie Y., Liu S., Wan Y.J.Y. Induction of the liver cancer-down-regulated long noncoding RNA uc002mbe.2 mediates trichostatin-induced apoptosis of liver cancer cells. Biochem. Pharmacol. 2013;85:1761–1769. doi: 10.1016/j.bcp.2013.04.020. PubMed DOI PMC

Gibb E.A., Brown C.J., Lam W.L. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer. 2011;10:38. doi: 10.1186/1476-4598-10-38. PubMed DOI PMC

Salvador M.A., Wicinski J., Cabaud O., Toiron Y., Finetti P., Josselin E., Lelièvre H., Kraus-Berthier L., Depil S., Bertucci F., et al. The histone deacetylase inhibitor abexinostat induces Cancer stem cells differentiation in breast Cancer with low Xist expression. Clin. Cancer Res. 2013;19:6520–6531. doi: 10.1158/1078-0432.CCR-13-0877. PubMed DOI

Asghari V., Wang J.F., Reiach J.S., Young L.T. Differential effects of mood stabilizers on FosrJun proteins and AP-1 DNA binding activity in human neuroblastoma SH-SY5Y cells. Mol. Brain Res. 1998;58:95–102. doi: 10.1016/S0169-328X(98)00107-7. PubMed DOI

Bassa B.V., Roh D.D., Vaziri N.D., Kirschenbaum M.A., Kamanna V.S. Lysophosphatidylcholine activates mesangial cell PKC and MAP kinase by PLCgamma-1 and tyrosine kinase-Ras pathways. Am. J. Physiol. 1999;277:F328–F337. PubMed

Cieslik K., Abrams C.S., Wu K.K. Up-regulation of endothelial nitric-oxide synthase promoter by the phosphatidylinositol 3-kinase γ/Janus kinase 2/MEK-1-dependent pathway. J. Biol. Chem. 2001;276:1211–1219. doi: 10.1074/jbc.M005305200. PubMed DOI

Mani S., Shen Y., Schaefer J., Meiri K.F. Failure to express GAP-43 during neurogenesis affects cell cycle regulation and differentiation of neural precursors and stimulates apoptosis of neurons. Mol. Cell. Neurosci. 2001;17:54–66. doi: 10.1006/mcne.2000.0931. PubMed DOI

Blaheta R.A., Cinatl J. Anti-tumor mechanisms of valproate: A novel role for an old drug. Med. Res. Rev. 2002;22:492–511. doi: 10.1002/med.10017. PubMed DOI

Logan C.Y., Nusse R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 2004;20:781–810. doi: 10.1146/annurev.cellbio.20.010403.113126. PubMed DOI

Bug G., Gul H., Schwarz K., Pfeifer H., Kampfmann M., Zheng X., Beissert T., Boehrer S., Hoelzer D., Ottmann O.G., Ruthardt M. Valproic acid stimulates proliferation and self-renewal of hematopoietic stem cells. Cancer Res. 2005;65:2537–2541. doi: 10.1158/0008-5472.CAN-04-3011. PubMed DOI

Krämer O.H., Zhu P., Ostendorff H.P., Golebiewski M., Tiefenbach J., Peters M.A., Brill B., Groner B., Bach I., Heinzel T., et al. The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J. 2003;22:3411–3420. doi: 10.1093/emboj/cdg315. PubMed DOI PMC

Zupkovitz G., Tischler J., Posch M., Sadzak I., Ramsauer K., Egger G., Grausenburger R., Schweifer N., Chiocca S., Decker T., et al. Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol. Cell Biol. 2006;26:7913–7928. doi: 10.1128/MCB.01220-06. PubMed DOI PMC

Montgomery R.L., Davis C.A., Potthoff M.J., Haberland M., Fielitz J., Qi X., Hill J.A., Richardson J.A., Olson E.N. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 2007;21:1790–1802. doi: 10.1101/gad.1563807. PubMed DOI PMC

Montgomery R.L., Potthoff M.J., Haberland M., Qi X., Matsuzaki S., Humphries K.M., Richardson J.A., Bassel-Duby R., Olson E.N. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J. Clin. Investig. 2008;118:3588–3597. doi: 10.1172/JCI35847. PubMed DOI PMC

Dimmeler S., Fleming I., Fisslthaler B., Hermann C., Busse R., Zeiher A.M. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399:601–605. PubMed

Fulton D., Gratton J., McCabe T., Fontana J., Fujio Y., Walsh K., Franke T., Papapetropoulos A., Sessa W. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999;399:597–601. PubMed PMC

Kawasaki K., Smith R.S., Hsieh C.-M., Sun J., Chao J., Liao J.K. Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angiogenesis. Mol. Cell. Biol. 2003;23:5726–5737. doi: 10.1128/MCB.23.16.5726-5737.2003. PubMed DOI PMC

Rössig L., Li H., Fisslthaler B., Urbich C., Fleming I., Förstermann U., Zeiher A.M., Dimmeler S. Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circ. Res. 2002;91:837–844. doi: 10.1161/01.RES.0000037983.07158.B1. PubMed DOI

Deroanne C.F., Bonjean K., Servotte S., Devy L., Colige A., Clausse N., Blacher S., Verdin E., Foidart J.-M., Nusgens B.V., et al. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene. 2002;21:427–436. doi: 10.1038/sj.onc.1205108. PubMed DOI

Cinatl J., Kotchetkov R., Blaheta R., Driever P.H., Vogel J.U., Cinatl J. Induction of differentiation and suppression of malignant phenotype of human neuroblastoma BE(2)-C cells by valproic acid: Enhancement by combination with interferon-α. Int. J. Oncol. 2002;20:97–106. doi: 10.3892/ijo.20.1.97. PubMed DOI

Chelluri R., Caza T., Woodford M.R., Reeder J.E., Bratslavsky G., Byler T. Valproic acid alters angiogenic and trophic gene expression in human prostate cancer models. Anticancer Res. 2016;36:5079–5086. doi: 10.21873/anticanres.11077. PubMed DOI

Michaelis M., Suhan T., Michaelis U.R., Beek K., Rothweiler F., Tausch L., Werz O., Eikel D., Zörnig M., Nau H., et al. Valproic acid induces extracellular signal-regulated kinase 1/2 activation and inhibits apoptosis in endothelial cells. Cell Death Differ. 2006;13:446–453. doi: 10.1038/sj.cdd.4401759. PubMed DOI

Lin K.T., Wang Y.W., Chen C.T., Ho C.M., Su W.H., Jou Y.S. HDAC inhibitors augmented cell migration and metastasis through induction of PKCs leading to identification of low toxicity modalities for combination cancer therapy. Clin. Cancer Res. 2012;18:4691–4701. doi: 10.1158/1078-0432.CCR-12-0633. PubMed DOI

Setiadi A.F., Omilusik K., David M.D., Seipp R.P., Hartikainen J., Gopaul R., Choi K.B., Jefferies W.A. Epigenetic enhancement of antigen processing and presentation promotes immune recognition of tumors. Cancer Res. 2008;68:9601–9607. doi: 10.1158/0008-5472.CAN-07-5270. PubMed DOI

Balliu M., Guandalini L., Romanelli M.N., D’Amico M., Paoletti F. HDAC-inhibitor (S)-8 disrupts HDAC6-PP1 complex prompting A375 melanoma cell growth arrest and apoptosis. J. Cell. Mol. Med. 2015;19:143–154. doi: 10.1111/jcmm.12345. PubMed DOI PMC

Woan K.V., Lienlaf M., Perez-Villaroel P., Lee C., Cheng F., Knox T., Woods D.M., Barrios K., Powers J., Sahakian E., et al. Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: Enhanced antitumor immunity and impaired cell proliferation. Mol. Oncol. 2015;9:1447–1457. doi: 10.1016/j.molonc.2015.04.002. PubMed DOI PMC

Cheng F., Lienlaf M., Wang H.-W., Perez-Villarroel P., Lee C., Woan K., Rock-Klotz J., Sahakian E., Woods D., Pinilla-Ibarz J., et al. A novel role for histone deacetylase 6 in the regulation of the tolerogenic STAT3/IL-10 pathway in APCs. J. Immunol. 2014;193:2850–2862. doi: 10.4049/jimmunol.1302778. PubMed DOI PMC

Kroesen M., Gielen P., Brok I.C., Armandari I., Hoogerbrugge P.M., Adema G.J. HDAC inhibitors and immunotherapy; a double edged sword? Oncotarget. 2014;5:6558–6572. doi: 10.18632/oncotarget.2289. PubMed DOI PMC

Gameiro S.R., Malamas A.S., Tsang K.Y., Ferrone S., Hodge J.W. Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells. Oncotarget. 2016;7:7390–7402. PubMed PMC

Sabbatino F., Schwab J.H., Ferrone S., Ferrone C.R. Evolution of studies of HLA class I antigen processing machinery (APM) components in malignant cells. Clin. Transpl. 2013;1:453–463. PubMed

Rooney M.S., Shukla S.A., Wu C.J., Getz G., Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160:48–61. doi: 10.1016/j.cell.2014.12.033. PubMed DOI PMC

Kortenhorst M.S., Wissing M.D., Rodríguez R., Kachhap S.K., Jans J.J., Van der Groep P., Verheul H.M., Gupta A., Aiyetan P.O., van der Wall E., et al. Analysis of the genomic response of human prostate cancer cells to histone deacetylase inhibitors. Epigenetics. 2013;8:907–920. doi: 10.4161/epi.25574. PubMed DOI PMC

Higuchi A., Ling Q.-D., Kumar S.S., Munusamy M.A., Alarfaj A.A., Chang Y., Kao S.-H., Lin K.-C., Wang H.-C., Umezawa A. Generation of pluripotent stem cells without the use of genetic material. Lab. Investig. 2015;95:26–42. doi: 10.1038/labinvest.2014.132. PubMed DOI

Burba I., Colombo G.I., Staszewsky L.I., De Simone M., Devanna P., Nanni S., Avitabile D., Molla F., Cosentino S., Russo I., et al. Histone deacetylase inhibition enhances self renewal and cardioprotection by human cord blood-derived CD34 cells. PLoS ONE. 2011;6:e22158. doi: 10.1371/journal.pone.0022158. PubMed DOI PMC

Feng J., Cen J., Li J., Zhao R., Zhu C., Wang Z., Xie J., Tang W. Histone deacetylase inhibitor valproic acid (VPA) promotes the epithelial mesenchymal transition of colorectal cancer cells via up regulation of Snail. Cell Adhes. Migr. 2015;9:495–501. doi: 10.1080/19336918.2015.1112486. PubMed DOI PMC

Wu S., Luo Z., Yu P.-J., Xie H., He Y.-W. Suberoylanilide hydroxamic acid (SAHA) promotes the epithelial mesenchymal transition of triple negative breast cancer cells via HDAC8/FOXA1 signals. Biol. Chem. 2016;397:75–83. doi: 10.1515/hsz-2015-0215. PubMed DOI

Tabu K., Sasai K., Kimura T., Wang L., Aoyanagi E., Kohsaka S., Tanino M., Nishihara H., Tanaka S. Promoter hypomethylation regulates CD133 expression in human gliomas. Cell Res. 2008;18:1037–1046. doi: 10.1038/cr.2008.270. PubMed DOI

Zhu J., Wan H., Xue C., Jiang T., Qian C., Zhang Y. Histone deacetylase 3 implicated in the pathogenesis of children glioma by promoting glioma cell proliferation and migration. Brain Res. 2013;1520:15–22. doi: 10.1016/j.brainres.2013.04.061. PubMed DOI

Khalil M.A., Hraběta J., Groh T., Procházka P., Doktorová H., Eckschlager T. Valproic acid increases CD133 positive cells that show low sensitivity to cytostatics in neuroblastoma. PLoS ONE. 2016;11:e0162916. doi: 10.1371/journal.pone.0162916. PubMed DOI PMC

Rudà R., Pellerino A., Soffietti R. Does valproic acid affect tumor growth and improve survival in glioblastomas? CNS Oncol. 2016;5:51–53. doi: 10.2217/cns-2016-0004. PubMed DOI PMC

Hřebačková J., Poljaková J., Eckschlager T., Hraběta J., Procházka P., Smutný S., Stiborová M. Histone deacetylase inhibitors valproate and trichostatin A are toxic to neuroblastoma cells and modulate cytochrome P450 1A1, 1B1 and 3A4 expression in these cells. Interdiscip. Toxicol. 2009;2:205–210. doi: 10.2478/v10102-009-0019-x. PubMed DOI PMC

Bose P., Dai Y., Grant S. Histone deacetylase inhibitor (HDACI) mechanisms of action: Emerging insights. Pharmacol. Ther. 2014;143:323–336. doi: 10.1016/j.pharmthera.2014.04.004. PubMed DOI PMC

Bhaskara S. Histone deacetylases 1 and 2 regulate DNA replication and DNA repair: Potential targets for genome stability-mechanism-based therapeutics for a subset of cancers. Cell Cycle. 2015;14:1779–1785. doi: 10.1080/15384101.2015.1042634. PubMed DOI PMC

Dowdy S.C., Jiang S., Zhou X.C., Hou X., Jin F., Podratz K.C., Jiang S.-W. Histone deacetylase inhibitors and paclitaxel cause synergistic effects on apoptosis and microtubule stabilization in papillary serous endometrial cancer cells. Mol. Cancer Ther. 2006;5:2767–2776. doi: 10.1158/1535-7163.MCT-06-0209. PubMed DOI

Engel J.A., Jones A.J., Avery V.M., Sumanadasa S.D.M., Ng S.S., Fairlie D.P., Adams T.S., Andrews K.T. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites. Int. J. Parasitol. Drugs Drug Resist. 2015;5:117–126. doi: 10.1016/j.ijpddr.2015.05.004. PubMed DOI PMC

Namdar M., Perez G., Ngo L., Marks P.A. Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc. Natl. Acad. Sci. USA. 2010;107:20003–20008. doi: 10.1073/pnas.1013754107. PubMed DOI PMC

Ma X., Ezzeldin H.H., Diasio R.B. Histone deacetylase inhibitors: Current status and overview of recent clinical trials. Drugs. 2009;69:1911–1934. doi: 10.2165/11315680-000000000-00000. PubMed DOI

Chen M.Y., Liao W.S.L., Lu Z., Bornmann W.G., Hennessey V., Washington M.N., Rosner G.L., Yu Y., Ahmed A.A., Bast R.C. Decitabine and suberoylanilide hydroxamic acid (SAHA) inhibit growth of ovarian cancer cell lines and xenografts while inducing expression of imprinted tumor suppressor genes, apoptosis, G2/M arrest, and autophagy. Cancer. 2011;117:4424–4438. doi: 10.1002/cncr.26073. PubMed DOI PMC

Yang H., Hoshino K., Sanchez-Gonzalez B., Kantarjian H., Garcia-Manero G. Antileukemia activity of the combination of 5-aza-2′-deoxycytidine with valproic acid. Leuk. Res. 2005;29:739–748. doi: 10.1016/j.leukres.2004.11.022. PubMed DOI

Ecke I., Petry F., Rosenberger A., Tauber S., Mo S., Hess I., Dullin C., Kimmina S., Pirngruber J., Johnsen S.A., et al. Antitumor Effects of a Combined 5-Aza-2′ Deoxycytidine and Valproic Acid Treatment on Rhabdomyosarcoma and Medulloblastoma in Ptch Mutant Mice. Cancer Res. 2009;69:887–896. doi: 10.1158/0008-5472.CAN-08-0946. PubMed DOI

Klisovic M.I., Maghraby E.A., Parthun M.R., Guimond M., Sklenar A.R., Whitman S.P., Chan K.K., Murphy T., Anon J., Archer K.J., et al. Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells. Leukemia. 2003;17:350–358. doi: 10.1038/sj.leu.2402776. PubMed DOI

Chai G., Li L., Zhou W., Wu L., Zhao Y., Wang D., Lu S., Yu Y., Wang H., McNutt M.A., et al. HDAC inhibitors act with 5-aza-2′-deoxycytidine to inhibit cell proliferation by suppressing removal of incorporated abases in lung cancer cells. PLoS ONE. 2008;3:e2445. doi: 10.1371/journal.pone.0002445. PubMed DOI PMC

Hu Y., Lu W., Chen G., Zhang H., Jia Y., Wei Y., Yang H., Zhang W., Fiskus W., Bhalla K., et al. Overcoming resistance to histone deacetylase inhibitors in human leukemia with the redox modulating compound β-phenylethyl isothiocyanate. Blood. 2010;116:2732–2741. doi: 10.1182/blood-2009-11-256354. PubMed DOI PMC

Greve G., Schiffmann I., Pfeifer D., Pantic M., Schüler J., Lübbert M. The pan-HDAC inhibitor panobinostat acts as a sensitizer for erlotinib activity in EGFR-mutated and -wildtype non-small cell lung cancer cells. BMC Cancer. 2015;15:947–957. doi: 10.1186/s12885-015-1967-5. PubMed DOI PMC

Takashina T., Kinoshita I., Kikuchi J., Shimizu Y., Sakakibara-Konishi J., Oizumi S., Nishimura M., Dosaka-Akita H. Combined inhibition of EZH2 and histone deacetylases as a potential epigenetic therapy for non-small-cell lung cancer cells. Cancer Sci. 2016;107:955–962. doi: 10.1111/cas.12957. PubMed DOI PMC

Pei X.-Y., Dai Y., Grant S. Synergistic Induction of Oxidative Injury and Apoptosis in Human Multiple Myeloma Cells by the Proteasome Inhibitor Bortezomib and Histone Deacetylase Inhibitors. Clin. Cancer Res. 2004;10:3839–3852. doi: 10.1158/1078-0432.CCR-03-0561. PubMed DOI

Nawrocki S.T., Carew J.S., Pino M.S., Highshaw R.A., Andtbacka R.H.I., Dunner K., Pal A., Bornmann W.G., Chiao P.J., Huang P., et al. Aggresome disruption: A novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res. 2006;66:3773–3781. doi: 10.1158/0008-5472.CAN-05-2961. PubMed DOI

Dasmahapatra G., Lembersky D., Kramer L., Fisher R.I., Friedberg J., Dent P., Grant S. The pan-HDAC inhibitor vorinostat potentiates the activity of the proteasome inhibitor carfilzomib in human DLBCL cells in vitro and in vivo. Blood. 2010;115:4478–4487. doi: 10.1182/blood-2009-12-257261. PubMed DOI PMC

Dasmahapatra G., Lembersky D., Son M.P., Attkisson E., Dent P., Fisher R.I., Friedberg J.W., Grant S. Carfilzomib interacts synergistically with histone deacetylase inhibitors in mantle cell lymphoma cells in vitro and in vivo. Mol. Cancer Ther. 2011;10:1686–1697. doi: 10.1158/1535-7163.MCT-10-1108. PubMed DOI PMC

Groh T., Hrabeta J., Khalil M.A., Doktorova H., Eckschlager T., Stiborova M. The synergistic effects of DNA-damaging drugs cisplatin and etoposide with a histone deacetylase inhibitor valproate in high-risk neuroblastoma cells. Int. J. Oncol. 2015;47:343–352. doi: 10.3892/ijo.2015.2996. PubMed DOI

Luchenko V.L., Salcido C.D., Zhang Y., Agama K., Komlodi-Pasztor E., Murphy R.F., Giaccone G., Pommier Y., Bates S.E., Varticovski L. Schedule-dependent synergy of histone deacetylase inhibitors with DNA damaging agents in small cell lung cancer. Cell Cycle. 2011;10:3119–3128. doi: 10.4161/cc.10.18.17190. PubMed DOI PMC

Kim M.S., Blake M., Baek J.H., Kohlhagen G., Pommier Y., Carrier F. Inhibition of Histone Deacetylase Increases Cytotoxicity to Anticancer Drugs Targeting DNA. Cancer Res. 2003;63:7291–7300. PubMed

Catalano M.G., Poli R., Pugliese M., Fortunati N., Boccuzzi G. Valproic acid enhances tubulin acetylation and apoptotic activity of paclitaxel on anaplastic thyroid cancer cell lines. Endocr. Relat. Cancer. 2007;14:839–845. doi: 10.1677/ERC-07-0096. PubMed DOI

Ryu C.H., Yoon W.S., Park K.Y., Kim S.M., Lim J.Y., Woo J.S., Jeong C.H., Hou Y., Jeun S.S. Valproic acid downregulates the expression of MGMT and sensitizes temozolomide-resistant glioma cells. J. Biomed. Biotechnol. 2012;2012:987495. doi: 10.1155/2012/987495. PubMed DOI PMC

Griffiths E.A., Gore S.D. DNA Methyltransferase and Histone Deacetylase Inhibitors in the Treatment of Myelodysplastic Syndromes. Semin. Hematol. 2008;45:23–30. doi: 10.1053/j.seminhematol.2007.11.007. PubMed DOI PMC

Rudek M.A., Zhao M., He P., Hartke C., Gilbert J., Gore S.D., Carducci M.A., Baker S.D. Pharmacokinetics of 5-azacitidine administered with phenylbutyrate in patients with refractory solid tumors or hematologic malignancies. J. Clin. Oncol. 2005;23:3906–3911. doi: 10.1200/JCO.2005.07.450. PubMed DOI

Badros A., Burger A.M., Philip S., Niesvizky R., Kolla S.S., Goloubeva O., Harris C., Zwiebel J., Wright J.J., Espinoza-Delgado I., et al. Phase I study of vorinostat in combination with bortezomib for relapsed and refractory multiple myeloma. Clin. Cancer Res. 2009;15:5250–5257. doi: 10.1158/1078-0432.CCR-08-2850. PubMed DOI PMC

Mazumder A., Vesole D.H., Jagannath S. Vorinostat plus bortezomib for the treatment of relapsed/refractory multiple myeloma: A case series illustrating utility in clinical practice. Clin. Lymphoma Myeloma Leuk. 2010;10:149–151. doi: 10.3816/CLML.2010.n.022. PubMed DOI

Afifi S., Michael A., Azimi M., Rodriguez M., Lendvai N., Landgren O. Role of Histone Deacetylase Inhibitors in Relapsed Refractory Multiple Myeloma: A Focus on Vorinostat and Panobinostat. Pharmacotherapy. 2015;35:1173–1188. doi: 10.1002/phar.1671. PubMed DOI PMC

Garcia-Manero G., Tambaro F.P., Bekele N.B., Yang H., Ravandi F., Jabbour E., Borthakur G., Kadia T.M., Konopleva M.Y., Faderl S., et al. Phase II trial of vorinostat with idarubicin and cytarabine for patients with newly diagnosed acute myelogenous leukemia or myelodysplastic syndrome. J. Clin. Oncol. 2012;30:2204–2210. doi: 10.1200/JCO.2011.38.3265. PubMed DOI PMC

Khan I., Altman J.K., Licht J.D. New strategies in acute myeloid leukemia: Redefining prognostic markers to guide therapy. Clin. Cancer Res. 2012;18:5163–5171. doi: 10.1158/1078-0432.CCR-12-0313. PubMed DOI PMC

Duvic M., Talpur R., Ni X., Zhang C., Hazarika P., Kelly C., Chiao J.H., Reilly J.F., Ricker J.L., Richon V.M., et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL) Blood. 2007;109:31–39. doi: 10.1182/blood-2006-06-025999. PubMed DOI PMC

Olsen E.A., Kim Y.H., Kuzel T.M., Pacheco T.R., Foss F.M., Parker S., Frankel S.R., Chen C., Ricker J.L., Arduino J.M., et al. Phase IIB Multicenter Trial of Vorinostat in Patients With Persistent, Progressive, or Treatment Refractory Cutaneous T-Cell Lymphoma. J. Clin. Oncol. 2007;25:3109–3115. doi: 10.1200/JCO.2006.10.2434. PubMed DOI

Blum W., Marcucci G. Targeting epigenetic changes in acute myeloid leukemia. Clin. Adv. Hematol. Oncol. 2005;3:855–865. PubMed

Garcia-Manero G., Yang H., Bueso-Ramos C., Ferrajoli A., Cortes J., Wierda W.G., Faderl S., Koller C., Morris G., Rosner G., et al. Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood. 2008;111:1060–1066. doi: 10.1182/blood-2007-06-098061. PubMed DOI

Ghobrial I.M., Campigotto F., Murphy T.J., Boswell E.N., Banwait R., Azab F., Chuma S., Kunsman J., Donovan A., Masood F., et al. Results of a phase 2 trial of the single-agent histone deacetylase inhibitor panobinostat in patients with relapsed/refractory Waldenstrom macroglobulinemia. Blood. 2013;121:1296–1303. doi: 10.1182/blood-2012-06-439307. PubMed DOI PMC

Blum K.A., Advani A., Fernandez L., Van Der Jagt R., Brandwein J., Kambhampati S., Kassis J., Davis M., Bonfils C., Dubay M., et al. Phase II study of the histone deacetylase inhibitor MGCD0103 in patients with previously treated chronic lymphocytic leukaemia. Br. J. Haematol. 2009;147:507–514. doi: 10.1111/j.1365-2141.2009.07881.x. PubMed DOI PMC

Ellis L., Bots M., Lindemann R.K., Bolden J.E., Newbold A., Cluse L.A., Scott C.L., Strasser A., Atadja P., Lowe S.W., et al. The histone deacetylase inhibitors LAQ824 and LBH589 do not require death receptor signaling or a functional apoptosome to mediate tumor cell death or therapeutic efficacy. Blood. 2009;114:380–393. doi: 10.1182/blood-2008-10-182758. PubMed DOI PMC

Giles F., Fischer T., Cortes J., Garcia-Manero G., Beck J., Ravandi F., Masson E., Rae P., Laird G., Sharma S., et al. A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin. Cancer Res. 2006;12:4628–4635. doi: 10.1158/1078-0432.CCR-06-0511. PubMed DOI

Gryder B.E., Sodji Q.H., Oyelere A.K. Targeted cancer therapy: Giving histone deacetylase inhibitors all they need to succeed. Futur. Med Chem. 2012;4:505–524. doi: 10.4155/fmc.12.3. PubMed DOI PMC

O'connor O.A., Heaney M.L., Schwartz L., Richardson S., Willim R., MacGregor-Cortelli B., Curly T., Moskowitz C., Portlock C., Horwitz S. Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J. Clin. Oncol. 2006;24:166–173. doi: 10.1200/JCO.2005.01.9679. PubMed DOI

Weller M., Gorlia T., Cairncross J.G., Van Den Bent M.J., Mason W., Belanger K., Brandes A.A., Bogdahn U., Macdonald D.R., Forsyth P., et al. Prolonged survival with valproic acid use in the EORTC/NCIC temozolomide trial for glioblastoma. Neurology. 2011;77:1156–1164. doi: 10.1212/WNL.0b013e31822f02e1. PubMed DOI PMC

Scherpereel A., Berghmans T., Lafitte J.J., Colinet B., Richez M., Bonduelle Y., Meert A.P., Dhalluin X., Leclercq N., Paesmans M., et al. Valproate-doxorubicin: Promising therapy for progressing mesothelioma. A phase II study. Eur. Respir. J. 2011;37:129–135. doi: 10.1183/09031936.00037310. PubMed DOI

Ramalingam S.S., Maitland M.L., Frankel P., Argiris A.E., Koczywas M., Gitlitz B., Thomas S., Espinoza-Delgado I., Vokes E.E., Gandara D.R., et al. Carboplatin and Paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J. Clin. Oncol. 2010;28:56–62. doi: 10.1200/JCO.2009.24.9094. PubMed DOI PMC

Munster P.N., Thurn K.T., Thomas S., Raha P., Lacevic M., Miller A., Melisko M., Ismail-Khan R., Rugo H., Moasser M., et al. A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br. J. Cancer. 2011;104:1828–1835. doi: 10.1038/bjc.2011.156. PubMed DOI PMC

Witta S.E., Jotte R.M., Konduri K., Neubauer M.A., Spira A.I., Ruxer R.L., Varella-Garcia M., Bunn P.A., Hirsch F.R. Randomized phase II trial of erlotinib with and without entinostat in patients with advanced non-small-cell lung cancer who progressed on prior chemotherapy. J. Clin. Oncol. 2012;30:2248–2255. doi: 10.1200/JCO.2011.38.9411. PubMed DOI PMC

Ahuja N., Sharma A.R., Baylin S.B. Epigenetic therapeutics: A new weapon in the war against cancer. Annu. Rev. Med. 2016;67:73–89. doi: 10.1146/annurev-med-111314-035900. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...