Synthesis and Biological Evaluation of Novel 2-Aroyl Benzofuran-Based Hydroxamic Acids as Antimicrotubule Agents
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2022-FAR.L-RR_044
University of Ferrara
PubMed
39062759
PubMed Central
PMC11277476
DOI
10.3390/ijms25147519
PII: ijms25147519
Knihovny.cz E-zdroje
- Klíčová slova
- anticancer agents, benzo[b]furan, dual-target inhibitors, histone deacetylase (HDAC), tubulin,
- MeSH
- antitumorózní látky * farmakologie chemická syntéza chemie MeSH
- benzofurany * farmakologie chemie chemická syntéza MeSH
- buňky HT-29 MeSH
- HeLa buňky MeSH
- histondeacetylasa 6 antagonisté a inhibitory metabolismus MeSH
- inhibitory histondeacetylas farmakologie chemická syntéza chemie MeSH
- kyseliny hydroxamové * farmakologie chemie chemická syntéza MeSH
- léky antitumorózní - screeningové testy MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- modulátory tubulinu * farmakologie chemická syntéza chemie MeSH
- nádorové buněčné linie MeSH
- proliferace buněk * účinky léků MeSH
- tubulin * metabolismus MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antitumorózní látky * MeSH
- benzofuran MeSH Prohlížeč
- benzofurany * MeSH
- histondeacetylasa 6 MeSH
- inhibitory histondeacetylas MeSH
- kyseliny hydroxamové * MeSH
- modulátory tubulinu * MeSH
- tubulin * MeSH
Because of synergism between tubulin and HDAC inhibitors, we used the pharmacophore fusion strategy to generate potential tubulin-HDAC dual inhibitors. Drug design was based on the introduction of a N-hydroxyacrylamide or a N-hydroxypropiolamide at the 5-position of the 2-aroylbenzo[b]furan skeleton, to produce compounds 6a-i and 11a-h, respectively. Among the synthesized compounds, derivatives 6a, 6c, 6e, 6g, 11a, and 11c showed excellent antiproliferative activity, with IC50 values at single- or double-digit nanomolar levels, against the A549, HT-29, and MCF-7 cells resistant towards the control compound combretastatin A-4 (CA-4). Compounds 11a and 6g were also 10-fold more active than CA-4 against the Hela cell line. When comparing the inhibition of tubulin polymerization versus the HDAC6 inhibitory activity, we found that 6a-g, 6i, 11a, 11c, and 11e, although very potent as inhibitors of tubulin assembly, did not have significant inhibitory activity against HDAC6.
Department of Translational Medicine University of Ferrara 44121 Ferrara Italy
Department of Woman's and Child's Health Hemato Oncology Lab University of Padova 35128 Padova Italy
Medicinal Chemistry Department Integrated Drug Discovery Aptuit an Evotec Company 37135 Verona Italy
Zobrazit více v PubMed
Logan C.M., Menko A.S. Microtubules: Evolving roles and critical cellular interactions. Exp. Biol. Med. 2019;244:1240–1254. doi: 10.1177/1535370219867296. PubMed DOI PMC
Ilan Y. Microtubules as a potential platform for energy transfer in biological systems: A target for implementing individualized, dynamic variability patterns to improve organ function. Mol. Cell. Biochem. 2022;478:375–392. doi: 10.1007/s11010-022-04513-1. PubMed DOI
Wordeman L., Vicente J.J. Microtubule targeting agents in disease: Classic drugs, novel roles. Cancers. 2021;13:5650. doi: 10.3390/cancers13225650. PubMed DOI PMC
Eli S., Castagna R., Mapelli M., Parisini E. Recent approaches to the identification of novel microtubule-targeting agents. Front. Mol. Biosci. 2022;9:841777. doi: 10.3389/fmolb.2022.841777. PubMed DOI PMC
Henriques A.C., Ribeiro D., Pedrosa J., Sarmento B., Silva P.M.A., Bousbaa H. Mitosis inhibitors in anticancer therapy: When blocking the exit becomes a solution. Cancer Lett. 2019;440–441:64–81. doi: 10.1016/j.canlet.2018.10.005. PubMed DOI
Muhlethaler T., Gioia D., Prota A.E., Sharpe M.E., Cavalli A., Steinmetz M.O. Comprehensive analysis of binding sites in tubulin. Angew. Chem. Int. Ed. Engl. 2021;60:13331–13342. doi: 10.1002/anie.202100273. PubMed DOI PMC
Yang C.-H., Horwitz S.B. Taxol®: The first microtubule stabilizing agent. Int. J. Mol. Sci. 2017;18:1733. doi: 10.3390/ijms18081733. PubMed DOI PMC
Prota A.E., Bargsten K., Northcote P.T., Marsh M., Altmann K.H., Miller J.H., Diaz J.F., Steinmetz M.O. Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew. Chem. Int. Ed. 2014;53:1621–1625. doi: 10.1002/anie.201307749. PubMed DOI
Field J.J., Diaz J.F., Miller J.H. The binding sites of microtubule-stabilizing agents. Chem. Biol. 2013;20:301–315. doi: 10.1016/j.chembiol.2013.01.014. PubMed DOI
Ravelli R.B., Gigant B., Curmi P.A., Jourdain I., Lachkar S., Sobel A., Knossow M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature. 2004;428:198–202. doi: 10.1038/nature02393. PubMed DOI
Risinger A.L., Du L. Targeting and extending the eukaryotic druggable genome with natural products: Cytoskeletal targets of natural products. Nat. Prod. Rep. 2020;37:634–652. doi: 10.1039/C9NP00053D. PubMed DOI PMC
Liang T., Lu L., Song X., Qi J., Wang J. Combination of microtubule targeting agents with other antineoplastics for cancer treatment. BBA-Rev. Cancer. 2022;1877:188777. doi: 10.1016/j.bbcan.2022.188777. PubMed DOI
Krause W. Resistance to anti-tubulin agents: From vinca alkaloids to epothilones. Cancer Drug Resist. 2019;2:82–106. doi: 10.20517/cdr.2019.06. PubMed DOI PMC
Kanakkanthara A., Miller J.H. βIII-tubulin overexpression in cancer: Causes, consequences, and potential therapies. Biochim. Biophys. Acta Rev. Cancer. 2021;1876:188607. doi: 10.1016/j.bbcan.2021.188607. PubMed DOI
Ling X., Bernacki R.J., Brattain M.G., Li F. Induction of survivin expression by taxol (paclitaxel) is an early event, which is independent of taxol-mediated G2/M arrest. J. Biol. Chem. 2004;279:15196–15203. doi: 10.1074/jbc.M310947200. PubMed DOI
Kamal M.A., Al-Zahrani M.H., Khan S.H., Khan M.H., Al-Subhi H.A., Kuerban A., Aslam M., Al-Abbasi F.A., Anwar F. Tubulin proteins in cancer resistance: A review. Curr. Drug Metabol. 2020;21:178–185. doi: 10.2174/1389200221666200226123638. PubMed DOI
Canta A., Chiorazzi A., Cavaletti G. Tubulin: A target for antineoplastic drugs into the cancer cells but also in the peripheral nervous system. Curr. Med. Chem. 2009;16:1315–1324. doi: 10.2174/092986709787846488. PubMed DOI
McLoughlin E.C., O’Boyle N.M. Colchicine-binding site inhibitors from chemistry to clinic: A review. Pharmaceuticals. 2020;13:8. doi: 10.3390/ph13010008. PubMed DOI PMC
Hawash M. Recent advances of tubulin inhibitors targeting the colchicine binding site for cancer therapy. Biomolecules. 2022;12:1843. doi: 10.3390/biom12121843. PubMed DOI PMC
Dong M., Liu F., Zhou H., Zhai S., Yan B. Novel natural product- and privileged scaffold-based tubulin inhibitors targeting the colchicine binding site. Molecules. 2016;21:1375–1400. doi: 10.3390/molecules21101375. PubMed DOI PMC
Zhang Y., Li B., Yan R., Xia L., Fan A., Chu Y., Wang L., Wang Z., Jiang A., Zhu H. A class of novel tubulin polymerization inhibitors exert effective antitumor activity via mitotic catastrophe. Eur. J. Med. Chem. 2019;163:896–910. doi: 10.1016/j.ejmech.2018.12.030. PubMed DOI
Lin C.M., Ho H.H., Pettit G.R., Hamel E. Antimitotic natural products combretastatin A-4 and combretastatin A-2: Studies on the mechanism of their inhibition of the binding of colchicine to tubulin. Biochemistry. 1989;28:6984–6991. doi: 10.1021/bi00443a031. PubMed DOI
Griggs J., Metcalfe J.C., Hesketh R. Targeting tumour vasculature: The development of combretastatin A4. Lancet Oncol. 2001;2:82–87. doi: 10.1016/S1470-2045(00)00224-2. PubMed DOI
Nagaiah G., Remick S.C. Combretastatin A4 phosphate: A novel vascular disrupting agent. Future Oncol. 2010;6:1219–1228. doi: 10.2217/fon.10.90. PubMed DOI
Shiah H.-S., Chiang N.-J., Lin C.-C., Yen C.-J., Tsai H.-J., Wu S.-Y., Su W.-C., Chang K.-Y., Wang C.C., Chang J.-Y., et al. Phase I dose-escalation study of SCB01A, a microtubule inhibitor with vascular disrupting activity, in patients with advanced Solid Tumors. Oncologist. 2021;26:e567–e579. doi: 10.1002/onco.13612. PubMed DOI PMC
Rischin D., Bibby D.C., Chong G., Kremmidiotis G., Leske A.F., Matthews C.A., Wong S.S., Rosen M.A., Desai J. Clinical, pharmacodynamic, and pharmacokinetic evaluation of BNC105P: A Phase I trial of a novel vascular disrupting agent and inhibitor of cancer cell proliferation. Clin. Cancer Res. 2011;17:5152–5160. doi: 10.1158/1078-0432.CCR-11-0937. PubMed DOI
Delmonte A., Sessa C. AVE8062: A new combretastatin derivative vascular disrupting agent. Exp. Opin. Investig. Drugs. 2009;18:1541–1548. doi: 10.1517/13543780903213697. PubMed DOI
Markowski M.C., Tutrone R., Pieczonka C., Barnette K.G., Getzenberg R.H., Rodriguez D., Steiner M.S., Saltzstein D.R., Eisenberger M.A., Antonarakis E.S. A Phase Ib/II study of Sabizabulin, a novel oral cytoskeleton disruptor, in men with metastatic castration-resistant prostate cancer with progression on an androgen receptor-targeting agent. Clin. Cancer Res. 2022;28:2789–2795. doi: 10.1158/1078-0432.CCR-22-0162. PubMed DOI PMC
Niu L., Yang J., Yan W., Yu Y., Zheng Y., Ye H., Chen X.Q., Chen L. Reversible binding of the anticancer drug KXO1(tirbanibulin) to the colchicine-binding site of tubulin explains KXO1’s low clinical toxicity. J. Biol. Chem. 2019;294:18099–18108. doi: 10.1074/jbc.RA119.010732. PubMed DOI PMC
Blauvelt A., Kempers S., Lain E., Schlesinger T., Tyring S., Forman S., Ablon G., Martin G., Wang H., Cutler D.L., et al. Phase 3 trials of tirbanibulin ointment for actinic keratosis. N. Engl. J. Med. 2021;384:512–520. doi: 10.1056/NEJMoa2024040. PubMed DOI
Jones P.A., Issa J.-P.J., Baylin S. Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 2016;17:630–641. doi: 10.1038/nrg.2016.93. PubMed DOI
Thiagalingam S., Cheng K.H., Lee H.J., Mineva N., Thiagalingam A., Ponte J.F. Histone deacetylases: Unique players in shaping the epigenetic histone code. Ann. N. Y. Acad. Sci. 2003;983:84–100. doi: 10.1111/j.1749-6632.2003.tb05964.x. PubMed DOI
Milazzo G., Mercatelli D., Di Muzio G., Triboli L., De Rosa P., Perini G., Giorgi F.M. Histone deacetylases (HDACs): Evolution, specificity, role in transcriptional complexes, and pharmacological actionability. Genes. 2020;11:556. doi: 10.3390/genes11050556. PubMed DOI PMC
Haberland M., Montgomery R.L., Olson E.N. The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat. Rev. Genet. 2009;10:32–42. doi: 10.1038/nrg2485. PubMed DOI PMC
Glozak M.A., Sengupta N., Zhang X., Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23. doi: 10.1016/j.gene.2005.09.010. PubMed DOI
Eckschlager T., Plch J., Stiborova M., Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci. 2017;18:1414. doi: 10.3390/ijms18071414. PubMed DOI PMC
Ruijter A.J., Gennip A.H., Caron H.N., Kemp S., Kuilenburg A.B.P. Histone deacetylases (HDACs) characterization of the classical HDAC family. Biochem. J. 2003;370:737–749. doi: 10.1042/bj20021321. PubMed DOI PMC
Xu W.S., Parmigiani R.B., Marks P.A. Histone deacetylase inhibitors: Molecular mechanisms of action. Oncogene. 2007;26:5541. doi: 10.1038/sj.onc.1210620. PubMed DOI
Marks P.A. Discovery and development of SAHA as an anticancer agent. Oncogene. 2007;26:1351–1356. doi: 10.1038/sj.onc.1210204. PubMed DOI
Rashidi A., Cashen A.F. Belinostat for the treatment of relapsed or refractory peripheral T-cell lymphoma. Future Oncol. 2015;11:1659–1664. doi: 10.2217/fon.15.62. PubMed DOI
Bertino E.M., Otterson G.A. Romidepsin: A novel histone deacetylase inhibitor for cancer. Expert. Opin. Investig. Drugs. 2011;20:1151–1158. doi: 10.1517/13543784.2011.594437. PubMed DOI
Libby E.N., Becker P.S., Burwick N., Green D.J., Holmberg L., Bensinger W.I. Panobinostat: A review of trial results and future prospects in multiple myeloma. Expert Rev. Hematol. 2015;8:9–18. doi: 10.1586/17474086.2015.983065. PubMed DOI
Shi Y., Jia B., Xu W., Li W., Liu T., Liu P., Zhao W., Zhang H., Sun X., Yang H. Chidamide in relapsed or refractory peripheral T cell lymphoma: A multicenter real-world study in China. J. Hematol. Oncol. 2017;10:1–5. doi: 10.1186/s13045-017-0439-6. PubMed DOI PMC
Schiattarella G.G., Sannino A., Toscano E., Cattaneo F., Trimarco B., Esposito G., Perrino C. Cardiovascular effects of histone deacetylase inhibitors epigenetic therapies: Systematic review of 62 studies and new hypotheses for future research. Int. J. Cardiol. 2016;219:396–403. doi: 10.1016/j.ijcard.2016.06.012. PubMed DOI
Halsall J.A., Turner B.M. Histone deacetylase inhibitors for cancer therapy: An evolutionarily ancient resistance response may explain their limited success. BioEssays News Rev. Mol. Cell. Dev. Biol. 2016;38:1102–1110. doi: 10.1002/bies.201600070. PubMed DOI PMC
Amnekar R., Gupta S. HDAC inhibitors in solid tumors: An incomplete story. J. Clin. Epigenet. 2018;4:8. doi: 10.21767/2472-1158.100093. DOI
Jenke R., Reßing N., Hansen F.K., Aigner A., Büch T. Anticancer therapy with HDAC inhibitors: Mechanism-based combination strategies and future perspectives. Cancers. 2021;13:634. doi: 10.3390/cancers13040634. PubMed DOI PMC
Morel D., Jeffery D., Aspeslagh S., Almouzni G., Postel-Vinay S. Combining epigenetic drugs with other therapies for solid tumours-past lessons and future promise. Nat. Rev. Clin. Oncol. 2020;17:91–107. doi: 10.1038/s41571-019-0267-4. PubMed DOI
Hubbert C., Guardiola A., Shao R., Kawaguchi Y., Ito A., Nixon A., Yoshida M., Wang X.F., Yao T.P. HDAC6 is a microtubule-associated deacetylase. Nature. 2002;417:455–458. doi: 10.1038/417455a. PubMed DOI
Chao M.W., Lai M.J., Liou J.P., Chang Y.L., Wang J.C., Pan S.L., Teng C.M. The synergic effect of vincristine and vorinostat in leukemia in vitro and in vivo. J. Hematol. Oncol. 2015;8:82. doi: 10.1186/s13045-015-0176-7. PubMed DOI PMC
Zuco V., De Cesare M., Cincinelli R., Nannei R., Pisano C., Zaffaroni N., Zunino F. Synergistic antitumor effects of novel HDAC inhibitors and paclitaxel in vitro and in vivo. PLoS ONE. 2011;6:e29085. doi: 10.1371/journal.pone.0029085. PubMed DOI PMC
Yoo J., Jeon Y.H., Lee D.H., Kim G.W., Lee S.W., Kim S.Y., Park J., Kwon S.H. HDAC6-selective inhibitors enhance anticancer effects of paclitaxel in ovarian cancer cells. Oncol. Lett. 2021;21:1. doi: 10.3892/ol.2021.12462. PubMed DOI PMC
Anighoro A., Bajorath J., Rastelli G. Polypharmacology: Challenges and opportunities in drug discovery. J. Med. Chem. 2014;57:7874–7887. doi: 10.1021/jm5006463. PubMed DOI
Bass A.K.A., El-Zoghbi M.S., Nageeb E.S.M., Mohamed M.F.A., Badr M., Abuo-Rahma G.E.D.A. Comprehensive review for anticancer hybridized multitargeting HDAC inhibitors. Eur. J. Med. Chem. 2021;209:112904. doi: 10.1016/j.ejmech.2020.112904. PubMed DOI
Liu T., Wan Y., Xiao Y., Xia C., Duan G. Dual-target inhibitors based on HDACs: Novel antitumor agents for cancer therapy. J. Med. Chem. 2020;63:8977–9002. doi: 10.1021/acs.jmedchem.0c00491. PubMed DOI
Beljkas M., Ilic A., Cebzan A., Radovic B., Djokovic N., Ruzic D., Nikolic K., Oljacic S. Targeting histone deacetylases 6 in dual-target therapy of cancer. Pharmaceutics. 2023;15:2581. doi: 10.3390/pharmaceutics15112581. PubMed DOI PMC
Brunetti M., Renzoni D., Chakravarty P., Paolini C., De Francesco R., Gallinari P., Steinkühler C., Di Marco S. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc. Natl. Acad. Sci. USA. 2004;101:15064–15069. PubMed PMC
Li Y., Wang F., Chen X., Wang J., Zhao Y., Li Y., He B. Zinc-dependent deacetylase (HDAC) inhibitors with different zinc binding groups. Curr. Top. Med. Chem. 2019;19:223–241. doi: 10.2174/1568026619666190122144949. PubMed DOI
Zhang L., Zhang J., Jiang Q., Zhang L., Song W. Zinc binding groups for histone deacetylase inhibitors. J. Enzyme Inhib. Med. Chem. 2018;33:714–721. doi: 10.1080/14756366.2017.1417274. PubMed DOI PMC
Shirbhate E., Singh V., Jahoriya V., Mishra A., Veerasamy R., Tiwari A.K., Rajak H. Dual inhibitors of HDAC and other epigenetic regulators: A novel strategy for cancer treatment. Eur. J. Med. Chem. 2024;263:115938. doi: 10.1016/j.ejmech.2023.115938. PubMed DOI
Zagni C., Floresta G., Monciino G., Rescifina A. The search for potent, small-molecule HDACIs in cancer treatment: A decade after vorinostat. Med. Res. Rev. 2017;37:1373–1428. doi: 10.1002/med.21437. PubMed DOI
Wang B., Chen X., Gao J., Su L., Zhang L., Xu H., Luan Y. Anti-tumor activity evaluation of novel tubulin and HDAC dual-targeting inhibitors. Bioorg. Med. Chem. Lett. 2019;29:2638–2645. doi: 10.1016/j.bmcl.2019.07.045. PubMed DOI
Romagnoli R., Baraldi P.G., Carrion M.D., Cara C.L., Cruz-Lopez O., Tolomeo M., Grimaudo S., Cristina A.D., Pipitone M.R., Balzarini J., et al. Design, synthesis and structure–activity relationship of 2-(3′,4′,5′- trimethoxybenzoyl)-benzo[b]furan derivatives as a novel class of inhibitors of tubulin polymerization. Bioorg. Med. Chem. 2009;17:6862–6871. doi: 10.1016/j.bmc.2009.08.027. PubMed DOI PMC
Kamal A., Reddy N.V., Nayak V.L., Reddy V.S., Prasad B., Nimbarte V.D., Srinivasulu V., Vishnuvardhan M.V., Reddy C.S. Synthesis and biological evaluation of benzo[b]furans as inhibitors of tubulin polymerization and inducers of apoptosis. ChemMedChem. 2014;9:117–128. doi: 10.1002/cmdc.201300366. PubMed DOI
Romagnoli R., Baraldi P.G., Lopez-Cara C., Cruz-Lopez O., Carrion M.D., Kimatrai Salvador M., Bermejo J., Estévez S., Estévez F., Balzarini J., et al. Synthesis and antitumor molecular mechanism of agents based on amino 2-(3′,4′,5′-trimethoxybenzoyl)benzo[b]furan: Inhibition of tubulin and induction of apoptosis. ChemMedChem. 2011;6:1841–1853. doi: 10.1002/cmdc.201100279. PubMed DOI PMC
Peng X., Sun Z., Kuang P., Chen J. Recent progress on HDAC inhibitors with dual targeting capabilities for cancer treatment. Eur. J. Med. Chem. 2020;208:112831. doi: 10.1016/j.ejmech.2020.112831. PubMed DOI
Vaidya G.N., Rana P., Venkatesh A., Chatterjee D.R., Contractor D., Satpute D.P., Nagpure M., Jain A., Kumar D. Paradigm shift of "classical" HDAC inhibitors to “hybrid” HDAC inhibitors in therapeutic interventions. Eur. J. Med. Chem. 2021;209:112844. doi: 10.1016/j.ejmech.2020.112844. PubMed DOI
Shuai W., Wang G., Zhang Y., Bu F., Zhang S., Miller D.D., Li W., Ouyang L., Wang Y. Recent progress on tubulin inhibitors with dual targeting capabilities for cancer therapy. J. Med. Chem. 2021;64:7963–7990. doi: 10.1021/acs.jmedchem.1c00100. PubMed DOI
Li L., Jiang S., Li X., Liu Y., Su J., Chen J. Recent advances in trimethoxyphenyl (TMP) based tubulin inhibitors targeting the colchicine binding site. Eur. J. Med. Chem. 2018;151:482–494. doi: 10.1016/j.ejmech.2018.04.011. PubMed DOI
Schobert R., Effenberger-Neidnicht K., Biersack B. Stable combretastatin A-4 analogues with sub-nanomolar efficacy against chemoresistant HT-29 cells. Int. J. Clin. Pharmacol. Ther. 2011;49:71–72. PubMed
Malebari A.M., Greene L.M., Nathwani S.M., Fayne D., O’Boyle N.M., Wang S., Twamley B., Zisterer D.M., Meegan M.J. β-Lactam analogues of combretastatin A-4 prevent metabolic inactivation by glucuronidation in chemoresistant HT-29 colon cancer cells. Eur. J. Med. Chem. 2017;130:261–285. doi: 10.1016/j.ejmech.2017.02.049. PubMed DOI
Ansari M., Shokrzadeh M., Karima S., Rajaei S., Fallah M., Ghassemi-Barghi N., Ghasemian M., Emami S. New thiazole-2(3H)-thiones containing 4-(3,4,5-trimethoxyphenyl) moiety as anticancer agents. Eur. J. Med. Chem. 2020;185:111784. doi: 10.1016/j.ejmech.2019.111784. PubMed DOI
Lindgren A.E.G., Öberg C.T., Hillgren J.M., Elofsson M. Total synthesis of the resveratrol oligomers (±)-ampelopsin B and (±)-ϵ-viniferin. Eur. J. Org. Chem. 2016;2016:426–429. doi: 10.1002/ejoc.201501486. DOI
Budassi F., Marchioro C., Canton M., Favaro A., Sturlese M., Urbinati C., Rusnati M., Romagnoli R., Viola G., Mariotto E. Design, synthesis and biological evaluation of novel 2,4-thiazolidinedione derivatives able to target the human BAG3 protein. Eur. J. Med. Chem. 2023;261:115824. doi: 10.1016/j.ejmech.2023.115824. PubMed DOI
Hamel E., Lin C.M. Separation of active tubulin and microtubule-associated proteins by ultracentrifugation and isolation of a component causing the formation of microtubule bundles. Biochemistry. 1984;23:4173–4184. doi: 10.1021/bi00313a026. PubMed DOI
Hamel E. Evaluation of antimitotic agents by quantitative comparisons of their effects on the polymerization of purified tubulin. Cell Biochem. Biophys. 2003;38:1–21. doi: 10.1385/CBB:38:1:1. PubMed DOI
Verdier-Pinard P., Lai J.Y., Yoo H.D., Yu J., Marquez B., Nagle D.G., Nambu M., White J.D., Falck J.R., Gerwick W.H. Structure-activity analysis of the interaction of curacin A, the potent colchicine site antimitotic agent, with tubulin and effects of analogs on the growth of MCF-7 breast cancer cells. Mol. Pharmacol. 1998;53:62–67. doi: 10.1124/mol.53.1.62. PubMed DOI
ULC, Chemical Computing Group. Molecular Operating Environment (MOE). 2022.02. [(accessed on 8 July 2024)]. Available online: https://www.chemcomp.com/Products.htm.
Schrodinger Release 2023-2: Maestro, Schrodinger, LLC, New York, NY, 2019. [(accessed on 8 July 2024)]. Available online: https://www.schrodinger.com/maestro.
Castro-Navas F.F., Schiaffino-Ortega S., Carrasco-Jimenez M.P., Ríos-Marco P., Marco C., Espinosa A., Gallo M.A., Mariotto E., Basso G., Viola G., et al. New more polar symmetrical bipyridinic compounds: New strategy for the inhibition of choline kinase α1. Future Med. Chem. 2015;7:417–436. doi: 10.4155/fmc.15.1. PubMed DOI
Romagnoli R., Baraldi P.G., Prencipe F., Oliva P., Baraldi S., Salvador M.K., Lopez-Cara L.C., Brancale A., Ferla S., Hamel E., et al. Synthesis and biological evaluation of 2-methyl-4,5-disubstituted oxazoles as a novel class of highly potent antitubulin agents. Sci. Rep. 2017;7:46356. doi: 10.1038/srep46356. PubMed DOI PMC