Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
SVV260637
Univerzita Karlova v Praze (Charles University)
SVV260521
Univerzita Karlova v Praze (Charles University)
UNCE 204064
Univerzita Karlova v Praze (Charles University)
Progres LF1 Q38
Univerzita Karlova v Praze (Charles University)
Progres LF1 Q27
Univerzita Karlova v Praze (Charles University)
Cooperatio ONCO
Univerzita Karlova v Praze (Charles University)
LM2023053
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
TN02000109
Technologická Agentura České Republiky (Technological Agency of the Czech Republic)
NU22-08-00160
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
NU21-08-00407
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
MUNI/A/1587/2023
Masarykova Univerzita (Masaryk University)
PubMed
39138299
PubMed Central
PMC11322665
DOI
10.1038/s42004-024-01256-6
PII: 10.1038/s42004-024-01256-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities. Cyanine dyes, with strong mitochondrial selectivity, show significant potential in enhancing PDT and PTT. The potential and limitations of cyanine dyes for mitochondrial PDT and PTT are discussed, along with their applications in combination therapies, theranostic techniques, and optimal delivery systems. Additionally, novel approaches for sonodynamic therapy using photoactive cyanine dyes are presented, highlighting advances in cancer treatment.
Zobrazit více v PubMed
Zhang, X. et al. Advances in liposomes loaded with photoresponse materials for cancer therapy. Biomed. Pharmacother.174, 116586 (2024). 10.1016/j.biopha.2024.116586 PubMed DOI
Yang, J. K., Kwon, H. & Kim, S. Recent advances in light-triggered cancer immunotherapy. J. Mater. Chem. B12, 2650–2669 (2024). 10.1039/D3TB02842A PubMed DOI
Piyarathna, D. W. B. et al. ERR1 and PGC1α associated mitochondrial alterations correlate with pan-cancer disparity in African Americans. J. Clin. Investig.129, 2351–2356 (2019). 10.1172/JCI127579 PubMed DOI PMC
Batheja, S., Gupta, S., Tejavath, K. K. & Gupta, U. TPP-based conjugates: potential targeting ligands. Drug Discov. Today29, 103983 (2024). 10.1016/j.drudis.2024.103983 PubMed DOI
Palominos, C. et al. Mitochondrial bioenergetics as a cell fate rheostat for responsive to Bcl-2 drugs: New cues for cancer chemotherapy. Cancer Lett.594, 216965 (2024). 10.1016/j.canlet.2024.216965 PubMed DOI
Qiu, Y. et al. Recent progress on near-infrared fluorescence heptamethine cyanine dye-based molecules and nanoparticles for tumor imaging and treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol15, e1910 (2023). 10.1002/wnan.1910 PubMed DOI
Bilici, K., Cetin, S., Celikbas, E., Yagci Acar, H. & Kolemen, S. Recent Advances in Cyanine-Based Phototherapy Agents. Frontiers in Chemistry9, 10.3389/fchem.2021.707876 (2021). PubMed PMC
Nödling, A. R. et al. Cyanine dye mediated mitochondrial targeting enhances the anti-cancer activity of small-molecule cargoes. Chem. Commun.56, 4672–4675 (2020).10.1039/C9CC07931A PubMed DOI
Usama, S. M. & Burgess, K. Hows and Whys of Tumor-Seeking Dyes. Acc. Chem. Res.54, 2121–2131 (2021). 10.1021/acs.accounts.0c00733 PubMed DOI
Kadkhoda, J., Tarighatnia, A., Nader, N. D. & Aghanejad, A. Targeting mitochondria in cancer therapy: Insight into photodynamic and photothermal therapies. Life Sci.307, 120898 (2022). 10.1016/j.lfs.2022.120898 PubMed DOI
Zeng, S. et al. Activation of pyroptosis by specific organelle-targeting photodynamic therapy to amplify immunogenic cell death for anti-tumor immunotherapy. Bioact. Mater.25, 580–593 (2023). Demonstration of the importance of mitochondrial PDT (primary tumor) in repression distant tumor PubMed PMC
Guo, Z. et al. Cationic Spherical Polypeptides with Immunogenic Cell Death Inducing Activity for Oncolytic Immunotherapy. CCS Chemistry0, 1-14
Wang, S.-Z. et al. Mitochondria-Targeted Photodynamic and Mild-Temperature Photothermal Therapy for Realizing Enhanced Immunogenic Cancer Cell Death via Mitochondrial Stress. Adv. Funct. Mater.33, 2303328 (2023). Demonstration of effectivity of dual mitochondrial PDT and PTT in activation of antitumor immune response10.1002/adfm.202303328 DOI
Chen, S., Liao, Z. & Xu, P. Mitochondrial control of innate immune responses. Front. Immunol.14, 10.3389/fimmu.2023.1166214 (2023). PubMed PMC
Al Amir Dache, Z. & Thierry, A. R. Mitochondria-derived cell-to-cell communication. Cell Rep.42, 112728 (2023). 10.1016/j.celrep.2023.112728 PubMed DOI
Wang, F., Zhang, D., Zhang, D., Li, P. & Gao, Y. Mitochondrial Protein Translation: Emerging Roles and Clinical Significance in Disease. Front Cell Dev. Biol.9, 675465 (2021). 10.3389/fcell.2021.675465 PubMed DOI PMC
Bogenhagen, D. & Clayton, D. A. The Number of Mitochondrial Deoxyribonucleic Acid Genomes in Mouse L and Human HeLa Cells: QUANTITATIVE ISOLATION OF MITOCHONDRIAL DEOXYRIBONUCLEIC ACID. J. Biol. Chem.249, 7991–7995 (1974). 10.1016/S0021-9258(19)42063-2 PubMed DOI
Sadakierska-Chudy, A., Frankowska, M. & Filip, M. Mitoepigenetics and drug addiction. Pharmacol. Therapeutics144, 226–233 (2014).10.1016/j.pharmthera.2014.06.002 PubMed DOI
Fiorillo, M., Ózsvári, B., Sotgia, F. & Lisanti, M. P. High ATP Production Fuels Cancer Drug Resistance and Metastasis: Implications for Mitochondrial ATP Depletion Therapy. Front Oncol.11, 740720 (2021). 10.3389/fonc.2021.740720 PubMed DOI PMC
Giaquinto, A. N. et al. Breast cancer statistics, 2022. CA: a cancer J. Clin.72, 524–541 (2022). PubMed
Adlimoghaddam, A. & Albensi, B. C. The nuclear factor kappa B (NF-κB) signaling pathway is involved in ammonia-induced mitochondrial dysfunction. Mitochondrion57, 63–75 (2021). 10.1016/j.mito.2020.12.008 PubMed DOI
Choi, E. et al. Risk model–based lung cancer screening and racial and ethnic disparities in the US. JAMA Oncol.9, 1640–1648 (2023). 10.1001/jamaoncol.2023.4447 PubMed DOI PMC
Lawson, A. B. et al. Deprivation and segregation in ovarian cancer survival among African American women: A mediation analysis. Ann. Epidemiol.86, 57–64 (2023). 10.1016/j.annepidem.2023.07.001 PubMed DOI PMC
Williams, O. et al. Community Health workers United to Reduce Colorectal cancer and cardiovascular disease among people at Higher risk (CHURCH): study protocol for a randomized controlled trial. Trials25, 283 (2024). 10.1186/s13063-024-08110-z PubMed DOI PMC
Institute, N. C. Cancer stat facts: prostate cancer, <http://seer.cancer.gov/statfacts/html/prost.html> (2024).
Giaquinto, A. N. et al. Cancer statistics for African American/Black People 2022. CA: A Cancer J. Clin.72, 202–229 (2022). PubMed
Piyarathna, D. W. B. et al. ERR1-and PGC1α-associated mitochondrial alterations correlate with pan-cancer disparity in African Americans. J. Clin. Investig.129, 2351–2356 (2019). 10.1172/JCI127579 PubMed DOI PMC
Zou, Z., Chang, H., Li, H. & Wang, S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis22, 1321–1335 (2017). 10.1007/s10495-017-1424-9 PubMed DOI
Passaniti, A., Kim, M. S., Polster, B. M. & Shapiro, P. Targeting mitochondrial metabolism for metastatic cancer therapy. Mol. Carcinog.61, 827–838 (2022). 10.1002/mc.23436 PubMed DOI PMC
Gorrini, C., Harris, I. S. & Mak, T. W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov.12, 931–947 (2013). 10.1038/nrd4002 PubMed DOI
Cheung, E. C. & Vousden, K. H. The role of ROS in tumour development and progression. Nat. Rev. Cancer22, 280–297 (2022). 10.1038/s41568-021-00435-0 PubMed DOI
Szatrowski, T. P. & Nathan, C. F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res.51, 794–798 (1991). PubMed
Cocetta, V., Ragazzi, E. & Montopoli, M. Mitochondrial Involvement in Cisplatin Resistance. Int J Mol Sci20, 10.3390/ijms20143384 (2019). PubMed PMC
Yang, H. et al. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res.37, 266 (2018). 10.1186/s13046-018-0909-x PubMed DOI PMC
Jia, D., Park, J. H., Jung, K. H., Levine, H. & Kaipparettu, B. A. Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States. Cells7, 10.3390/cells7030021 (2018). PubMed PMC
Ghosh, P., Vidal, C., Dey, S. & Zhang, L. Mitochondria Targeting as an Effective Strategy for Cancer Therapy. Int J Mol Sci21, 10.3390/ijms21093363 (2020). PubMed PMC
Denisenko, T. V., Gorbunova, A. S. & Zhivotovsky, B. Mitochondrial Involvement in Migration, Invasion and Metastasis. Front Cell Dev. Biol.7, 355 (2019). 10.3389/fcell.2019.00355 PubMed DOI PMC
Yang, R. & Rincon, M. Mitochondrial Stat3, the Need for Design Thinking. Int J. Biol. Sci.12, 532–544 (2016). 10.7150/ijbs.15153 PubMed DOI PMC
Mauro, C. et al. NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration. Nat. Cell Biol.13, 1272–1279 (2011). 10.1038/ncb2324 PubMed DOI PMC
Domínguez-Zorita, S. & Cuezva, J. M. The Mitochondrial ATP Synthase/IF1 Axis in Cancer Progression: Targets for Therapeutic Intervention. Cancers (Basel)15, 10.3390/cancers15153775 (2023). PubMed PMC
Caino, M. C. & Altieri, D. C. Molecular Pathways: Mitochondrial Reprogramming in Tumor Progression and Therapy. Clin. Cancer Res.22, 540–545 (2016). 10.1158/1078-0432.CCR-15-0460 PubMed DOI PMC
Viale, A., Corti, D. & Draetta, G. F. Tumors and mitochondrial respiration: a neglected connection. Cancer Res.75, 3685–3686 (2015). 10.1158/0008-5472.CAN-15-0491 PubMed DOI
Okon, I. S. & Zou, M. H. Mitochondrial ROS and cancer drug resistance: Implications for therapy. Pharm. Res.100, 170–174 (2015).10.1016/j.phrs.2015.06.013 PubMed DOI PMC
de Sá Junior, P. L. et al. The Roles of ROS in Cancer Heterogeneity and Therapy. Oxid. Med. Cell Longev.2017, 2467940 (2017). 10.1155/2017/2467940 PubMed DOI PMC
Che, M., Wang, R., Li, X., Wang, H. Y. & Zheng, X. F. S. Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov. Today21, 143–149 (2016). 10.1016/j.drudis.2015.10.001 PubMed DOI PMC
Bansal, A. & Simon, M. C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol.217, 2291–2298 (2018). 10.1083/jcb.201804161 PubMed DOI PMC
Gandin, V. & Fernandes, A. P. Metal- and Semimetal-Containing Inhibitors of Thioredoxin Reductase as Anticancer Agents. Molecules20, 12732–12756 (2015). 10.3390/molecules200712732 PubMed DOI PMC
Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature527, 186–191 (2015). 10.1038/nature15726 PubMed DOI PMC
Ingle, J. & Basu, S. Mitochondria Targeted AIE Probes for Cancer Phototherapy. ACS Omega8, 8925–8935 (2023). 10.1021/acsomega.3c00203 PubMed DOI PMC
Shen, Z. et al. Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment. NPG Asia Mater.13, 39 (2021).10.1038/s41427-021-00303-1 DOI
Correia, J. H., Rodrigues, J. A., Pimenta, S., Dong, T. & Yang, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics13. 10.3390/pharmaceutics13091332 (2021). PubMed PMC
Liao, S. et al. Improvement of Gold Nanorods in Photothermal Therapy: Recent Progress and Perspective. Front. Pharmacol.12, 10.3389/fphar.2021.664123. PubMed PMC
Zhang, A. et al. Simultaneous luminescence in I, II and III biological windows (2021)realized by using the energy transfer of Yb3+→Er3+/Ho3+→Cr3+. Chem. Eng. J.365, 400–404 (2019).10.1016/j.cej.2019.02.061 DOI
Ma, J. & Jiang, L. Photogeneration of singlet oxygen (1O2) and free radicals (Sen*-, O2*-) by tetra-brominated hypocrellin B derivative. Free Radic. Res.35, 767–777 (2001). 10.1080/10715760100301271 PubMed DOI
Bilski, P., Motten, A. G., Bilska, M. & Chignell, C. F. The photooxidation of diethylhydroxylamine by rose bengal in micellar and nonmicellar aqueous solutions. Photochem Photobio.58, 11–18 (1993).10.1111/j.1751-1097.1993.tb04896.x PubMed DOI
Castano, A. P., Demidova, T. N. & Hamblin, M. R. Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn. Ther.1, 279–293 (2004). 10.1016/S1572-1000(05)00007-4 PubMed DOI PMC
Kwiatkowski, S. et al. Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomed. Pharmacother.106, 1098–1107 (2018). 10.1016/j.biopha.2018.07.049 PubMed DOI
Calixto, G. M., Bernegossi, J., de Freitas, L. M., Fontana, C. R. & Chorilli, M. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review. Molecules21, 342 (2016). 10.3390/molecules21030342 PubMed DOI PMC
Ancély Ferreira dos, S. et al. Photodynamic therapy in cancer treatment - an update review. Photodyn. Ther. cancer Treat. - update Rev.5, 25 (2019).
Slimen, I. B. et al. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J. Hyperth.30, 513–523 (2014).10.3109/02656736.2014.971446 PubMed DOI
Mujahid, A. et al. Mitochondrial Oxidative Damage in Chicken Skeletal Muscle Induced by Acute Heat Stress. J. Poult. Sci.44, 439–445 (2007). Observed propagation of radial reaction in mitochondria via oxidation of mitochondrial lipids10.2141/jpsa.44.439 DOI
Yi, M. et al. Manipulate tumor hypoxia for improved photodynamic therapy using nanomaterials. Eur. J. Med. Chem.247, 115084 (2023). 10.1016/j.ejmech.2022.115084 PubMed DOI
Zhuang, J. et al. Efficient NIR-II Type-I AIE Photosensitizer for Mitochondria-Targeted Photodynamic Therapy through Synergistic Apoptosis-Ferroptosis. ACS Nano17, 9110–9125 (2023). 10.1021/acsnano.2c12319 PubMed DOI
Scholz, M., Petusseau, A. F., Gunn, J. R., Shane Chapman, M. & Pogue, B. W. Imaging of hypoxia, oxygen consumption and recovery in vivo during ALA-photodynamic therapy using delayed fluorescence of Protoporphyrin IX. Photodiagnosis Photodyn. Ther.30, 101790 (2020). 10.1016/j.pdpdt.2020.101790 PubMed DOI
Bříza, T. et al. Pentamethinium fluorescent probes: The impact of molecular structure on photophysical properties and subcellular localization. Dyes Pigments107, 51–59 (2014).10.1016/j.dyepig.2013.12.021 DOI
Kejík, Z. et al. Combination of quinoxaline with pentamethinium system: Mitochondrial staining and targeting. Bioorg. Chem.141, 106816 (2023). 10.1016/j.bioorg.2023.106816 PubMed DOI
Rimpelová, S. et al. Rational Design of Chemical Ligands for Selective Mitochondrial Targeting. Bioconjugate Chem.24, 1445–1454 (2013).10.1021/bc400291f PubMed DOI
Krejcir, R. et al. Anticancer pentamethinium salt is a potent photosensitizer inducing mitochondrial disintegration and apoptosis upon red light illumination. J. Photochem Photobio. B209, 111939 (2020).10.1016/j.jphotobiol.2020.111939 PubMed DOI
Wang, R., Li, X. & Yoon, J. Organelle-Targeted Photosensitizers for Precision Photodynamic Therapy. ACS Appl Mater. Interfaces13, 19543–19571 (2021). 10.1021/acsami.1c02019 PubMed DOI
Kessel, D. & Evans, C. L. Promotion of Proapoptotic Signals by Lysosomal Photodamage: Mechanistic Aspects and Influence of Autophagy. Photochem Photobio.92, 620–623 (2016).10.1111/php.12592 PubMed DOI PMC
Kessel, D. Photodynamic therapy: Promotion of efficacy by a sequential protocol. J. Porphyr. Phthalocyanines20, 302–306 (2016). 10.1142/S1088424616500073 PubMed DOI PMC
Zhou, X. et al. An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging. Biomaterials253, 120089 (2020). 10.1016/j.biomaterials.2020.120089 PubMed DOI PMC
Zhang, Y. et al. Hemicyanine-Based Type I Photosensitizers for Antihypoxic Activatable Photodynamic Therapy. ACS Mater. Lett.5, 3058–3067 (2023).10.1021/acsmaterialslett.3c00933 DOI
Wangngae, S. et al. Effect of morpholine and charge distribution of cyanine dyes on cell internalization and cytotoxicity. Sci. Rep.12, 4173 (2022). 10.1038/s41598-022-07533-5 PubMed DOI PMC
Hu, Y. B., Dammer, E. B., Ren, R. J. & Wang, G. The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl. Neurodegener.4, 18 (2015). 10.1186/s40035-015-0041-1 PubMed DOI PMC
Shi, C. et al. Reversing Multidrug Resistance by Inducing Mitochondrial Dysfunction for Enhanced Chemo-Photodynamic Therapy in Tumor. ACS Appl Mater. Interfaces13, 45259–45268 (2021). Decrease in P-gp expression and increase paclitaxel efficiency via mitochondrial PDT (in vitro and in vivo) 10.1021/acsami.1c12725 PubMed DOI
Habash, R. W., Bansal, R., Krewski, D. & Alhafid, H. T. Thermal therapy, part 1: an introduction to thermal therapy. Crit. Rev. Biomed. Eng.34, 459–489 (2006). 10.1615/CritRevBiomedEng.v34.i6.20 PubMed DOI
Yun, C. W., Kim, H. J., Lim, J. H. & Lee, S. H. Heat shock proteins: agents of cancer development and therapeutic targets in anti-cancer therapy. Cells9, 60 (2019). 10.3390/cells9010060 PubMed DOI PMC
Streicher, J. M. The role of heat shock proteins in regulating receptor signal transduction. Mol. Pharmacol.95, 468–474 (2019). 10.1124/mol.118.114652 PubMed DOI
Hu, C. et al. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm3, e161 (2022). 10.1002/mco2.161 PubMed DOI PMC
Ali, M. R., Ali, H. R., Rankin, C. R. & El-Sayed, M. A. Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy. Biomaterials102, 1–8 (2016). 10.1016/j.biomaterials.2016.06.017 PubMed DOI
Chen, W.-H. et al. Overcoming the Heat Endurance of Tumor Cells by Interfering with the Anaerobic Glycolysis Metabolism for Improved Photothermal Therapy. ACS Nano11, 1419–1431 (2017). 10.1021/acsnano.6b06658 PubMed DOI
Tang, X. et al. Gold nanorods together with HSP inhibitor-VER-155008 micelles for colon cancer mild-temperature photothermal therapy. Acta Pharmaceutica Sin. B8, 587–601 (2018).10.1016/j.apsb.2018.05.011 PubMed DOI PMC
Liu, D. et al. Polydopamine-encapsulated Fe3O4 with an adsorbed HSP70 inhibitor for improved photothermal inactivation of bacteria. ACS Appl. Mater. Interfaces8, 24455–24462 (2016). 10.1021/acsami.6b08119 PubMed DOI
Wang, Z. et al. Laser‐triggered small interfering RNA releasing gold nanoshells against heat shock protein for sensitized photothermal therapy. Adv. Sci.4, 1600327 (2017).10.1002/advs.201600327 PubMed DOI PMC
Liu, H. J., Wang, M., Hu, X., Shi, S. & Xu, P. Enhanced photothermal therapy through the in situ activation of a temperature and redox dual‐sensitive nanoreservoir of triptolide. Small16, 2003398 (2020).10.1002/smll.202003398 PubMed DOI PMC
Sun, T. et al. Enhanced efficacy of photothermal therapy by combining a semiconducting polymer with an inhibitor of a heat shock protein. Mater. Chem. Front.3, 127–136 (2019).10.1039/C8QM00459E DOI
Liu, D. et al. Thermoresponsive nanogel‐encapsulated PEDOT and HSP70 inhibitor for improving the depth of the photothermal therapeutic effect. Adv. Funct. Mater.26, 4749–4759 (2016).10.1002/adfm.201600031 DOI
Wang, Y. et al. Cancer Cell-Mimicking Prussian Blue Nanoplatform for Synergistic Mild Photothermal/Chemotherapy via Heat Shock Protein Inhibition. ACS Appl. Mate. Interfaces16, 20908–20919 (2024). PubMed
Zhong, Y. et al. pH-responsive Ag2S nanodots loaded with heat shock protein 70 inhibitor for photoacoustic imaging-guided photothermal cancer therapy. Acta Biomaterialia115, 358–370 (2020). 10.1016/j.actbio.2020.08.007 PubMed DOI
Iwata, K. et al. Tumour pO2 can be increased markedly by mild hyperthermia. The. Br. J. Cancer Suppl.27, S217 (1996). PubMed PMC
Vaupel, P. W. & Kelleher, D. K. Pathophysiological and vascular characteristics of tumours and their importance for hyperthermia: heterogeneity is the key issue. Int. J. Hyperth.26, 211–223 (2010).10.3109/02656731003596259 PubMed DOI
Sen, A. et al. Mild elevation of body temperature reduces tumor interstitial fluid pressure and hypoxia and enhances efficacy of radiotherapy in murine tumor models. Cancer Res.71, 3872–3880 (2011). 10.1158/0008-5472.CAN-10-4482 PubMed DOI PMC
Yonezawa, M. et al. Hyperthermia induces apoptosis in malignant fibrous histiocytoma cells in vitro. Int. J. cancer66, 347–351 (1996). 10.1002/(SICI)1097-0215(19960503)66:3<347::AID-IJC14>3.0.CO;2-8 PubMed DOI
Piret, E. M. et al. Side effects and acceptability measures for thermal ablation as a treatment for cervical precancer in low-income and middle-income countries: a systematic review and meta-synthesis. Fam Med. Community Health10, 10.1136/fmch-2021-001541 (2022). PubMed PMC
Overchuk, M., Weersink, R. A., Wilson, B. C. & Zheng, G. Photodynamic and Photothermal Therapies: Synergy Opportunities for Nanomedicine. ACS Nano17, 7979–8003 (2023). 10.1021/acsnano.3c00891 PubMed DOI PMC
Lange, N., Szlasa, W., Saczko, J. & Chwiłkowska, A. Potential of Cyanine Derived Dyes in Photodynamic Therapy. Pharmaceutics13, 10.3390/pharmaceutics13060818 (2021). PubMed PMC
Yang, J., Griffin, A., Qiang, Z. & Ren, J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduct. Target Ther.7, 379 (2022). 10.1038/s41392-022-01243-0 PubMed DOI PMC
Isidoro, A. et al. Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis. Carcinogenesis26, 2095–2104 (2005). 10.1093/carcin/bgi188 PubMed DOI
Mishra, A., Behera, R. K., Behera, P. K., Mishra, B. K. & Behera, G. B. Cyanines during the 1990s: A Review. Chem. Rev.100, 1973–2012 (2000). 10.1021/cr990402t PubMed DOI
Shi, C., Wu, J. B. & Pan, D. Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy. J. Biomed. Opt.21, 50901 (2016). 10.1117/1.JBO.21.5.050901 PubMed DOI
Kejík, Z. et al. New method for recognition of sterol signalling molecules: methinium salts as receptors for sulphated steroids. Steroids94, 15–20 (2015). 10.1016/j.steroids.2014.10.009 PubMed DOI
Bříza, T. et al. Optical sensing of sulfate by polymethinium salt receptors: colorimetric sensor for heparin. Chem. Commun. 1901-1903. 10.1039/B718492A (2008). PubMed
Briza, T. et al. Dimethinium Heteroaromatic Salts as Building Blocks for Dual-Fluorescence Intracellular Probes. Chemphotochem1, 442–450 (2017).10.1002/cptc.201700061 DOI
Cooper, E. et al. The Use of Heptamethine Cyanine Dyes as Drug-Conjugate Systems in the Treatment of Primary and Metastatic Brain Tumors. Front Oncol.11, 654921 (2021). 10.3389/fonc.2021.654921 PubMed DOI PMC
Bříza, T. et al. Pentamethinium salts as ligands for cancer: Sulfated polysaccharide co-receptors as possible therapeutic target. Bioorg. Chem.82, 74–85 (2019). 10.1016/j.bioorg.2018.02.011 PubMed DOI
Talianová, V. et al. New-Generation Heterocyclic Bis-Pentamethinium Salts as Potential Cytostatic Drugs with Dual IL-6R and Mitochondria-Targeting Activity. Pharmaceutics14, 10.3390/pharmaceutics14081712 (2022). PubMed PMC
Bříza, T. et al. Striking antitumor activity of a methinium system with incorporated quinoxaline unit obtained by spontaneous cyclization. Chembiochem16, 555–558 (2015). 10.1002/cbic.201402662 PubMed DOI
Ran, S., Downes, A. & Thorpe, P. E. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res.62, 6132–6140 (2002). PubMed
Dereje, D. M., Pontremoli, C., Moran Plata, M. J., Visentin, S. & Barbero, N. Polymethine dyes for PDT: recent advances and perspectives to drive future applications. Photochem Photobio. Sci.21, 397–419 (2022).10.1007/s43630-022-00175-6 PubMed DOI
Chance, B. Near-infrared images using continuous, phase-modulated, and pulsed light with quantitation of blood and blood oxygenation. Ann. N. Y Acad. Sci.838, 29–45 (1998). 10.1111/j.1749-6632.1998.tb08185.x PubMed DOI
Mahmut, Z. et al. Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules. Molecules28, 10.3390/molecules28166085 (2023). PubMed PMC
Štacková, L. et al. Deciphering the Structure–Property Relations in Substituted Heptamethine Cyanines. J. Org. Chem.85, 9776–9790 (2020). 10.1021/acs.joc.0c01104 PubMed DOI
Niu, S. et al. Effect of indocyanine green near-infrared light imaging technique guided lymph node dissection on short-term clinical efficacy of minimally invasive radical gastric cancer surgery: a meta-analysis. Front Oncol.13, 1257585 (2023). 10.3389/fonc.2023.1257585 PubMed DOI PMC
Quan, B., Choi, K., Kim, Y. H., Kang, K. W. & Chung, D. S. Near infrared dye indocyanine green doped silica nanoparticles for biological imaging. Talanta99, 387–393 (2012). 10.1016/j.talanta.2012.05.069 PubMed DOI
Alves, A. C., Ribeiro, D., Nunes, C. & Reis, S. Biophysics in cancer: The relevance of drug-membrane interaction studies. Biochimica et. Biophysica Acta (BBA) - Biomembranes1858, 2231–2244 (2016). 10.1016/j.bbamem.2016.06.025 PubMed DOI
Cottet-Rousselle, C., Ronot, X., Leverve, X. & Mayol, J.-F. Cytometric assessment of mitochondria using fluorescent probes. Cytom. Part A79A, 405–425 (2011).10.1002/cyto.a.21061 PubMed DOI
Perry, S. W., Norman, J. P., Barbieri, J., Brown, E. B. & Gelbard, H. A. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. BioTechniques50, 98–115 (2011). 10.2144/000113610 PubMed DOI PMC
Begum, H. M. & Shen, K. Intracellular and microenvironmental regulation of mitochondrial membrane potential in cancer cells. WIREs Mechanisms Dis.15, e1595 (2023).10.1002/wsbm.1595 PubMed DOI PMC
Heerdt, B. G., Houston, M. A. & Augenlicht, L. H. The Intrinsic Mitochondrial Membrane Potential of Colonic Carcinoma Cells Is Linked to the Probability of Tumor Progression. Cancer Res.65, 9861–9867 (2005). 10.1158/0008-5472.CAN-05-2444 PubMed DOI
Heerdt, B. G., Houston, M. A. & Augenlicht, L. H. Growth Properties of Colonic Tumor Cells Are a Function of the Intrinsic Mitochondrial Membrane Potential. Cancer Res.66, 1591–1596 (2006). 10.1158/0008-5472.CAN-05-2717 PubMed DOI
Garcia Fernandez, M. I., Ceccarelli, D. & Muscatello, U. Use of the fluorescent dye 10-N-nonyl acridine orange in quantitative and location assays of cardiolipin: a study on different experimental models. Anal. Biochem.328, 174–180 (2004). 10.1016/j.ab.2004.01.020 PubMed DOI
Jacobson, J., Duchen, M. R. & Heales, S. J. Intracellular distribution of the fluorescent dye nonyl acridine orange responds to the mitochondrial membrane potential: implications for assays of cardiolipin and mitochondrial mass. J. Neurochem82, 224–233 (2002). 10.1046/j.1471-4159.2002.00945.x PubMed DOI
Tang, Q. et al. Dynamin-related protein 1-mediated mitochondrial fission contributes to IR-783-induced apoptosis in human breast cancer cells. J. Cell. Mol. Med.22, 4474–4485 (2018). 10.1111/jcmm.13749 PubMed DOI PMC
Borrelli, M. J., Rausch, C. M., Seaner, R. & Iliakis, G. Sensitization to hyperthermia by 3,3’-dipentyloxacarbocyanine iodide: a positive correlation with DNA damage and negative correlations with altered cell morphology, oxygen consumption inhibition, and reduced ATP levels. Int J. Hyperth.7, 243–261 (1991).10.3109/02656739109004994 PubMed DOI
Shinohara, Y., Nagamune, H. & Terada, H. The hydrophobic cationic cyanine dye inhibits oxidative phosphorylation by inhibiting ADP transport, not by electrophoretic transfer, into mitochondria. Biochem Biophys. Res Commun.148, 1081–1086 (1987). 10.1016/S0006-291X(87)80242-5 PubMed DOI
Fialova, J. L. et al. Pentamethinium salts suppress key metastatic processes by regulating mitochondrial function and inhibiting dihydroorotate dehydrogenase respiration. Biomed. Pharmacother.154, 113582 (2022). 10.1016/j.biopha.2022.113582 PubMed DOI
Liu, H.-W. et al. A mitochondrial-targeted prodrug for NIR imaging guided and synergetic NIR photodynamic-chemo cancer therapy. Chem. Sci.8, 7689–7695 (2017). Promising example of chimeric PDT agent with strong selectivity against cancer cells and tumor 10.1039/C7SC03454G PubMed DOI PMC
Thankarajan, E. et al. A novel, dual action chimera comprising DNA methylating agent and near-IR xanthene-cyanine photosensitizer for combined anticancer therapy. Photodiagnosis Photodyn. Ther.37, 102722 (2022). 10.1016/j.pdpdt.2022.102722 PubMed DOI
Yue, X. F. et al. The near-infrared dye IR-61 restores erectile function in a streptozotocin-induced diabetes model via mitochondrial protection. Asian J. Androl.23, 249–258 (2021). 10.4103/aja.aja_69_20 PubMed DOI PMC
Wang, J. et al. IR-61 Improves Voiding Function via Mitochondrial Protection in Diabetic Rats. Front. Pharmacol.12, 10.3389/fphar.2021.608637 (2021). PubMed PMC
Rojo de la Vega, M., Chapman, E. & Zhang, D. D. NRF2 and the Hallmarks of Cancer. Cancer Cell34, 21–43 (2018). 10.1016/j.ccell.2018.03.022 PubMed DOI PMC
Esteras, N. & Abramov, A. Y. Nrf2 as a regulator of mitochondrial function: Energy metabolism and beyond. Free Radic. Biol. Med.189, 136–153 (2022). 10.1016/j.freeradbiomed.2022.07.013 PubMed DOI
Buttari, B., Arese, M., Oberley-Deegan, R. E., Saso, L. & Chatterjee, A. NRF2: A crucial regulator for mitochondrial metabolic shift and prostate cancer progression. Front. Physiol.13, 10.3389/fphys.2022.989793 (2022). PubMed PMC
Shan, Z., Fa, W. H., Tian, C. R., Yuan, C. S. & Jie, N. Mitophagy and mitochondrial dynamics in type 2 diabetes mellitus treatment. Aging (Albany NY)14, 2902–2919 (2022). 10.18632/aging.203969 PubMed DOI PMC
Zhu, Y.-X. et al. Mitochondria-acting nanomicelles for destruction of cancer cells via excessive mitophagy/autophagy-driven lethal energy depletion and phototherapy. Biomaterials232, 119668 (2020). 10.1016/j.biomaterials.2019.119668 PubMed DOI
Kurokawa, H. et al. High resolution imaging of intracellular oxygen concentration by phosphorescence lifetime. Sci. Rep.5, 10657 (2015). 10.1038/srep10657 PubMed DOI PMC
Rubio, N., Fleury, S. P. & Redmond, R. W. Spatial and temporal dynamics of in vitro photodynamic cell killing: extracellular hydrogen peroxide mediates neighbouring cell death. Photochem Photobio. Sci.8, 457–464 (2009).10.1039/b815343d PubMed DOI
Li, Y. H. et al. Mitochondrion, lysosome, and endoplasmic reticulum: Which is the best target for phototherapy? J. Control Release351, 692–702 (2022). 10.1016/j.jconrel.2022.09.037 PubMed DOI
MacDonald, I. J. et al. Subcellular localization patterns and their relationship to photodynamic activity of pyropheophorbide-a derivatives. Photochem Photobio.70, 789–797 (1999). PubMed
Walker, I. et al. A comparative analysis of phenothiazinium salts for the photosensitisation of murine fibrosarcoma (RIF-1) cells in vitro. Photochem Photobio. Sci.3, 653–659 (2004).10.1039/b400083h PubMed DOI
Baldea, I. et al. Efficiency of photodynamic therapy on WM35 melanoma with synthetic porphyrins: Role of chemical structure, intracellular targeting and antioxidant defense. J. Photochem. Photobiol. B: Biol.151, 142–152 (2015).10.1016/j.jphotobiol.2015.07.019 PubMed DOI
Zhao, H., Xing, D. & Chen, Q. New insights of mitochondria reactive oxygen species generation and cell apoptosis induced by low dose photodynamic therapy. Eur. J. Cancer47, 2750–2761 (2011). 10.1016/j.ejca.2011.06.031 PubMed DOI
Cen, Y. et al. Drug induced mitochondria dysfunction to enhance photodynamic therapy of hypoxic tumors. J. Control Release358, 654–666 (2023). 10.1016/j.jconrel.2023.05.023 PubMed DOI
Theodossiou, T. A., Papakyriakou, A. & Hothersall, J. S. Molecular modeling and experimental evidence for hypericin as a substrate for mitochondrial complex III; mitochondrial photodamage as demonstrated using specific inhibitors. Free Radic. Biol. Med.45, 1581–1590 (2008). 10.1016/j.freeradbiomed.2008.09.015 PubMed DOI
Lin, F., Bao, Y. W. & Wu, F. G. Improving the Phototherapeutic Efficiencies of Molecular and Nanoscale Materials by Targeting Mitochondria. Molecules23, 10.3390/molecules23113016 (2018). PubMed PMC
Csordás, G. et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol.174, 915–921 (2006). 10.1083/jcb.200604016 PubMed DOI PMC
Jiang, H., Fu, H., Guo, Y., Hu, P. & Shi, J. Evoking tumor associated macrophages by mitochondria-targeted magnetothermal immunogenic cell death for cancer immunotherapy. Biomaterials289, 121799 (2022). 10.1016/j.biomaterials.2022.121799 PubMed DOI
Chou, W. et al. Photodynamic Therapy-Induced Anti-Tumor Immunity: Influence Factors and Synergistic Enhancement Strategies. Pharmaceutics15, 10.3390/pharmaceutics15112617 (2023). PubMed PMC
Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol.12, 222–230 (2011). 10.1038/ni.1980 PubMed DOI PMC
Shimada, K. et al. Oxidized Mitochondrial DNA Activates the NLRP3 Inflammasome during Apoptosis. Immunity36, 401–414 (2012). 10.1016/j.immuni.2012.01.009 PubMed DOI PMC
Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol.11, 136–140 (2010). 10.1038/ni.1831 PubMed DOI
Yakes, F. M. & Van Houten, B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl Acad. Sci.94, 514–519 (1997). 10.1073/pnas.94.2.514 PubMed DOI PMC
Hu, P. et al. Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials141, 86–95 (2017). 10.1016/j.biomaterials.2017.06.035 PubMed DOI
Chen, Y., Wei, X.-R., Sun, R., Xu, Y.-J. & Ge, J.-F. The application of azonia-cyanine dyes for nucleic acids imaging in mitochondria. Sens. Actuators B: Chem.281, 499–506 (2019).10.1016/j.snb.2018.10.146 DOI
Schneider, A. et al. Single organelle analysis to characterize mitochondrial function and crosstalk during viral infection. Sci. Rep.9, 8492 (2019). 10.1038/s41598-019-44922-9 PubMed DOI PMC
Mahalingam, S. M., Ordaz, J. D. & Low, P. S. Targeting of a Photosensitizer to the Mitochondrion Enhances the Potency of Photodynamic Therapy. ACS Omega3, 6066–6074 (2018). 10.1021/acsomega.8b00692 PubMed DOI PMC
Lim, J. B., Huang, B. K., Deen, W. M. & Sikes, H. D. Analysis of the lifetime and spatial localization of hydrogen peroxide generated in the cytosol using a reduced kinetic model. Free Radic. Biol. Med.89, 47–53 (2015). 10.1016/j.freeradbiomed.2015.07.009 PubMed DOI
Shahzidi, S. et al. Simultaneously targeting mitochondria and endoplasmic reticulum by photodynamic therapy induces apoptosis in human lymphoma cells. Photochem Photobio. Sci.10, 1773–1782 (2011).10.1039/c1pp05169e PubMed DOI
Radchenko, A. S. et al. Photoactivated biscarbocyanine dye with two conjugated chromophores: complexes with albumin, photochemical and phototoxic properties. Photochemical Photobiological Sci.18, 2461–2468 (2019).10.1039/c9pp00241c PubMed DOI
Kessel, D. & Reiners, J. J. Jr. Promotion of Proapoptotic Signals by Lysosomal Photodamage. Photochem Photobio.91, 931–936 (2015).10.1111/php.12456 PubMed DOI PMC
Martins, W. K. et al. Parallel damage in mitochondria and lysosomes is an efficient way to photoinduce cell death. Autophagy15, 259–279 (2019). 10.1080/15548627.2018.1515609 PubMed DOI PMC
Li, J. et al. Activatable Dual ROS-Producing Probe for Dual Organelle-Engaged Photodynamic Therapy. ACS Appl. Bio Mater.4, 4618–4628 (2021). 10.1021/acsabm.1c00354 PubMed DOI
Wang, S. et al. A lysosomes and mitochondria dual-targeting AIE-active NIR photosensitizer: Constructing amphiphilic structure for enhanced antitumor activity and two-photon imaging. Mater. Today Bio21, 100721 (2023). 10.1016/j.mtbio.2023.100721 PubMed DOI PMC
Shui, S., Zhao, Z., Wang, H., Conrad, M. & Liu, G. Non-enzymatic lipid peroxidation initiated by photodynamic therapy drives a distinct ferroptosis-like cell death pathway. Redox Biol.45, 102056 (2021). 10.1016/j.redox.2021.102056 PubMed DOI PMC
Pavani, C., Uchoa, A. F., Oliveira, C. S., Iamamoto, Y. & Baptista, M. S. Effect of zinc insertion and hydrophobicity on the membrane interactions and PDT activity of porphyrin photosensitizers. Photochem Photobio. Sci.8, 233–240 (2009).10.1039/b810313e PubMed DOI
Sekkat, N., Bergh, H. V. D., Nyokong, T. & Lange, N. Like a Bolt from the Blue: Phthalocyanines in Biomedical Optics. Molecules17, 98–144 (2012).10.3390/molecules17010098 PubMed DOI PMC
Xu, S. et al. Tuning the singlet-triplet energy gap: a unique approach to efficient photosensitizers with aggregation-induced emission (AIE) characteristics. Chem. Sci.6, 5824–5830 (2015). 10.1039/C5SC01733E PubMed DOI PMC
Yang, L. et al. Aggregation-induced intersystem crossing: a novel strategy for efficient molecular phosphorescence. Nanoscale8, 17422–17426 (2016). 10.1039/C6NR03656B PubMed DOI
Ji, C. et al. A Size-Reducible Nanodrug with an Aggregation-Enhanced Photodynamic Effect for Deep Chemo-Photodynamic Therapy. Angew. Chem. Int. Ed.57, 11384–11388 (2018).10.1002/anie.201807602 PubMed DOI
Cakmak, Y. et al. Designing Excited States: Theory-Guided Access to Efficient Photosensitizers for Photodynamic Action. Angew. Chem. Int. Ed.50, 11937–11941 (2011).10.1002/anie.201105736 PubMed DOI
Sivandzade, F., Bhalerao, A. & Cucullo, L. Analysis of the Mitochondrial Membrane Potential Using the Cationic JC-1 Dye as a Sensitive Fluorescent Probe. Bio. Protoc.9, 10.21769/BioProtoc.3128 (2019). PubMed PMC
Thomas, A. P., Palanikumar, L., Jeena, M. T., Kim, K. & Ryu, J. H. Cancer-mitochondria-targeted photodynamic therapy with supramolecular assembly of HA and a water soluble NIR cyanine dye. Chem. Sci.8, 8351–8356 (2017). 10.1039/C7SC03169F PubMed DOI PMC
Huang, H. et al. Bromo-pentamethine as mitochondria-targeted photosensitizers for cancer cell apoptosis with high efficiency. Dyes Pigments149. 10.1016/j.dyepig.2017.11.010 (2017).
Tian, R. et al. Emerging Design Principle of Near-Infrared Upconversion Sensitizer Based on Mitochondria-Targeted Organic Dye for Enhanced Photodynamic Therapy. Chem. – A Eur. J.27, 16707–16715 (2021).10.1002/chem.202102866 PubMed DOI
Noh, I. et al. Enhanced Photodynamic Cancer Treatment by Mitochondria-Targeting and Brominated Near-Infrared Fluorophores. Adv. Sci. (Weinh)5, 1700481 (2018). 10.1002/advs.201700481 PubMed DOI PMC
Shi, M. et al. A protein-conjugated photosensitizer with mitochondrial targeting for enhanced photodynamic therapy. Chem. Commun.58, 11729–11732 (2022).10.1039/D2CC03141H PubMed DOI
Schaberle, F. A., Galembeck, S. E. & Borissevitch, I. E. Computational study of steric and spectroscopic characteristics of bi-chromophoric cyanine dyes: Comparison with experimental data. Spectrochimica Acta Part A: Mol. Biomolecular Spectrosc.72, 863–867 (2009).10.1016/j.saa.2008.12.014 PubMed DOI
Zhao, X. et al. A cyanine-derivative photosensitizer with enhanced photostability for mitochondria-targeted photodynamic therapy. Chem. Commun.55, 13542–13545 (2019).10.1039/C9CC06157F PubMed DOI
Chinigò, G. et al. Polymethine dyes-loaded solid lipid nanoparticles (SLN) as promising photosensitizers for biomedical applications. Spectrochim. Acta A Mol. Biomol. Spectrosc.271, 120909 (2022). 10.1016/j.saa.2022.120909 PubMed DOI
Lima, E. et al. Photodynamic activity of indolenine-based aminosquaraine cyanine dyes: Synthesis and in vitro photobiological evaluation. Dyes Pigments174, 108024 (2020).10.1016/j.dyepig.2019.108024 DOI
Murakami, L. S. et al. Photocytotoxicity of a cyanine dye with two chromophores toward melanoma and normal cells. Biochim Biophys. Acta1850, 1150–1157 (2015). 10.1016/j.bbagen.2014.12.005 PubMed DOI
Likhtenstein, G. I., Ishii, K. & Nakatsuji, S. i. Dual Chromophore-Nitroxides: Novel Molecular Probes, Photochemical and Photophysical Models and Magnetic Materials. Photochemistry Photobiol.83, 871–881 (2007).10.1111/j.1751-1097.2007.00141.x PubMed DOI
Medvedeva, N., Martin, V. V., Weis, A. L. & Likhtenshten, G. I. Dual fluorophore-nitronyl probe for investigation of superoxide dynamics and antioxidant status of biological systems. J. Photochemistry Photobiol. A: Chem.163, 45–51 (2004).10.1016/S1010-6030(03)00430-1 DOI
Cui, X. et al. Stable π-radical nanoparticles as versatile photosensitizers for effective hypoxia-overcoming photodynamic therapy. Mater. Horiz.8, 571–576 (2021). Effective strategy for the improvement PDT efficiency based on PS substitution of tetramethylpiperidinyloxy radical 10.1039/D0MH01312A PubMed DOI
Xu, F. et al. Radical induced quartet photosensitizers with high 1O2 production for in vivo cancer photodynamic therapy. Sci. China Chem.64, 488–498 (2021).10.1007/s11426-020-9922-3 DOI
Chu, Z. et al. Recent advances on modulation of H2O2 in tumor microenvironment for enhanced cancer therapeutic efficacy. Coord. Chem. Rev.481, 215049 (2023).10.1016/j.ccr.2023.215049 DOI
Gandioso, A. et al. Ru(II)-Cyanine Complexes as Promising Photodynamic Photosensitizers for the Treatment of Hypoxic Tumours with Highly Penetrating 770nm Near-Infrared Light. Chemistry23, e202301742 (2023). Demonstration of high efficiency of heptamethine conjugate with phenanthrimidazole Ru2+complex against cells in hypoxia condition and in vivo PubMed
Chen, Y. et al. A novel approach to a bifunctional photosensitizer for tumor imaging and phototherapy. Bioconjug Chem.16, 1264–1274 (2005). 10.1021/bc050177o PubMed DOI
Bříza, T. et al. Combination of two chromophores: Synthesis and PDT application of porphyrin–pentamethinium conjugate. Bioorg. Medicinal Chem. Lett.22, 82–84 (2012).10.1016/j.bmcl.2011.11.066 PubMed DOI
Shen, R., Bai, J. & Qian, Y. A mitochondria-targeted fluorescent dye naphthalimide-thioether-cyanine for NIR-actived photodynamic therapy of cancer cell. J. Mater. Chem. B9, 10.1039/D0TB02851G (2021). PubMed
Lendeckel, U., Karimi, F., Al Abdulla, R. & Wolke, C. The Role of the Ectopeptidase APN/CD13 in Cancer. Biomedicines11, 724 (2023). 10.3390/biomedicines11030724 PubMed DOI PMC
Yu, Y. et al. Recent Progress in Type I Aggregation-Induced Emission Photosensitizers for Photodynamic Therapy. Molecules28, 332 (2023).10.3390/molecules28010332 PubMed DOI PMC
Atac, N. et al. Selective antibacterial and antibiofilm activity of chlorinated hemicyanine against gram-positive bacteria. Spectrochimica Acta Part A: Mol. Biomolecular Spectrosc.316, 124324 (2024).10.1016/j.saa.2024.124324 PubMed DOI
Zeng, S. et al. An ER-targeted, Viscosity-sensitive Hemicyanine Dye for the Diagnosis of Nonalcoholic Fatty Liver and Photodynamic Cancer Therapy by Activating Pyroptosis Pathway. Angew. Chem. Int. Ed.63, e202316487 (2024).10.1002/anie.202316487 PubMed DOI
Hu, F., Xu, S. & Liu, B. Photosensitizers with Aggregation-Induced Emission: Materials and Biomedical Applications. Adv. Mater.30, 1801350 (2018).10.1002/adma.201801350 PubMed DOI
Li, S., Jin, X., Zhang, Z., Li, J. & Hua, J. An AIE-active type I photosensitizer based on N,N′-diphenyl-dihydrophenazine for high-performance photodynamic therapy under hypoxia. Mater. Chem. Front.7, 3738–3746 (2023).10.1039/D3QM00215B DOI
Entradas, T., Waldron, S. & Volk, M. The detection sensitivity of commonly used singlet oxygen probes in aqueous environments. J. Photochemistry Photobiol. B: Biol.204, 111787 (2020).10.1016/j.jphotobiol.2020.111787 PubMed DOI
Cui, C. et al. Enhancing electron transfer of a semiconducting polymer for type I photodynamic and photothermal synergistic therapy. Front. Bioeng. Biotechnol.10, 10.3389/fbioe.2022.1004921 (2022). PubMed PMC
Yu, L. et al. Photocatalytic Superoxide Radical Generator that Induces Pyroptosis in Cancer Cells. J. Am. Chem. Soc.144, 11326–11337 (2022). 10.1021/jacs.2c03256 PubMed DOI
Barreto, J. C., Smith, G. S., Strobel, N. H., McQuillin, P. A. & Miller, T. A. Terephthalic acid: a dosimeter for the detection of hydroxyl radicals in vitro. Life Sci.56, Pl89–Pl96 (1995). 10.1016/0024-3205(94)00925-2 PubMed DOI
Jiang, T., Zeng, Q. & He, J. Do alkaline phosphatases have great potential in the diagnosis, prognosis, and treatment of tumors? Transl. Cancer Res.12, 2932–2945 (2023). 10.21037/tcr-23-1190 PubMed DOI PMC
Zhao, X. d. Mitochondria-targeted red light-activated superoxide radical-mediated photodynamic therapy of breast cancer. J. Photochemistry Photobiol. A: Chem.433, 114196 (2022). Highly effective type 1 PS with strong mitochondrial localization10.1016/j.jphotochem.2022.114196 DOI
Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Communi. 4332-4353, 10.1039/B904665H (2009). PubMed
Shigemitsu, H. et al. Fluorescein-Based Type I Supramolecular Photosensitizer via Induction of Charge Separation by Self-Assembly. JACS Au2, 1472–1478 (2022). 10.1021/jacsau.2c00243 PubMed DOI PMC
Yu, D. et al. Improved detection of reactive oxygen species by DCFH-DA: New insight into self-amplification of fluorescence signal by light irradiation. Sens. Actuators B: Chem.339, 129878 (2021).10.1016/j.snb.2021.129878 DOI
Zhang, Z. et al. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem. Soc. Rev.51, 1983–2030 (2022). 10.1039/D1CS01138C PubMed DOI
Xu, X. et al. Secondary Structure in Overcoming Photosensitizers’ Aggregation: α-Helical Polypeptides for Enhanced Photodynamic Therapy. Adv. Healthc. Mater.12, 2203386 (2023).10.1002/adhm.202203386 PubMed DOI
Ma, X. et al. Fluorescence Aggregation-Caused Quenching versus Aggregation-Induced Emission: A Visual Teaching Technology for Undergraduate Chemistry Students. J. Chem. Educ.93, 345–350 (2016).10.1021/acs.jchemed.5b00483 DOI
Ren, Y., Yan, Y. & Qi, H. Photothermal conversion and transfer in photothermal therapy: From macroscale to nanoscale. Adv. Colloid Interface Sci.308, 102753 (2022). 10.1016/j.cis.2022.102753 PubMed DOI
Liu, S. et al. Determination of temperature distribution in tissue for interstitial cancer photothermal therapy. Int J. Hyperth.34, 756–763 (2018).10.1080/02656736.2017.1370136 PubMed DOI
Hwang, E. & Jung, H. S. Organelle-targeted photothermal agents for cancer therapy. Chem. Commun.57, 7731–7742 (2021).10.1039/D1CC02168K PubMed DOI
Ahmed, K., Tabuchi, Y. & Kondo, T. Hyperthermia: an effective strategy to induce apoptosis in cancer cells. Apoptosis20, 1411–1419 (2015). 10.1007/s10495-015-1168-3 PubMed DOI
Pobezhimova, T., Voinikov, V. & Varakina, N. Inactivation of complex I of the respiratory chain of maize mitochondria incubated in vitro by elevated temperature. J. Therm. Biol.21, 283–288 (1996).10.1016/S0306-4565(96)00010-1 DOI
Kapiszewska, M. & Hopwood, L. E. Mechanisms of membrane damage for CHO cells heated in suspension. J. Cancer Res Clin. Oncol.114, 23–29 (1988). 10.1007/BF00390481 PubMed DOI
Wang, Z. et al. The Role of Mitochondria-Derived Reactive Oxygen Species in Hyperthermia-Induced Platelet Apoptosis. PLOS ONE8, e75044 (2013). 10.1371/journal.pone.0075044 PubMed DOI PMC
Kadkhoda, J., Tarighatnia, A., Barar, J., Aghanejad, A. & Davaran, S. Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagnosis Photodyn. Ther.37, 102697 (2022). 10.1016/j.pdpdt.2021.102697 PubMed DOI
Bian, W. et al. A mitochondria-targeted thiazoleorange-based photothermal agent for enhanced photothermal therapy for tumors. Bioorg. Chem.113, 104954 (2021). 10.1016/j.bioorg.2021.104954 PubMed DOI
Zhang, J. et al. Selective imaging and cancer cell death via pH switchable near-infrared fluorescence and photothermal effects. Chem. Sci.7, 5995–6005 (2016). Interesting example of PTT and theranostic agents (pH dependently) 10.1039/C6SC00221H PubMed DOI PMC
Pan, G. Y. et al. Dual Channel Activatable Cyanine Dye for Mitochondrial Imaging and Mitochondria-Targeted Cancer Theranostics. ACS Biomater. Sci. Eng.3, 3596–3606 (2017). Example of PTT and theranostic agents (in the dependence of used wavelength) 10.1021/acsbiomaterials.7b00480 PubMed DOI
Lim, W. et al. Molecular Tuning of IR-786 for Improved Tumor Imaging and Photothermal Therapy. Pharmaceutics14, 10.3390/pharmaceutics14030676 (2022). Effect heptamethine structure (chloro-cyclohexene ring and carboxylated group) on PS tumor selectivity PubMed PMC
Kong, C. & Chen, X. Combined Photodynamic and Photothermal Therapy and Immunotherapy for Cancer Treatment: A Review. Int J. Nanomed.17, 6427–6446 (2022).10.2147/IJN.S388996 PubMed DOI PMC
Waldow, S. M., Henderson, B. W. & Dougherty, T. J. Potentiation of photodynamic therapy by heat: effect of sequence and time interval between treatments in vivo. Lasers Surg. Med5, 83–94 (1985). 10.1002/lsm.1900050203 PubMed DOI
Hiraoka, M. & Hahn, G. M. Comparison between tumor pH and cell sensitivity to heat in RIF-1 tumors. Cancer Res.49, 3734–3736 (1989). PubMed
Henderson, B. W., Waldow, S. M., Potter, W. R. & Dougherty, T. J. Interaction of photodynamic therapy and hyperthermia: tumor response and cell survival studies after treatment of mice in vivo. Cancer Res.45, 6071–6077 (1985). PubMed
Prinsze, C., Penning, L. C., Dubbelman, T. M. A. R. & VanSteveninck, J. Interaction of Photodynamic Treatment and Either Hyperthermia or Ionizing Radiation and of Ionizing Radiation and Hyperthermia with Respect to Cell Killing of L929 Fibroblasts, Chinese Hamster Ovary Cells, and T24 Human Bladder Carcinoma Cells1. Cancer Res.52, 117–120 (1992). PubMed
Allkanjari, K. & Baldock, R. A. Beyond base excision repair: an evolving picture of mitochondrial DNA repair. Biosci. Rep.41, 10.1042/bsr20211320 (2021). PubMed PMC
Rodríguez, M. E., Cogno, I. S., Milla Sanabria, L. S., Morán, Y. S. & Rivarola, V. A. Heat shock proteins in the context of photodynamic therapy: autophagy, apoptosis and immunogenic cell death. Photochem Photobio. Sci.15, 1090–1102 (2016).10.1039/c6pp00097e PubMed DOI
Kuang, S. et al. Photodecaging of a Mitochondria-Localized Iridium(III) Endoperoxide Complex for Two-Photon Photoactivated Therapy under Hypoxia. J. Am. Chem. Soc.144, 4091–4101 (2022). 10.1021/jacs.1c13137 PubMed DOI
Deng, X., Shao, Z. & Zhao, Y. Solutions to the Drawbacks of Photothermal and Photodynamic Cancer Therapy. Adv. Sci.8, 2002504 (2021).10.1002/advs.202002504 PubMed DOI PMC
Yang, K., Dong, Y., Li, X., Wang, F. & Zhang, Y. Dual-targeted delivery of paclitaxel and indocyanine green with aptamer-modified ferritin for synergetic chemo-phototherapy. Colloids Surf. B: Biointerfaces229, 113437 (2023). 10.1016/j.colsurfb.2023.113437 PubMed DOI
Gunduz, H. et al. Dual laser activatable brominated hemicyanine as a highly efficient and photostable multimodal phototherapy agent. J. Photochem Photobio. B217, 112171 (2021). Example of dual PDT and PTT agents (in the dependence of used wavelength)10.1016/j.jphotobiol.2021.112171 PubMed DOI
Luo, S. et al. Mitochondria-Targeted Small-Molecule Fluorophores for Dual Modal Cancer Phototherapy. Adv. Funct. Mater.26, 2826–2835 (2016). Effect heptamethine substitution on its PDT and PTT efficiency10.1002/adfm.201600159 DOI
Zhang, J. et al. Task-Specific Design of Immune-Augmented Nanoplatform to Enable High-Efficiency Tumor Immunotherapy. ACS Appl Mater. Interfaces11, 42904–42916 (2019). Perspective structure motif of dual and PDT and PTT agents with potent antimetastatic effect 10.1021/acsami.9b13556 PubMed DOI
Li, Y. et al. All-in-One Heptamethine Cyanine Amphiphiles for Dual Imaging-Guided Chemo-Photodynamic-Photothermal Therapy of Breast Cancer. Adv Healthc Mater.12, e2300941 (2023). Increase of PDT and PTT efficiency of heptamethine via substitution and nano-formulation by fluorinated amphiphils PubMed
Al-Ali, A. A. A. et al. Recent Advances in Photothermal Therapies Against Cancer and the Role of Membrane Transporter Modulators on the Efficacy of This Approach. Technol. Cancer Res Treat.22, 15330338231168016 (2023). 10.1177/15330338231168016 PubMed DOI PMC
Li, P. T., Tsai, Y. J., Lee, M. J. & Chen, C. T. Increased Histone Deacetylase Activity Involved in the Suppressed Invasion of Cancer Cells Survived from ALA-Mediated Photodynamic Treatment. Int J. Mol. Sci.16, 23994–24010 (2015). 10.3390/ijms161023994 PubMed DOI PMC
Tsai, T. et al. ALA-PDT results in phenotypic changes and decreased cellular invasion in surviving cancer cells. Lasers Surg. Med41, 305–315 (2009). 10.1002/lsm.20761 PubMed DOI
Ailioaie, L. M., Ailioaie, C. & Litscher, G. Synergistic Nanomedicine: Photodynamic, Photothermal and Photoimmune Therapy in Hepatocellular Carcinoma: Fulfilling the Myth of Prometheus? Int. J. Mol. Sci.24, 8308 (2023). 10.3390/ijms24098308 PubMed DOI PMC
Yin, S., Chen, Z., Chen, D. & Yan, D. Strategies targeting PD-L1 expression and associated opportunities for cancer combination therapy. Theranostics13, 1520–1544 (2023). 10.7150/thno.80091 PubMed DOI PMC
Yang, S. et al. NIR-II Imaging-Guided Mitochondrial-Targeting Organic Nanoparticles for Multimodal Synergistic Tumor Therapy. Small19, 2207995 (2023).10.1002/smll.202207995 PubMed DOI
Huang, J. et al. Dual mitigation of immunosuppression combined with photothermal inhibition for highly effective primary tumor and metastases therapy. Biomaterials274, 120856 (2021). 10.1016/j.biomaterials.2021.120856 PubMed DOI
Zhou, Z. et al. Selectively down-regulated PD-L1 by albumin-phenformin nanoparticles mediated mitochondrial dysfunction to stimulate tumor-specific immunological response for enhanced mild-temperature photothermal efficacy. J. Nanobiotechnology19, 375 (2021). 10.1186/s12951-021-01124-8 PubMed DOI PMC
Broekgaarden, M., Weijer, R., van Gulik, T. M., Hamblin, M. R. & Heger, M. Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies. Cancer Metastasis Rev.34, 643–690 (2015). 10.1007/s10555-015-9588-7 PubMed DOI PMC
Matroule, J. Y., Volanti, C. & Piette, J. NF-kappaB in photodynamic therapy: discrepancies of a master regulator. Photochem Photobio.82, 1241–1246 (2006).10.1562/2006-03-30-IR-862 PubMed DOI
Piette, J. Signalling pathway activation by photodynamic therapy: NF-κB at the crossroad between oncology and immunology. Photochem Photobio. Sci.14, 1510–1517 (2015).10.1039/c4pp00465e PubMed DOI
Hanlon, J. G., Adams, K., Rainbow, A. J., Gupta, R. S. & Singh, G. Induction of Hsp60 by Photofrin-mediated photodynamic therapy. J. Photochem Photobio. B64, 55–61 (2001).10.1016/S1011-1344(01)00189-0 PubMed DOI
Aniogo, E. C., George, B. P. A. & Abrahamse, H. Role of Bcl-2 Family Proteins in Photodynamic Therapy Mediated Cell Survival and Regulation. Molecules25, 10.3390/molecules25225308 (2020). PubMed PMC
Matroule, J. Y. et al. Role of nuclear factor-kappa B in colon cancer cell apoptosis mediated by aminopyropheophorbide photosensitization. Photochem Photobio.70, 540–548 (1999). PubMed
Zhou, F., Xing, D. & Chen, W. R. Dynamics and mechanism of HSP70 translocation induced by photodynamic therapy treatment. Cancer Lett.264, 135–144 (2008). 10.1016/j.canlet.2008.01.040 PubMed DOI
Ryan, K. M., Ernst, M. K., Rice, N. R. & Vousden, K. H. Role of NF-κB in p53-mediated programmed cell death. Nature404, 892–897 (2000). 10.1038/35009130 PubMed DOI
Shen, X. Y., Zacal, N., Singh, G. & Rainbow, A. J. Alterations in mitochondrial and apoptosis-regulating gene expression in photodynamic therapy-resistant variants of HT29 colon carcinoma cells. Photochem Photobio.81, 306–313 (2005). PubMed
Bhowmick, R. & Girotti, A. W. Pro-survival and pro-growth effects of stress-induced nitric oxide in a prostate cancer photodynamic therapy model. Cancer Lett.343, 115–122 (2014). 10.1016/j.canlet.2013.09.025 PubMed DOI PMC
Wang, P. et al. Enhancing the Efficiency of Mild-Temperature Photothermal Therapy for Cancer Assisting with Various Strategies. Pharmaceutics14, 10.3390/pharmaceutics14112279 (2022). PubMed PMC
Herrmann, J. M., Stuart, R. A., Craig, E. A. & Neupert, W. Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA. J. Cell Biol.127, 893–902 (1994). 10.1083/jcb.127.4.893 PubMed DOI PMC
Alvi, S. B. et al. The “nano to micro” transition of hydrophobic curcumin crystals leading to in situ adjuvant depots for Au-liposome nanoparticle mediated enhanced photothermal therapy. Biomater. Sci.7, 3866–3875 (2019). 10.1039/C9BM00932A PubMed DOI
Andlinger, D. J. & Kulozik, U. Protein-protein interactions explain the temperature-dependent viscoelastic changes occurring in colloidal protein gels. Soft Matter19, 1144–1151 (2023). 10.1039/D2SM01092E PubMed DOI
Sroka, K. et al. BAG1 modulates huntingtin toxicity, aggregation, degradation, and subcellular distribution. J. Neurochem111, 801–807 (2009). 10.1111/j.1471-4159.2009.06363.x PubMed DOI
Gennaro, V. J., Wedegaertner, H. & McMahon, S. B. Interaction between the BAG1S isoform and HSP70 mediates the stability of anti-apoptotic proteins and the survival of osteosarcoma cells expressing oncogenic MYC. BMC Cancer19, 258 (2019). 10.1186/s12885-019-5454-2 PubMed DOI PMC
Wang, Y. et al. BAG-1L Protects SH-SY5Y Neuroblastoma Cells Against Hypoxia/Re-oxygenation Through Up-Regulating HSP70 and Activating PI3K/AKT Signaling Pathway. Neurochem Res.42, 2861–2868 (2017). 10.1007/s11064-017-2304-y PubMed DOI
Koishi, M. et al. The effects of KNK437, a novel inhibitor of heat shock protein synthesis, on the acquisition of thermotolerance in a murine transplantable tumor in vivo. Clin. Cancer Res.7, 215–219 (2001). PubMed
Schopf, F. H., Biebl, M. M. & Buchner, J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol.18, 345–360 (2017). 10.1038/nrm.2017.20 PubMed DOI
Gopalakrishnan, R., Matta, H. & Chaudhary, P. M. A purine scaffold HSP90 inhibitor BIIB021 has selective activity against KSHV-associated primary effusion lymphoma and blocks vFLIP K13-induced NF-κB. Clin. Cancer Res.19, 5016–5026 (2013). 10.1158/1078-0432.CCR-12-3510 PubMed DOI PMC
Rickard, B. P. et al. Photochemical Targeting of Mitochondria to Overcome Chemoresistance in Ovarian Cancer (†). Photochem Photobio.99, 448–468 (2023).10.1111/php.13723 PubMed DOI PMC
Ahmed, J. II, Abdul Hamid, A. A., Abd Halim, K. B. & Che Has, A. T. P-glycoprotein: new insights into structure, physiological function, regulation and alterations in disease. Heliyon8, e09777 (2022). 10.1016/j.heliyon.2022.e09777 PubMed DOI PMC
Druzhkova, I. et al. Effect of Collagen Matrix on Doxorubicin Distribution and Cancer Cells’ Response to Treatment in 3D Tumor Model. Cancers14, 5487 (2022). 10.3390/cancers14225487 PubMed DOI PMC
Ferraro, G. et al. Cisplatin binding to angiogenin protein: new molecular pathways and targets for the drug’s anticancer activity. Dalton Trans.52, 9058–9067 (2023). 10.1039/D3DT01517C PubMed DOI
Deveci, H. A., Nazıroğlu, M. & Nur, G. 5-Fluorouracil-induced mitochondrial oxidative cytotoxicity and apoptosis are increased in MCF-7 human breast cancer cells by TRPV1 channel activation but not Hypericum perforatum treatment. Mol. Cell Biochem439, 189–198 (2018). 10.1007/s11010-017-3147-1 PubMed DOI
Xiao, H. et al. Nanodrug Inducing Autophagy Inhibition and Mitochondria Dysfunction for Potentiating Tumor Photo-Immunotherapy. Small19, 2300280 (2023).10.1002/smll.202300280 PubMed DOI
Feng, X., Zhang, Y., Wang, P., Liu, Q. & Wang, X. Energy metabolism targeted drugs synergize with photodynamic therapy to potentiate breast cancer cell death. Photochem Photobio. Sci.13, 1793–1803 (2014).10.1039/c4pp00288a PubMed DOI
Huang, Y. et al. The Potential of Lonidamine in Combination with Chemotherapy and Physical Therapy in Cancer Treatment. Cancers12, 3332 (2020). 10.3390/cancers12113332 PubMed DOI PMC
Zhu, H., Jia, Z., Li, Y. R. & Danelisen, I. Molecular mechanisms of action of metformin: latest advances and therapeutic implications. Clin. Exp. Med.23, 2941–2951 (2023). 10.1007/s10238-023-01051-y PubMed DOI PMC
Ben-Yoseph, O., Lyons, J. C., Song, C. W. & Ross, B. D. Mechanism of action of lonidamine in the 9L brain tumor model involves inhibition of lactate efflux and intracellular acidification. J. Neuro-Oncol.36, 149–157 (1998).10.1023/A:1005819604858 PubMed DOI
Cha, J. H. et al. Metformin Promotes Antitumor Immunity via Endoplasmic-Reticulum-Associated Degradation of PD-L1. Mol. Cell71, 606–620.e607 (2018). 10.1016/j.molcel.2018.07.030 PubMed DOI PMC
Ishaq, M. et al. Functional inhibition of Hsp70 by Pifithrin-μ switches Gambogic acid induced caspase dependent cell death to caspase independent cell death in human bladder cancer cells. Biochim Biophys. Acta1863, 2560–2573 (2016). 10.1016/j.bbamcr.2016.07.001 PubMed DOI
Zhang, G., Cheng, W., Du, L., Xu, C. & Li, J. Synergy of hypoxia relief and heat shock protein inhibition for phototherapy enhancement. J. Nanobiotechnology19, 9 (2021). 10.1186/s12951-020-00749-5 PubMed DOI PMC
Liu, W. et al. Mitochondria-Mediated HSP Inhibition Strategy for Enhanced Low-Temperature Photothermal Therapy. ACS Appl. Mater. Interfaces15, 26252–26262 (2023). 10.1021/acsami.3c00870 PubMed DOI
Zhang, T. et al. Hsp90 inhibitor-loaded IR780 micelles for mitochondria-targeted mild-temperature photothermal therapy in xenograft models of human breast cancer. Cancer Lett.500, 41–50 (2021). 10.1016/j.canlet.2020.12.028 PubMed DOI
Kessel, D. Reversible effects of photodamage directed toward mitochondria. Photochem Photobio.90, 1211–1213 (2014).10.1111/php.12283 PubMed DOI PMC
Wang, P. et al. Cancer Cytomembrane-Cloaked Prussian Blue Nanoparticles Enhance the Efficacy of Mild-Temperature Photothermal Therapy by Disrupting Mitochondrial Functions of Cancer Cells. ACS Appl Mater. Interfaces13, 37563–37577 (2021). 10.1021/acsami.1c11138 PubMed DOI
Hahn, Y. I. et al. Curcumin interacts directly with the Cysteine 259 residue of STAT3 and induces apoptosis in H-Ras transformed human mammary epithelial cells. Sci. Rep.8, 6409 (2018). 10.1038/s41598-018-23840-2 PubMed DOI PMC
Mohankumar, K. et al. BDMC-A, an analog of curcumin, inhibits markers of invasion, angiogenesis, and metastasis in breast cancer cells via NF- k B pathway—A comparative study with curcumin. Biomedicine Pharmacother. = Biomedecine pharmacotherapie74, 178–186 (2015).10.1016/j.biopha.2015.07.024 PubMed DOI
Konduri, S. et al. In Vitro Growth Suppression of Renal Carcinoma Cells by Curcumin. J. Patient-Centered Res. Rev.2, 156–164 (2015).10.17294/2330-0698.1197 DOI
Li, S. et al. Enhanced Photothermal-Photodynamic Therapy by Indocyanine Green and Curcumin-Loaded Layered MoS(2) Hollow Spheres via Inhibition of P-Glycoprotein. Int J. Nanomed.16, 433–442 (2021).10.2147/IJN.S275938 PubMed DOI PMC
Cui, X. et al. Multicomponent-assembled nanodiamond hybrids for targeted and imaging guided triple-negative breast cancer therapy via a ternary collaborative strategy. Biomater. Sci.9, 3838–3850 (2021). 10.1039/D1BM00283J PubMed DOI
Caruso Bavisotto, C. et al. Curcumin Affects HSP60 Folding Activity and Levels in Neuroblastoma Cells. Int. J. Mol. Sci.21, 10.3390/ijms21020661 (2020). PubMed PMC
Kejik, Z. et al. Circulating Tumour Cells (CTCs) in NSCLC: From Prognosis to Therapy Design. Pharmaceutics13, 1879 (2021). 10.3390/pharmaceutics13111879 PubMed DOI PMC
Dytrych, P. et al. Therapeutic potential and limitations of curcumin as antimetastatic agent. Biomed. Pharmacother.163, 114758 (2023). 10.1016/j.biopha.2023.114758 PubMed DOI
Teiten, M. H., Reuter, S., Schmucker, S., Dicato, M. & Diederich, M. Induction of heat shock response by curcumin in human leukemia cells. Cancer Lett.279, 145–154 (2009). 10.1016/j.canlet.2009.01.031 PubMed DOI
Li, X. et al. Mitochondria-Targeting MoS(2)-Based Nanoagents for Enhanced NIR-II Photothermal-Chemodynamic Synergistic Oncotherapy. ACS Appl Mater. Interfaces13, 55928–55938 (2021). 10.1021/acsami.1c18311 PubMed DOI
Quiogue, G. et al. Signaling From Lysosomes Enhances Mitochondria-Mediated Photodynamic Therapy In Cancer Cells. Proc. SPIE Int Soc. Opt. Eng.7380, 1–8 (2009). PubMed PMC
Kessel, D. & Reiners, J. J. Jr. Enhanced efficacy of photodynamic therapy via a sequential targeting protocol. Photochem Photobio.90, 889–895 (2014).10.1111/php.12270 PubMed DOI PMC
Shi, H. et al. A Metal-Polyphenol-Based Oxygen Economizer and Fenton Reaction Amplifier for Self-Enhanced Synergistic Photothermal/Chemodynamic/Chemotherapy. Adv. Healthc. Mater.12, 2300054 (2023).10.1002/adhm.202300054 PubMed DOI
Richardson, R. B. & Harper, M. E. Mitochondrial stress controls the radiosensitivity of the oxygen effect: Implications for radiotherapy. Oncotarget7, 21469–21483 (2016). 10.18632/oncotarget.7412 PubMed DOI PMC
Gao, M. et al. Synthesis of a versatile mitochondria-targeting small molecule for cancer near-infrared fluorescent imaging and radio/photodynamic/photothermal synergistic therapies. Mater. Today Bio15, 100316 (2022). Heptamethinium substituted by radiosensitizer for mitochondria selective PDT, PDT and radiotherapy-strongly effect on the mice OS 10.1016/j.mtbio.2022.100316 PubMed DOI PMC
Marrache, S., Tundup, S., Harn, D. A. & Dhar, S. Ex vivo generation of functional immune cells by mitochondria-targeted photosensitization of cancer cells. Methods Mol. Biol.1265, 113–122 (2015). 10.1007/978-1-4939-2288-8_9 PubMed DOI
Chen, W. et al. Dual drugs decorated bacteria irradiate deep hypoxic tumor and arouse strong immune responses. Biomaterials286, 121582 (2022). Interesting agents (Salmonella substituted by hepthamethine) with excellent effect on the antitumor immunity and mice OS 10.1016/j.biomaterials.2022.121582 PubMed DOI
Lahooti, B. et al. Targeting endothelial permeability in the EPR effect. J. Control Release361, 212–235 (2023). 10.1016/j.jconrel.2023.07.039 PubMed DOI
Ng, K. K. & Zheng, G. Molecular Interactions in Organic Nanoparticles for Phototheranostic Applications. Chem. Rev.115, 11012–11042 (2015). 10.1021/acs.chemrev.5b00140 PubMed DOI
He, H. et al. Photoconversion-Tunable Fluorophore Vesicles for Wavelength-Dependent Photoinduced Cancer Therapy. Adv. Mater.29, 10 (2017).10.1002/adma.201606690 PubMed DOI
Chen, Q., Liang, C., Wang, C. & Liu, Z. An Imagable and Photothermal “Abraxane-Like” Nanodrug for Combination Cancer Therapy to Treat Subcutaneous and Metastatic Breast Tumors. Adv. Mater.27, 903–910 (2015). 10.1002/adma.201404308 PubMed DOI
Král, V. et al. Nanomedicine -: Current status and perspectives:: A big potential or just a catchword? Chem. Listy100, 4–9 (2006).
Zhao, X. et al. AIEgens Conjugation Improves the Photothermal Efficacy and Near-Infrared Imaging of Heptamethine Cyanine IR-780. ACS Appl. Mater. Interfaces12, 16114–16124 (2020). 10.1021/acsami.0c01715 PubMed DOI
Zhao, X. et al. A Tumor-Targeting Near-Infrared Heptamethine Cyanine Photosensitizer with Twisted Molecular Structure for Enhanced Imaging-Guided Cancer Phototherapy. J. Am. Chem. Soc.143, 20828–20836 (2021). Nano self-assembly bis- heptamethine PPT agents with very strong antitumor efficiency 10.1021/jacs.1c09155 PubMed DOI
Wang, X. et al. Colloidally Stabilized DSPE-PEG-Glucose/Calcium Phosphate Hybrid Nanocomposites for Enhanced Photodynamic Cancer Therapy via Complementary Mitochondrial Ca(2+) Overload and Autophagy Inhibition. ACS Appl Mater. Interfaces13, 39112–39125 (2021). 10.1021/acsami.1c11583 PubMed DOI
Kim, S., Ohulchanskyy, T. Y., Pudavar, H. E., Pandey, R. K. & Prasad, P. N. Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J. Am. Chem. Soc.129, 2669–2675 (2007). 10.1021/ja0680257 PubMed DOI PMC
Li, X. et al. Oxygen tank for synergistic hypoxia relief to enhance mitochondria-targeted photodynamic therapy. Biomater. Res.26, 47 (2022). Perfluoralkyl drug delivery system (combined transport of cyanine dye and oxygen) for targeting hypoxia tumor 10.1186/s40824-022-00296-0 PubMed DOI PMC
Luo, S. et al. Tailoring Multifunctional Small Molecular Photosensitizers to In Vivo Self-Assemble with Albumin to Boost Tumor-Preferential Accumulation, NIR Imaging, and Photodynamic/Photothermal/Immunotherapy. Small18, e2201298 (2022). 10.1002/smll.202201298 PubMed DOI
Tan, X. et al. Structure-Guided Design and Synthesis of a Mitochondria-Targeting Near-Infrared Fluorophore with Multimodal Therapeutic Activities. Adv Mater29, 1704196 (2017). Effect of HSA complexation on photoactivity of heptamethine (in vitro and in vivo) PubMed
Dar, N. & Ankari, R. Theoretical Models, Preparation, Characterization and Applications of Cyanine J-Aggregates: A Minireview. ChemistryOpen11, e202200103 (2022). 10.1002/open.202200103 PubMed DOI PMC
Nie, J. Z., Wang, M. T. & Nie, D. Regulations of Tumor Microenvironment by Prostaglandins. Cancers (Basel)15, 3090 (2023). PubMed PMC
Gustafsson, A. et al. Receptor and enzyme expression for prostanoid metabolism in colorectal cancer related to tumor tissue PGE2. Int J. Oncol.36, 469–478 (2010). PubMed
Wang, L. et al. Nanoscale photosensitizer with tumor-selective turn-on fluorescence and activatable photodynamic therapy treatment for COX-2 overexpressed cancer cells. J. Mater. Chem. B9, 2001–2009 (2021). Nano self-assembly sqairaine conjugate with indomethacin (COX inhibitor) for photoselective targeting cancer cells 10.1039/D0TB02828B PubMed DOI
Li, Y. et al. Anionic Cyanine J-Type Aggregate Nanoparticles with Enhanced Photosensitization for Mitochondria-Targeting Tumor Phototherapy. Angew. Chem. Int. Ed.61, e202203093 (2022). Supramolecular nano-agraggegates of photoactive cyanine dye with strong antitumor efficiency10.1002/anie.202203093 PubMed DOI
Wu, W. et al. Polymerization-Enhanced Photosensitization. Chem4, 1937–1951 (2018).10.1016/j.chempr.2018.06.003 DOI
Dickson, M. A. et al. Phase II study of the HSP90-inhibitor BIIB021 in gastrointestinal stromal tumors. Ann. Oncol.24, 252–257 (2013). 10.1093/annonc/mds275 PubMed DOI PMC
Lv, F., Feng, E., Lv, S., Liu, D. & Song, F. Metal-Coordination-Mediated H-Aggregates of Cyanine Dyes for Effective Photothermal Therapy. Chem. – A Eur. J.29, e202301483 (2023).10.1002/chem.202301483 PubMed DOI
Nath, P. et al. Intracellular detection of singlet oxygen using fluorescent nanosensors. Analyst146, 3933–3941 (2021). 10.1039/D1AN00456E PubMed DOI PMC
Weijer, R. et al. Enhancing photodynamic therapy of refractory solid cancers: Combining second-generation photosensitizers with multi-targeted liposomal delivery. J. Photochemistry Photobiol. C: Photochemistry Rev.23, 103–131 (2015).10.1016/j.jphotochemrev.2015.05.002 DOI
Gao, G. et al. Enzyme-Mediated Tumor Starvation and Phototherapy Enhance Mild-Temperature Photothermal Therapy. Adv. Funct. Mater.30, 1909391 (2020).10.1002/adfm.201909391 DOI
Neunert, G. et al. Disruptive effect of tocopherol oxalate on DPPC liposome structure: DSC, SAXS, and fluorescence anisotropy studies. Chem. Phys. Lipids216, 104–113 (2018). 10.1016/j.chemphyslip.2018.10.001 PubMed DOI
Buckton, L., Wang, Y., McConnell, J. & McAlpine, S. Vol. 19 (2015).
Vial, G., Detaille, D. & Guigas, B. Role of Mitochondria in the Mechanism(s) of Action of Metformin. Front Endocrinol. (Lausanne)10, 294 (2019). 10.3389/fendo.2019.00294 PubMed DOI PMC
Yang, Z. et al. Defeating relapsed and refractory malignancies through a nano-enabled mitochondria-mediated respiratory inhibition and damage pathway. Biomaterials229, 119580 (2020). Effective reduction of PTT induced HIF-1a (in vitro and in vivo) by metformin 10.1016/j.biomaterials.2019.119580 PubMed DOI
Zhang, X. et al. Near-Infrared Light-Activated Oxygen Generator a Multidynamic Photo-Nanoplatform for Effective Anti-Cutaneous Squamous Cell Carcinoma Treatment. Int. J. Nanomed.17, 5761–5777 (2022). Strong increase PPT efficiency via catalase co-application in hypoxia condition (in vitro and in vivo)10.2147/IJN.S378321 PubMed DOI PMC
Yu, H., Yang, Z., Li, F., Xu, L. & Sun, Y. Cell-mediated targeting drugs delivery systems. Drug Deliv.27, 1425–1437 (2020). 10.1080/10717544.2020.1831103 PubMed DOI PMC
Mai, X. et al. Integration of immunogenic activation and immunosuppressive reversion using mitochondrial-respiration-inhibited platelet-mimicking nanoparticles. Biomaterials232, 119699 (2020). 10.1016/j.biomaterials.2019.119699 PubMed DOI
Avci, P., Erdem, S. S. & Hamblin, M. R. Photodynamic therapy: one step ahead with self-assembled nanoparticles. J. Biomed. Nanotechnol.10, 1937–1952 (2014). 10.1166/jbn.2014.1953 PubMed DOI PMC
Wen, J. et al. Mitochondria-targeted nanoplatforms for enhanced photodynamic therapy against hypoxia tumor. J. Nanobiotechnology19, 440 (2021). 10.1186/s12951-021-01196-6 PubMed DOI PMC
Chen, L. et al. Intelligent triggering of nanomicelles based on a ROS-activated anticancer prodrug and photodynamic therapy (PDT)-synergistic therapy for lung cancers. Eur. J. Med. Chem.241, 114622 (2022). 10.1016/j.ejmech.2022.114622 PubMed DOI
Pan, G.-Y. et al. Cyanine-Containing Polymeric Nanoparticles with Imaging/Therapy-Switchable Capability for Mitochondria-Targeted Cancer Theranostics. ACS Appl. Nano Mater.1, 2885–2897 (2018).10.1021/acsanm.8b00527 DOI
Traverso, N. et al. Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell Longev.2013, 972913 (2013). 10.1155/2013/972913 PubMed DOI PMC
Yang, G. et al. GSH-Activatable NIR Nanoplatform with Mitochondria Targeting for Enhancing Tumor-Specific Therapy. ACS Appl. Mater. Interfaces11, 44961–44969 (2019). Pro-PDT agents for the selective targeting cancer cells with high GSH level 10.1021/acsami.9b15996 PubMed DOI
Li, S., Johnson, J., Peck, A. & Xie, Q. Near infrared fluorescent imaging of brain tumor with IR780 dye incorporated phospholipid nanoparticles. J. Transl. Med.15, 18 (2017). Excellent drug delivery system for cyanine dye with highly accumulation in the brain 10.1186/s12967-016-1115-2 PubMed DOI PMC
Hong, L. et al. Rational design of an oxygen-enriching nanoemulsion for enhanced near-infrared laser activatable photodynamic therapy against hypoxic tumors. Colloids Surf. B: Biointerfaces198, 111500 (2021). 10.1016/j.colsurfb.2020.111500 PubMed DOI
Nguyen, M. T. et al. Perfluorocarbon Nanoemulsions with Fluorous Chlorin-Type Photosensitizers for Antitumor Photodynamic Therapy in Hypoxia. Int. J. Mol. Sci.24, 7995 (2023). PubMed PMC
Hoogenboezem, E. N. & Duvall, C. L. Harnessing albumin as a carrier for cancer therapies. Adv. Drug Deliv. Rev.130, 73–89 (2018). 10.1016/j.addr.2018.07.011 PubMed DOI PMC
Zhou, Z. et al. Cascade two-stage tumor re-oxygenation and immune re-sensitization mediated by self-assembled albumin-sorafenib nanoparticles for enhanced photodynamic immunotherapy. Acta Pharm. Sin. B12, 4204–4223 (2022). 10.1016/j.apsb.2022.07.023 PubMed DOI PMC
Liu, Y. et al. Tumor Selective Metabolic Reprogramming as a Prospective PD-L1 Depression Strategy to Reactivate Immunotherapy. Adv. Mater.34, 2206121 (2022). Effect of HSA complexation on antitumor efficiency of heptamethine conjugate with CI and CII inhibitor (stimulation of immune system, HIF-1a repression and antimetastatic activity)10.1002/adma.202206121 PubMed DOI
Gao, G. et al. Molecular Targeting-Mediated Mild-Temperature Photothermal Therapy with a Smart Albumin-Based Nanodrug. Small15, 1900501 (2019).10.1002/smll.201900501 PubMed DOI
Zhang, R., Zhao, X., Jia, A., Wang, C. & Jiang, H. Hyaluronic acid-based prodrug nanomedicines for enhanced tumor targeting and therapy: A review. Int J. Biol. Macromol.249, 125993 (2023). 10.1016/j.ijbiomac.2023.125993 PubMed DOI
Michalczyk, M., Humeniuk, E., Adamczuk, G. & Korga-Plewko, A. Hyaluronic Acid as a Modern Approach in Anticancer Therapy-Review. Int. J. Mol. Sci.24, 10.3390/ijms24010103 (2022). PubMed PMC
Wei, Y., Quan, L., Zhou, C. & Zhan, Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine13, 1495–1512 (2018). 10.2217/nnm-2018-0040 PubMed DOI
Tian, H. et al. A targeted nanomodulator capable of manipulating tumor microenvironment against metastasis. J. Controlled Release348, 590–600 (2022). Effect of co-applicated lactase oxidase on PDT and PTT efficiency – increase OS and metastasis repression10.1016/j.jconrel.2022.06.022 PubMed DOI
Xu, S. et al. Dual tumor- and subcellular-targeted photodynamic therapy using glucose-functionalized MoS(2) nanoflakes for multidrug-resistant tumor ablation. Biomaterials290, 121844 (2022). Demonstration of efficiency of mitochondrial PTT and especially its combination with PTT lysosome PTT (in vitro and in vivo) 10.1016/j.biomaterials.2022.121844 PubMed DOI
Marín-Hernández, Á. et al. Hypoglycemia Enhances Epithelial-Mesenchymal Transition and Invasiveness, and Restrains the Warburg Phenotype, in Hypoxic HeLa Cell Cultures and Microspheroids. J. Cell. Physiol.232, 1346–1359 (2017). 10.1002/jcp.25617 PubMed DOI
Jagdale, S. et al. GLUT1 transporter-facilitated solid lipid nanoparticles loaded with anti-cancer therapeutics for ovarian cancer targeting. Int J. Pharm.637, 122894 (2023). 10.1016/j.ijpharm.2023.122894 PubMed DOI
Hashemkhani, M., Muti, A., Sennaroğlu, A. & Yagci Acar, H. Multimodal image-guided folic acid targeted Ag-based quantum dots for the combination of selective methotrexate delivery and photothermal therapy. J. Photochemistry Photobiol. B: Biol.213, 112082 (2020).10.1016/j.jphotobiol.2020.112082 PubMed DOI
Wu, P.-J. et al. Methotrexate-conjugated AgInS2/ZnS quantum dots for optical imaging and drug delivery. Mater. Lett.128, 412–416 (2014).10.1016/j.matlet.2014.04.167 DOI
Hu, F. et al. Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Res.8, 10.1007/s12274-014-0653-2 (2015).
Hashemkhani, M., Bilici, K., Muti, A., Sennaroglu, A. & Acar, H. Y. Ag2S-Glutathione quantum dots for NIR image guided photothermal therapy. N. J. Chem.44, 5419–5427 (2020).10.1039/C9NJ04608A DOI
Celikbas, E. et al. Image-Guided Enhanced PDT/PTT Combination Therapy Using Brominated Hemicyanine-Loaded Folate Receptor-Targeting Ag2S Quantum Dots. Bioconjugate Chem.34, 880–892 (2023).10.1021/acs.bioconjchem.3c00096 PubMed DOI PMC
Duman, F. D. et al. Folic acid-conjugated cationic Ag2S quantum dots for optical imaging and selective doxorubicin delivery to HeLa cells. Nanomedicine12, 2319–2333 (2017). 10.2217/nnm-2017-0180 PubMed DOI
Yang, F., Xu, M., Chen, X. & Luo, Y. Spotlight on porphyrins: Classifications, mechanisms and medical applications. Biomedicine Pharmacother.164, 114933 (2023).10.1016/j.biopha.2023.114933 PubMed DOI
Jiang, Z., Xiao, W. & Fu, Q. Stimuli responsive nanosonosensitizers for sonodynamic therapy. J. Control Release361, 547–567 (2023). 10.1016/j.jconrel.2023.08.003 PubMed DOI
Qian, X., Zheng, Y. & Chen, Y. Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. Adv. Mater.28, 8097–8129 (2016). 10.1002/adma.201602012 PubMed DOI
Silva, E. C. I., Pratavieira, S., Salvador Bagnato, V. & Alves, F. Sonophotodynamic inactivation of Pseudomonas aeruginosa biofilm mediated by curcumin. Biofouling. 39, 1–11 (2023). PubMed
Li, Q. et al. The effects of Ce6-mediated sono-photodynamic therapy on cell migration, apoptosis and autophagy in mouse mammary 4T1 cell line. Ultrasonics54, 981–989 (2014). 10.1016/j.ultras.2013.11.009 PubMed DOI
Shi, H., Tan, X., Wang, P. & Qin, J. A novel near-infrared trifluoromethyl heptamethine cyanine dye with mitochondria-targeting for integration of collaborative treatment of photothermal and sonodynamic therapy. Mater. Today Adv.14, 100251 (2022).10.1016/j.mtadv.2022.100251 DOI
Wang, P. et al. Anti-metastatic and pro-apoptotic effects elicited by combination photodynamic therapy with sonodynamic therapy on breast cancer both in vitro and in vivo. Ultrason Sonochem.23, 116–127 (2015). 10.1016/j.ultsonch.2014.10.027 PubMed DOI
Hu, D. et al. Trimodal Sono/Photoinduced Focal Therapy for Localized Prostate Cancer: Single-Drug-Based Nanosensitizer under Dual-Activation. Adv. Funct. Mater.31, 2104473 (2021).10.1002/adfm.202104473 DOI
Guo, X. et al. Mito-Bomb: Targeting Mitochondria for Cancer Therapy (Adv. Mater. 43/2021). Adv. Mater.33, 2170340 (2021).10.1002/adma.202170340 PubMed DOI
Peng, X. et al. Fluorescence Ratiometry and Fluorescence Lifetime Imaging: Using a Single Molecular Sensor for Dual Mode Imaging of Cellular Viscosity. J. Am. Chem. Soc.133, 6626–6635 (2011). 10.1021/ja1104014 PubMed DOI
Ciubini, B. et al. Design and synthesis of symmetrical pentamethine cyanine dyes as NIR photosensitizers for PDT. Dyes Pigments160, 806–813 (2019).10.1016/j.dyepig.2018.09.009 DOI
Zhang, M. et al. A Dual-Function Hemicyanine Material with Highly Efficient Photothermal and Photodynamic Effect Used for Tumor Therapy. Adv. Healthc. Mater.13, 2303432 (2024).10.1002/adhm.202303432 PubMed DOI
Wysocki, M. et al. Excited State and Reactive Oxygen Species against Cancer and Pathogens: A Review on Sonodynamic and Sono-Photodynamic Therapy. ChemMedChem17, e202200185 (2022). 10.1002/cmdc.202200185 PubMed DOI
Sowers, A. E. & Hackenbrock, C. R. Rate of lateral diffusion of intramembrane particles: measurement by electrophoretic displacement and rerandomization. Proc. Natl Acad. Sci.78, 6246–6250 (1981). 10.1073/pnas.78.10.6246 PubMed DOI PMC
Chen, G. et al. Advanced Near-Infrared Light for Monitoring and Modulating the Spatiotemporal Dynamics of Cell Functions in Living Systems. Adv. Sci. (Weinh)7, 1903783 (2020). 10.1002/advs.201903783 PubMed DOI PMC
Hildingsson, S., Gebre-Medhin, M., Zschaeck, S. & Adrian, G. Hypoxia in relationship to tumor volume using hypoxia PET-imaging in head & neck cancer - A scoping review. Clin. Transl. Radiat. Oncol.36, 40–46 (2022). PubMed PMC
Chen, J. et al. Oxygen-Self-Produced Nanoplatform for Relieving Hypoxia and Breaking Resistance to Sonodynamic Treatment of Pancreatic Cancer. ACS Nano11, 12849–12862 (2017). 10.1021/acsnano.7b08225 PubMed DOI